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We study the extension of the minimal supersymmetric standard model by adding one singlet and one

hypercharge zero SUð2Þ triplet chiral superfield. The triplet sector gives an additional contribution to the

scalar masses, and we find that the lightest CP-even Higgs boson can have a mass of 119–120 GeVat tree

level, and radiative correction raises the value to 125 GeV. In this model no significant contributions from

stop loops is needed to get the required Higgs mass that alleviates the fine-tuning problem of fixing the

stop mass to a high precision at the grand unified theory scale. In addition, this model gives a neutralino

dark matter of mass around 100 GeV that is a mixture of Higgsino and triplino with a dark matter density

consistent with WMAP observations. The spin-independent scattering cross section with nucleons is

10�43 cm2, which makes it consistent with the bounds from direct detection experiments like XENON100

and others.
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I. INTRODUCTION

The ATLAS and CMS collaborations [1,2] have nar-
rowed down the allowed range of a light Higgs mass to
the region 115–131 GeV. In addition there are hints of
the Higgs mass being near mh ¼ 125 GeV with standard
model (SM)-like decay widths into 2� and 4l. A light
Higgs is favored in supersymmetry although the minimal
supersymmetric standard model (MSSM) predicts a tree-
level upper bound on the lightest CP-even Higgs mass as
mh <MZ cos2�. Within MSSM, loop corrections can
give required large corrections to the Higgs mass pro-
vided the stop is heavier than 1 TeV or there is near
maximal stop mixing. Implications of the 125 GeV
Higgs for the MSSM and constrained-MSSM parameter
space have been extensively studied [3]. Going beyond
MSSM, in order to get a larger tree-level Higgs mass, the
simplest extension is a singlet superfield in the next-to-
minimal supersymmetric standard model (NMSSM)
model [4]. The singlet interaction with the two Higgs
doublet of MSSM is via the �SHu �Hd term. The Higgs
mass is now given by the relation m2

h ¼ M2
Zcos

22�þ
�2v2sin22�þ �m2

h, where �m2
h is due to radiative cor-

rection. Taking � ¼ 0:7 [larger values would make it flow
to the nonperturbative regime much below the grand
unified theory (GUT) scale] and tan� ¼ 2, the radiative
correction needed to get a 125 GeV Higgs mass is �mh ¼
55 GeV, which is an improvement over the �mh ¼
85 GeV needed in the MSSM. However, fine-tuning of
the stop mass is still required in NMSSM to get the
required Higgs mass [5]. Also by extending the MSSM
gauge group in a suitable way, the new Higgs sector
dynamics can push the tree-level mass well above the
tree-level MSSM limit if it couples to the new gauge

sector [6]. In most of the cases the nondecoupling
D-terms contribute nontrivially to increase the tree-level
mass of the SM-like Higgs boson. Recent analysis of the
supersymmetric (SUSY) model based on SUð3ÞC �
SUð2ÞL �Uð1ÞR �Uð1ÞB-L gauge group [7] has shown
that the tree-level physical Higgs mass can be at most
110 GeV and through the one-loop correction it can be
raised considerably. Another recent work on MSSM ex-
tended by a Uð1Þ gauged Peccei-Quinn symmetry [8]
where the new D-terms can raise the tree-level mass
well enough to accommodate the 125 GeV Higgs boson
without significant radiative correction and hence re-
quires less fine-tuning.
An important aspect of the 125 GeV Higgs mass is that

the parameter space of the thermal relic for dark matter is
severely restricted. In the MSSM, the lightest supersym-
metric particle (LSP) is a Higgsino at the TeV scale [9]. In
NMSSM, the SUSY partner of the singlet scalar—the
singlino—mixes with the neutralinos to provide a light
dark matter [10,11]. Recent analysis [5] has shown that
the benchmark parameters that give a 125 GeV Higgs mass
also provide a neutralino dark matter candidate with mass in
the range of 68–85 GeV. To our knowledge, the dark matter
in triplet-extended MSSM has not been studied so far.
The extension of MSSM by extending it with Y ¼ 0

and Y ¼ 0, �1 SUð2Þ triplet superfields has been studied
[12–14] where the tree-level contribution to the Higgs
mass from the triplet Higgs sector has been calculated. It
was shown in Ref. [14] that with the Y ¼ 0 triplet super-
field the tree-level Higgs mass can be raised to 113 GeV,
which would still require substantial loop corrections
from stops. Recently, the MSSM extended by two real
triplets (Y ¼ �1) and one singlet [15] has been studied
with a motivation to solve the �-problem as well as to
obtain a large correction to the lightest Higgs mass. The
analysis of the dark matter sector of this model will be
complicated as the LSP will be the lightest eigenstate of
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the 7� 7 neutralino mass matrix that has not yet been
done.

