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I. INTRODUCTION

A lattice regularization of the path integral over quantum
fields provides a useful framework for investigating
nonperturbative properties of the theory. If the theory is
discretized on a lattice of finite extent, the path integral
becomes a finite-dimensional integration problem and if
Euclidean metric is used, the non-negative weight of each
field configuration can be used as a sampling measure for
efficient Monte Carlo calculations. This route is widely
used in most numerical lattice calculations.

A better understanding of scattering in the strong inter-
action is crucial if a qualitative understanding of the internal
structure of states of QCD is to be uncovered. In particular,
if states with intrinsic excitations of the quarks and gluons
are to be studied, methods for characterizing the properties
of resonances are needed since these excited states are above
thresholds for decays via the strong interaction.

Formulating the theory in Euclidean spacetime has