In this paper we explore the minimal extension of
the MSSM that can give a tree-level Higgs mass of
119–120 GeV. We find that by extending the MSSM by
adding a singlet superfield and a Y ¼ 0 SUð2Þ triplet
superfield, this aim can be achieved. The upper bound on
the tree-level mass of the lightest CP-even Higgs mass is
given in Eq. (27). With this tree-level Higgs mass the stop
mass need not be very heavy and this solves the fine-tuning
problem of the Higgs mass in MSSM and NMSSM [5]. We
also study the dark matter candidates in this model that are
obtained by diagonalizing the 6� 6 neutralino mass matrix.
We find a viable dark matter with mass 100 GeV, which is a
mixture of the Higgsino and triplino (the fermionic partner
of the neutral component of the triplet Higgs mass). We fix
two sets of benchmark parameters at the electroweak scale
that would give the 125 GeV and dark matter relic density
�h2 ¼ 0:1109� 0:0056 compatible with WMAP-7 mea-
surements [16]. We find that the direct detection cross
section of the dark matter is �SI ’ 10�43 cm2, which is
compatible with the direct detection experiments like
XENON100 [17].

In Sec. II we display the superpotential of our model,
and we derive the scalar potential from the D-terms and
F-terms and from the various soft-breaking terms. In
Sec. III we give a detailed analysis of the Higgs sector,
and we calculate the CP-even, CP-odd, and charged
Higgs mass matrices. In Sec. IV, the neutralino and the
chargino mass matrices are discussed. The numerical
results based on this model are discussed in detail in
Sec. V. We show the results for two sets of benchmark
points that include the parameters like couplings, trilinear
soft-breaking terms, soft masses, and the fermionic and
scalar mass spectrum. We have also taken into account the
one-loop corrections to the lightest physical Higgs mass
and shown a quantitative improvement of the level of fine-
tuning compared to other models. In Sec. VI we discuss
the dark matter from the neutralino sector of this model
and its phenomenology, which is one of the main results
of this paper. In the concluding section we summarize the
results and point out some directions for further study of
the triplet-singlet model that will enable the model to be
tested at the LHC.

II. MODEL

In this model, we have extended the superpotential of the
minimal supersymmetric standard model by adding one
singlet chiral superfield S and one SUð2Þ triplet chiral
superfields T0 with hypercharge Y ¼ 0. The most general
form of the superpotential for this singlet-triplet-extended
model can be written as

W ¼ ð�þ �ŜÞĤd:Ĥu þ �1

3
Ŝ3 þ �2Ĥd:T̂0Ĥu

þ �3Ŝ
2 TrðT̂0Þ þ �4ŜTrðT̂0T̂0Þ þWYuk; (1)

where Ĥu;d are the Higgs doublets of the MSSM and the

Yukawa superpotential WYuk is given as

WYuk ¼ yuQ̂L:ĤuÛR þ ydQ̂L:ĤdD̂R þ yeL̂L:ĤdÊR: (2)

In terms of the components, we have

Ĥu ¼
Ĥþ

u

Ĥ0
u

 !
; Ĥd ¼

Ĥ0
d

Ĥ�
d

 !
and

T̂0 ¼
T̂0ffiffi
2

p �T̂þ
0

T̂�
0

�T̂0ffiffi
2

p

0
B@

1
CA:

Here, ðT̂�
0 Þ� � �T̂þ

0 , which would not have been true for a
real Higgs triplet in nonsupersymmetric models. We can
solve the �-problem by starting with a scale invariant
superpotential, given as

Wsc inv ¼ �ŜĤd:Ĥu þ �1

3
Ŝ3 þ �2Ĥd:T̂0Ĥu

þ �4ŜTrðT̂0T̂0Þ þWYuk; (3)

where the SUð2Þ invariant dot product is defined as

Ĥd:T̂0Ĥu ¼ 1ffiffiffi
2

p ðĤ0
dT̂

0Ĥ0
u þ Ĥ�

d T̂
0Ĥþ

u Þ

� ðĤ0
dT̂

�
0 Ĥ

þ
u þ Ĥ�

d T̂
þ
0 Ĥ

0
uÞ: (4)

This superpotential (3) also has an accidental Z3-symmetry,
i.e., invariance of the superpotential on multiplication of
the chiral superfields by the factor of 2�i

3 . By this choice

we are eliminating the �-parameter but an effective
�-term is generated when the neutral components of
S and T0 acquire vacuum expectation values (vev’s) vs

and vt, respectively,

�eff ¼ �vs � �2ffiffiffi
2

p vt: (5)

Therefore, in terms of the neutral components of the
superfields, Eq. (3) sans WYuk can be rewritten as

Wneu ¼ ��ŜĤ0
uĤ

0
d þ

�1

3
Ŝ3 þ �2ffiffiffi

2
p Ĥ0

dT̂
0Ĥ0

u þ �4ŜT̂
0T̂0:

(6)

A. Scalar potential

The scalar potential involving only the Higgs field can
be written as

V ¼ VSB þ VF þ VD: (7)

In the above equation,VSB consists of the soft-supersymmetry
breaking term associated with the superpotential in
Eq. (3), given by
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VSB¼m2
Hu
½jH0

uj2þjHþ
u j2�þm2

Hd
½jH0

dj2þjH�
d j2�þm2

SjSj2þm2
TTrðTy

0 T0Þ

þ
�
��A�SHu:Hdþ�1

3
A�1

S3þ�2A�2
Hd:T0Huþ�4B�STrðT2

0ÞþH:c:

�
: (8)

In Eq. (7) VF is the supersymmetric potential from F-terms, given by

VF ¼
����������SH0

d þ
�2ffiffiffi
2

p H0
dT

0 � �2H
�
d T

þ
0

��������
2þ

����������SH0
u þ �2ffiffiffi

2
p H0

uT
0 � �2H

þ
u T

�
0

��������
2

þ
���������2ffiffiffi

2
p ðH0

uH
0
d þH�

d H
þ
u Þ þ 2�4ST

0

��������
2þ

���������ðH�
d H

þ
u H

0
uH

0
dÞ þ �1S

2 þ �4ðT02 � 2Tþ
0 T

�
0 Þ
��������

2

þ
���������SH�

d þ �2ffiffiffi
2

p T0H�
d � �2H

0
dT

�
0

��������
2þ

����������2H
�
d H

0
u � 2�4ST

�
0

��������
2

þ
���������SHþ

u þ �2ffiffiffi
2

p T0Hþ
u � �2H

0
uT

þ
0

��������
2þ

����������2H
þ
u H

0
d � 2�4ST

þ
0

��������
2

; (9)

whereas the F-term for the neutral scalar potential can be derived from Eq. (6) as

VFneu
¼ X

i

��������@W
neu
scalar

@�0
i

��������
2

; (10)

where �0
i stands for H

0
u, H

0
d, S, T

0 and Wneu
scalar is the scalar counterpart of the neutral superpotential W

neu.
Finally, VD is supersymmetric potential from D-terms in Eq. (7), given by

VD ¼ g21
8
½jH�

d j2þjH0
dj2�jHþ

u j2�jH0
uj2�2þg22

8
½jH�

d j2þjH0
dj2�jHþ

u j2�jH0
uj2þ 2jTþ

0 j2� 2jT�
0 j2�2

þg22
8
½H0�

d H�
d þHþ�

u H0
uþ

ffiffiffi
2

p ðTþ
0 þT�

0 ÞT�
0 þH:c�2�g22

8
½H��

d H0
dþH0�

u Hþ
u þ ffiffiffi

2
p ðTþ

0 �T�
0 ÞT�

0 þH:c�2: (11)

1. EWSB

After electroweak symmetry breaking, only the neutral
components of the scalar fields acquire vev’s, i.e.,

hH0
ui¼vu; hH0

di¼vd; hSi¼vs; and hT0i¼vt:

The neutral scalar part of the chiral superfields can be
decomposed into real and imaginary parts,

H0
u ¼ ðH0

uR þ vuÞ þ iH0
uI ; (12)

H0
d ¼ ðH0

dR
þ vdÞ þ iH0

dI
; (13)

S ¼ ðSR þ vsÞ þ iSI; (14)

T0 ¼ ðT0
R þ vtÞ þ iT0

I : (15)

The minimization conditions are derived from the fact that

@V

@vu

¼ @V

@vd

¼ @V

@vs

¼ @V

@vt

¼ 0: (16)

We can determine the soft-breaking mass parameters like
m2

Hu
, m2

Hd
, m2

T , and m2
S using the following minimization

conditions:

m2
Hu

¼ cot�

�
Aeff �

�
�2 þ �2

2

2

�
v2

2
sin2�

þ ��4v
2
t �

ffiffiffi
2

p
�2�4vtvs � �2ffiffiffi

2
p A�2

vt

�
��2

eff

þ 1

4
ðg21 þ g22Þv2 cos2�; (17)

m2
Hd

¼ tan�

�
Aeff �

�
�2 þ �2

2

2

�
v2

2
sin2�

þ ��4v
2
t �

ffiffiffi
2

p
�2�4vtvs � �2ffiffiffi

2
p A�2

vt

�

��2
eff �

1

4
ðg21 þ g22Þv2 cos2�; (18)

m2
S ¼ v2

�
vtffiffiffi
2

p
vs

��2 þ��1 sin2�þ 1

2vs

�A� sin2���2

�

� ½2�2
1vs þ�A�1

�vs ��4v
2
t ½B�=vs þ 2�1 þ 4�4�

� ffiffiffi
2

p
�2�4vuvdvt=vs; (19)

m2
T ¼

�
1ffiffiffi
2

p ��2

vs

vt

��2
2

2
� �2

2
ffiffiffi
2

p
vt

A�2
sin2�

�
v2

� 2�2
4v

2
t þ 2��4vuvd��4v

2
s½2B�=vsþ 2�1þ 4�4�

� ffiffiffi
2

p
�2�4vuvdvs=vt; (20)
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where

Aeff ¼ �vs½A� þ �1vs�; (21)

and v2
u þ v2

d ¼ v2 ¼ ð174Þ2 GeV2, tan� ¼ vu

vd
.

Because of the addition of the triplets, the gauge bosons
receive additional contribution in their masses like

M2
Z ¼ 1

2
ðg21 þ g22Þv2; (22)

M2
W ¼ 1

2
g22ðv2 þ 4v2

t Þ: (23)

The 	-parameter at the tree level is defined as

	 ¼ M2
W

M2
Zcos

2
W
¼ 1þ 4

v2
t

v2
: (24)

Clearly, the 	-parameter deviates from unity by a factor of

4
v2
t

v2 . Using the recent bound on the 	-parameter at

95% C. L., we can determine the bound on the triplet
Higgs vev vt. 	 can be confined in the range 0.9799–
1.0066 [13] and hence vt � 9 GeV at 95% C. L.

III. HIGGS SECTOR

A. CP-even Higgs mass matrices

The symmetric CP-even Higgs mass matrix is written in
the basis ðH0

uR ; H
0
dR
; T0

R; SRÞ with 10 independent compo-

nents. After electroweak symmetry breaking (EWSB) the
entries of the squared mass matrix are

M2
11 ¼

1

2
ðg21 þ g22Þv2sin2�þ C1 cot�þ C4;

M2
22 ¼

1

2
ðg21 þ g22Þv2cos2�þ C1 tan�þ C4;

M2
33 ¼ 4�2

4v
2
t þ �2v

2½�vs � ðA�2
þ 2�4vsÞ

� sin� cos��= ffiffiffi
2

p
vt;

M2
44 ¼ �1vs½A�1

þ 4�1vs� þ
�
vt

�
��2

v2ffiffiffi
2

p � �4B�vt

�

þ ð�A� �
ffiffiffi
2

p
�2�4vtÞv2 sin� cos�

��
vs;

M2
12 ¼ �C1 þ

�
2�2 þ �2

2 �
ðg21 þ g22Þ

2

�
v2 sin� cos�;

M2
13 ¼ v½C2 cos�� ffiffiffi

2
p

�2�eff sin��;
M2

14 ¼ �v½C3 cos�� 2��eff sin��;
M2

23 ¼ v½C2 sin�� ffiffiffi
2

p
�2�eff cos��;

M2
24 ¼ �v½C3 sin�� 2��eff cos��;

M2
34 ¼ 2�4vt½B� þ 2vsð�1 þ 2�4Þ�

� �2v
2ð�� 2�4 sin� cos�Þ= ffiffiffi

2
p

; (25)

where Ci’s are defined as

C1 ¼ Aeff þ ��4v
2
t � �2A�2

vtffiffiffi
2

p � ffiffiffi
2

p
�2�4vtvs;

C2 ¼
�2A�2ffiffiffi

2
p � 2��4vt þ

ffiffiffi
2

p
�4�2vs;

C3 ¼ �A� þ 2��1vs �
ffiffiffi
2

p
�2�4vt;

C4 ¼ �2vt

�
�2vt

2
� ffiffiffi

2
p

�vs

�
;

(26)

and Aeff is defined in Eq. (21).

1. Bound on the lightest Higgs mass

The bound on the lightest Higgs mass is derived from the
fact that the smallest eigenvalue of a real, symmetric n� n
matrix is smaller than the smallest eigenvalue of the upper
left 2� 2 submatrix [12]. Using this we obtain an upper
bound on the lightest CP-even Higgs mass,

m2
h � M2

Z

�
cos22�þ 2�2

g21 þ g22
sin22�

þ �2
2

g21 þ g22
sin22�

�
: (27)

The bound on lightest Higgs mass has been considerably
improved over the MSSM due to the additional contribution
from the singlet and triplet gauge fields. Using Eq. (27) we
can put constraints on the parameters like �, �2 and tan�
satisfying the recent bound on Higgs mass from ATLAS and
CMS.

B. CP-odd Higgs mass matrices

The elements of the 4� 4 CP-odd Higgs squared mass
matrix, after EWSB, in the basis ðH0

dI
; H0

uI ; SI; T
0
I Þ are

M2
P11

¼ C1 tan�þ C4; M2
P22

¼ C1 cot�þ C4;

M2
P33

¼ �3�1A�1
vs � �4½B� þ 4�1vs�v

2
t

vs

þD1

�
vt

vs

�

þ ½�A�=vs þ 4��1�v2 sin� cos�;

M2
P44

¼ �4�4vs½B� þ �1vs� þD1

�
vs

vt

�

þ
�
4��4 � 1ffiffiffi

2
p

vt

�2A�2

�
v2 sin� cos�;

M2
P12

¼ Aeff � vtffiffiffi
2

p �2A�2
þ �4vt½�vt �

ffiffiffi
2

p
�2vs�;

M2
P13

¼ v sin�½�A� � 2��1vs þ
ffiffiffi
2

p
�2�4vt�;

M2
P14

¼ �v sin�

�
2��4vt þ 1ffiffiffi

2
p �2ðA�2

� 2�4vsÞ
�
;

M2
P23

¼ M2
P13

= tan�; M2
P24

¼ M2
P14

= tan�;

M2
P34

¼ �2�4vtðB� � 2�1vsÞ �D1; (28)
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where

D1 ¼ 1ffiffiffi
2

p �2v
2ð�þ 2�4 sin� cos�Þ: (29)

This matrix always contains a Goldstone mode G0 (gives
mass to Z boson), which can be written as

G0 ¼ cos�H0
dI
� sin�H0

uI ; (30)

and we rotate the mass matrix in the basis ðG0; A1; A2; A3Þ
where

A1

G0

A2

A3

0
BBBBB@

1
CCCCCA ¼

cos� sin� 0 0

� sin� cos� 0 0

0 0 1 0

0 0 0 1

0
BBBBB@

1
CCCCCA

H0
uI

H0
dI

SI

T0
I

0
BBBBB@

1
CCCCCA: (31)

After removing the Goldstone mode, we again rotate the
remaining 3� 3 mass matrix and finally obtain

P1 ¼ cos� sin�HdI þ cos� cos�HuI þ sin�SI;

P1 ¼ � sin� sin�HdI � sin� cos�HuI þ cos�SI;

P3 ¼ TI; (32)

where P1, P2, P3 are the massive modes.

C. Charged Higgs mass matrices

The charged Higgs sector comprises of a 4� 4 sym-

metric matrix, written in the basis ðHþ
u ;H

��
d ; Tþ

0 ; T
��
0 Þ,

which has 10 independent components (after EWSB)
given by

ðM2�Þ11¼E1v
2
dþ

� ffiffiffi
2

p
��2vtvsþ�2

2

2
v2
t

�
þC1 cot�;

ðM2�Þ12¼AeffþE1vuvdþ½�2A�2
þ ffiffiffi

2
p

�vtþ2�2vs� vtffiffiffi
2

p ;

ðM2�Þ13¼E2vd�2�2vu

�
�vsþ�2vtffiffiffi

2
p

�
;

ðM2�Þ14¼E3vdþvu�2�eff ;

ðM2�Þ22¼E1v
2
uþ

� ffiffiffi
2

p
��2vtvsþ�2

2

2
v2
t

�
þC1 tan�;

ðM2�Þ23¼E3vuþvd�2�eff ;

ðM2�Þ24¼E2vu�2�2vd

�
�vsþ�2vtffiffiffi

2
p

�
;

ðM2�Þ33¼
g22
2
½v2

u�v2
d�þ�2

2v
2
uþE4;

ðM2�Þ34¼½g22�2�2
4�v2

t �2�4vs½B�þ�1vs�þ2��4vuvd;

ðM2�Þ44¼
g22
2
½v2

d�v2
u�þ�2

2v
2
dþE4; (33)

where Ei’s are defined as

E1 ¼ g22
2
� �2 þ �2

2

2
; E2 ¼ g22vtffiffiffi

2
p þ 2�2�4vs;

E3 ¼ g22vtffiffiffi
2

p � �2A�2
; E4 ¼ g22v

2
t þ 4�2

4v
2
s : (34)

After diagonalization, we obtain one massless
Goldstone state Gþ (gives mass to the W� boson, since
G� � Gþ�),

Gþ ¼ sin�Hþ
u � cos�H��

d þ ffiffiffi
2

p vt

v
ðTþ

0 � T��
0 Þ; (35)

and three other massive modes like H�
1 , H

�
2 , H

�
3 .

IV. NEUTRALINOS AND CHARGINOS

The neutralino mass matrix extended by the singlet and triplet sector, in the basis ð ~B; ~W0; ~H0
d;

~H0
u; ~S; ~T

0Þ is given by

M �G ¼

M1 0 �c�swMZ s�swMZ 0 0

0 M2 c�cwMZ �s�cwMZ 0 0

�c�swMZ c�cwMZ 0 ��eff ��vu
�2ffiffi
2

p vu

s�swMZ �s�cwMZ ��eff 0 ��vd
�2ffiffi
2

p vd

0 0 ��vu ��vd 2�1vs 2�4vt

0 0 �2ffiffi
2

p vu
�2ffiffi
2

p vd 2�4vt 2�4vs

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
; (36)

where M1, M2 are the soft-breaking mass parameters for Bino and Wino, respectively, and
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c�¼ cos�; s�¼ sin�; cw¼ cos
w; and sw¼ sin
w:

The left-most 4� 4 entries are exactly identical with that
in the MSSM, except for the �eff-term that is defined in
Eq. (5). As the triplet and the singlet fermion do not have
any interaction with the neutral gauginos, the right-most
2� 2 entries are zero.

The chargino mass terms in the Lagrangian can be
written as

� 1

2
½ ~GþTMT

c : ~G
� þ ~G�TMc: ~G

þ�; (37)

where the basis ~Gþ and ~G� are specified as

~Gþ ¼
~Wþ

~Hþ
u

~Tþ

0
BB@

1
CCA; ~G� ¼

~W�

~H�
d

~T�

0
BB@

1
CCA;

and the chargino matrix in the gauge basis is given by

Mc ¼
M2

1ffiffi
2

p g2vd g2vt

1ffiffi
2

p g2vu �vs þ �2ffiffi
2

p vt ��2vd

�g2vt �2vu 2�4vs

0
BBB@

1
CCCA: (38)

V. RESULTS AND DISCUSSIONS

Themain results of this paper are shown in Tables I and II.
We have specified the values of the parameters like cou-
plings, soft-breaking parameters at the electroweak scale.
The choice of tan�,�, and�2 are restricted from the bound
on lightest Higgs mass (27). In Fig. 1 we show the relation
between �2 and � for different values of tan�. As we
increase tan�, � and �2 tend to shift towards the higher
values. The plot in the right panel of Fig. 1 shows the
dependence of mh on tan� for some particular choices of
� ¼ 0:6, 0.64 and �2 ¼ 0:75, 1.02, which are consistent
with mh ¼ 125 GeV (shown by the dotted line). In order

to satisfy the bound on the Higgs mass, we can put a
constraint on tan�, i.e., tan� � 3:0. The coupling �1 sets
the mass for the singlino through the Yukawa term
2�1S�s � �s. In order to have a light neutralino for satisfy-
ing the dark matter phenomenology, we choose small
values of �1 ¼ 0:2, 0.25 as our benchmark values. The
choice of �4 is determined from the bounds on chargino
masses. The other soft-breaking parameters A�, A�1

, A�2
,

B� are chosen to fit the CP-even scalar masses specially
to make the lightest Higgs mass close to 125 GeV. Finally,
we have chosen �eff to be Oð200 GeVÞ and vt ¼ 2 GeV,
which determines the choice of vs from Eq. (5). The ratio
of M1 to M2 at the electroweak scale is consistent with
universal gaugino masses at the GUT scale and gravity
mediated SUSY breaking.
The mass spectrum shown in Table II indicates all

masses at tree level. The Higgs spectrum consists of four
CP-even Higgs ðh; H1; H2; H3Þ, three pseudoscalar Higgs
ðA1; A2; A3Þ, and three charged Higgs ðH�

1 ; H
�
2 ; H

�
3 Þ. We

obtain significant contribution from the singlet and triplet
sector at tree level which is highly appreciable, since this
has raised the mass of the lightest CP-even Higgs boson to
125 GeV. Here we do not require a significant radiative
contribution from the top-stop sector [5]. The components
of the lightest physical Higgs for tan� ¼ 2:0 are given as

TABLE I. Value of the parameters specified at the electroweak
scale for two sets of benchmark points.

Parameters at EW scale Point 1 Point 2

tan� 2.0 3.0

� 0.60 0.64

�1 0.20 0.25

�2 0.75 1.02

�4 0.17 0.20

�eff [GeV] 200 200

A� [GeV] 400 500

A�1
[GeV] �10 �10

A�2
[GeV] 600 700

B� [GeV] 500 600

vt [GeV] 2 2

M1 [GeV] 150 200

M2 [GeV] 300 400

TABLE II. Mass spectrum and relic density for two sets of
benchmark points.

Mass spectrum Point 1 Point 2

Neutral Higgs spectrum

mTree
h [GeV] 120.6 119.2

mH1
[GeV] 145.5 156.8

mH2
[GeV] 482.4 630.7

mH3
[GeV] 825.2 707.9

mA1
[GeV] 114.3 116.9

mA2
[GeV] 487.8 629.9

mA3
[GeV] 897.3 816.0

Charged Higgs spectrum

m�
H1

[GeV] 208.4 239.9

m�
H2

[GeV] 280.5 320.6

m�
H3

[GeV] 496.3 647.1

Neutralino spectrum

m~�0
1
[GeV] 100.4 102.9

m~�0
2
[GeV] 122.6 145.7

m~�0
3
[GeV] 164.7 205.9

m~�0
4
[GeV] 212.6 261.5

m~�0
5
[GeV] 248.2 265.7

m~�0
6
[GeV] 345.0 426.6

Chargino spectrum

m~��
1
[GeV] 124.2 127.7

m~��
2
[GeV] 194.5 250.2

m~��
3
[GeV] 347.1 428.1

Relic density

�h2 0.117 0.08
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h¼0:84205H0
uR þ0:44422H0

dR
þ0:01977T0

Rþ0:30533SR:

(39)

The lightest Higgs mass eigenstate has significant contri-
bution from the singlet and some contribution from the
triplet sectors. We obtain the lightest scalar Higgs mass for
the two sets of benchmark points as 120.6 and 119.2 GeV,
respectively. This will change the h ! �� branching com-
pared to the standard model and precise determination of
the Higgs decay branchings at the LHC will be a good test
of this model. In the pseudoscalar Higgs sector, we obtain
one Goldstone boson exactly identified as Eq. (30), i.e.,
G0 ¼ 0:4472H0

dI
� 0:8942H0

uI , for tan� ¼ 2:0 and G0 ¼
0:3163H0

dI
� 0:9487H0

uI , for tan� ¼ 3:0. All other Higgs

masses are listed under Higgs spectrum in Table II.
The neutralino and the chargino sector consists of six

and three mass eigenstates, respectively. The mass of the
lightest neutralino being Oð100 GeVÞ is the LSP of this
model. The prospects of the LSP to be identified as a dark
matter candidate are discussed in detail in Sec. VI. The rest
of the mass spectrum are shown in Table II.

A. One-loop correction to the lightest
physical Higgs mass

The one-loop correction to m2
h is calculated by con-

structing the Coleman-Weinberg potential [18],

VCW ¼ 1

64�2
STr

�
M4

�
ln
M2

Q2
r

� 3

2

��
; (40)

where M2 are the field-dependent tree-level mass matrices
and Qr is the renormalization scale. STr is the supertrace
that includes a factor of ð�1Þ2Jð2J þ 1Þ and summed over
the spin degrees of freedom. The one-loop mass matrix can
be derived from the above potential as follows:

ð�M2
fÞij ¼

@2VCWðfÞ
@fi@fj

��������vev
� �ij

hfii
@VCWðfÞ

@fi

��������vev
; (41)

where fi;j stands for all the real components of H0
u, H

0
d, S,

and T0. Finally, the set of mass eigenvalues of the
CP-even, CP-odd, charged Higgs, and neutralino-chargino
mass matrices (all field dependent) enters the calculation.
The dominant contribution in the one-loop correction
comes from the top-stop sector and the triplet sector. We
compute the corrections only numerically using the bench-
mark values assigned for the sets of parameters. The results
we obtain are given below in Table III.
In both cases we do not require a large contribution

from the radiative corrections to raise the lightest physi-
cal Higgs mass so as to satisfy the value of 125 GeV.
This in turn implies that the contribution from the stop-
top sector is not significant as in the case of the MSSM.
In fact in absence of fine-tuning, the correction to light-
est physical Higgs mass from the stop-top sector is
given by

�m2
Hu
ðQÞ ’ 3m2

t

ð4�Þ2v2
ln
m~t1m~t2

m2
t

: (42)

For m~t1 and m~t2 being Oð200 GeVÞ, this amounts to a

correction of only a few GeV.
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145
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G
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FIG. 1. Left: � vs �2, for tan� ¼ 2 (dashed line), 3 (thick line) with mh ¼ 125 GeV. Right: mh vs tan� for � ¼ 0:6, �2 ¼ 0:75
(dashed line) � ¼ 0:64, �2 ¼ 1:02 (thick line), and the dotted line shows the recent bound, i.e., mh ¼ 125 GeV.

TABLE III. Value of the lightest physical Higgs mass after
one-loop correction for two sets of benchmark points.

Benchmark point mTree
h [GeV] mTreeþLoop

h [GeV]

Point 1 120.6 124.9

Point 2 119.2 125.5
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B. Fine-tuning in the electroweak sector

In this model, the lightest physical Higgs mass at tree
level is boosted compared to the NMSSM and other triplet-
extended models [14] as it gets contribution from both the
singlet and triplet sectors (27). Therefore, we can obtain a
Higgs boson close to 125 GeV even at tree level. After
including the leading order radiative corrections from the
stop-top and triplet sectors, we get

�m2
Hu
ðQÞ ’ 3y2t

8�2

ðm2
~t1
þm2

~t2
þ A2

t Þ ln
�
Q

Mz

�

þ 3�2
2

8�2

ðm2
T þ A2

�2
Þ ln

�
Q

Mz

�
; (43)

wherem~t1 andm~t2 are the soft masses of the stops, At is the

soft trilinear coupling, yt is the Yukawa coupling, and Q is
the fundamental scale of SUSY breaking.

The fine-tuning parameter can be quantified [19,20] as

�FT � m2
Hu

M2
z

@M2
z

@m2
Hu

: (44)

In case of the MSSM [only the first term in Eq. (43) is
present], we have

�
Stop
FT ’ 3y2t

8�2

ðm2
~t1
þm2

~t2
þ A2

t Þ ln
�
Q

Mz

�
; (45)

but the tree-level bound on the Higgs mass is mh �
Mz cos2�. Therefore, one is forced to consider large values
for m~t1 , m~t2 , and At, say 1 TeV, in order to raise the lightest

physical Higgs boson mass up to 125 GeV. In this case,

�Stop
FT ’ 80 and thus it leads to maximal stop mixing.
In the NMSSM, the radiative correction needed to get a

125 GeV Higgs mass is �mh ¼ 55 GeV. There is no doubt
an improvement over MSSM, but still fine-tuning is re-
quired in the stop-top sector [5]. In the model with one
triplet [14], the lightest physical Higgs mass can be raised
to 113 GeV. Here, the required value of radiative correction
is �mh ¼ 53 GeV. Now, the fine-tuning due to the triplet
sector is

�
Trip
FT ’ 3�2

2

8�2

ðm2
T þ A2

�2
Þ ln

�
Q

Mz

�
; (46)

where �2 ¼ 0:8, 0.9. The value of �
Trip
FT can be as large as

40. Therefore, this model can no longer be considered as a
zero fine-tuning model.

Now coming to our model, we require �mh ’ 35 GeV
only—here we see a distinct improvement of 20–50 GeV
compared to other models discussed so far. Also, �2 ¼ 0:75,
1.02 being comparable to yt, we do not need heavy stops
or large stop-top mixing to get the required Higgs mass.
For example, using mT ¼ 200 GeV, A�2

¼ 700 GeV, and

Q ¼ 1 TeV, we obtain �
Trip
FT ’ 10. Thus, we can achieve

little fine-tuning compared to othermodels, since the lightest

physical Higgs mass can be large at tree level and does not
require a large contribution from the radiative corrections.
Here we note that the Higgs-triplet-Higgs coupling �2 (0.75
and 1.02) becomes nonperturbative at the GUT scale. But,
these choices of�2 actually help to raise theHiggsmass close
to 125 GeV at tree level. Another alternative could be of
course having small �2, but then we would require large
radiative corrections. Therefore, we improve the level of
fine-tuning at the cost of giving up perturbativity of �2 at
the GUT scale.

VI. DARK MATTER

We have analyzed the neutralino sector where the light-
est neutralino (LSP) is a mixture of the Higgsino-triplino
and turns out to be a viable dark matter candidate. The
components of ~�0 (for tan� ¼ 2:0), i.e., the LSP, are

~�0 ¼ �0:321 ~Bþ 0:192 ~W0
3 � 0:323 ~H0

d þ 0:644 ~H0
u

� 0:213~Sþ 0:544 ~T0: (47)

Since the LSP has mass Oð100 GeVÞ, there are two possi-
bilities of final states into which it can annihilate, i.e.
(i) fermion final states and (ii) gauge boson final states.
For annihilation into fermions, except t�t it can go to any
other f �f pairs via pseudoscalar Higgs, Z-boson exchange
and sfermion exchange. But, if we consider the neutralino
to be more like the triplino, then its coupling with the Z
boson is forbidden. Generally, it can annihilate into gauge
boson pairs via several processes like chargino exchange,
scalar Higgs exchange, and Z-boson exchange. But the
dominant contribution comes from annihilation into W�
via chargino exchange, which finally leads to the relic
density of 0.117, consistent with WMAP [16].
The scalar interaction between the dark matter (i.e.,

neutralino LSP) and the quark is given by

Lscalar ¼ aq ��� �qq; (48)

where aq is the coupling between the quark and the neu-

tralino. The scalar cross section for the neutralino scatter-
ing off a target nucleus (one has to sum over the proton and
neutrons in the target) is given by

�scalar ¼ 4m2
r

�
ðZfp þ ðA� ZÞfnÞ2; (49)

wheremr is the reduced mass of the nucleon and fp;n is the

neutralino coupling to the proton or neutron [21,22],
given by

fp;n ¼
X

q¼u;d;s

fðp;nÞTq aq
mp;n

mq

þ 2

27
fðp;nÞTG

X
q¼c;b;t

aq
mp;n

mq

; (50)

where fðpÞTu ¼ 0:020� 0:004, fðpÞTd ¼ 0:026� 0:005, fðpÞTs ¼
0:118� 0:062, fðnÞTu ¼ 0:014� 0:003, fðnÞTd ¼ 0:036�
0:008, and fðnÞTs ¼ 0:118� 0:062 [23]. fðp;nÞTG is related to

these values by
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fðp;nÞTG ¼ 1� X
q¼u;d;s

fðp;nÞTq : (51)

The term in Eq. (50) that includes fðp;nÞTG results from

the coupling of the weakly interacting massive particle
(WIMP) to gluons in the target nuclei through a heavy quark
loop.

We can approximate
aq
mq

’ �=ðs�m2
hÞ where � is the

product of different couplings and mixings, mq is the mass

of the quark, and s ¼ 4m2
� (m� being the dark matter

mass). The parameter � plays a crucial role in determining
the spin-independent cross section and is highly model
dependent. Using this we estimate � ’ 2� 10�4 GeV�1

and the value of the spin-independent cross section is
10�43 cm2, which is below the exclusion limits of
XENON100 [17] and other direct detection experiments.

VII. CONCLUSIONS

In this paper we have explored an extension of the
MSSM where the Higgs sector is extended by a singlet
and a Y ¼ 0 triplet superfield. This is the minimal model
that gives a tree-level Higgs mass of Oð119–120 GeVÞ
and the one-loop correction can easily raise it to 125 GeV
without significant contribution from the stop-top sector.
However, �2 ¼ 0:75, 1.02 (at the electroweak scale) be-
comes nonperturbative at the GUT scale, while all other
couplings remain perturbative up to the GUT scale; on
the other hand, this is the price we pay to retain small
fine-tuning.

In addition, we see that the triplino and singlino contri-
butions to the neutralino mass matrix gives a viable
dark matter candidate with mass around 100 GeV that
may be seen at the LHC from the missing transverse energy

signals [24]. In the MSSM and NMSSM the problem for

getting the correct relic density of dark matter is related to

the necessity of choosing chargino and scalar masses to be

in the multi-TeV scale to fit the Higgs mass from radiative

corrections. The dark matter mass in the MSSM is around

700 GeV while in the NMSSM it is possible to obtain

viable dark matter in the 100 GeV range. The main advan-

tage of our model for the dark matter is that since the

sparticle masses need not be very large compared to the

electroweak scale, the ‘‘WIMP miracle’’ is restored, and

we are able to get dark matter mass in the 100 GeV range

over a large parameter space of our model.
The data from the LHC with integrated luminosity of

5 fb�1 has not only given an indication of the Higgs mass

but there is also a measurement of the Higgs decay branch-

ing into different channels. Detailed analysis [25] of the

125 GeV Higgs branching fractions seen at the LHC

indicates that the signal ratio for Higgs decay into two

photons is larger than the SM prediction by a factor of

2:0� 0:5; decay into WW� and ZZ� channels is smaller

than the SM by a factor of 0:5� 0:3; and into bb and 


channels it is factor of 1:3� 0:5 consistent with the SM.

The lightest CP-even Higgs (39) has a sizable fraction

of the singlet, and the Higgs decay phenomenology will

be distinguishable from the MSSM [26] and likely to be

similar to the NMSSM scenario [27,28]. But, there will be

some contribution from the triplet sector too. The phe-

nomenological aspects of the real triplet-extended

SM has been studied in Ref. [29]. More data from the

LHC will pinpoint or rule out the extended Higgs sector

models, and it would be useful to study the singlet-triplet-

extended MSSM model in greater detail with emphasis on

the LHC signal in the future.
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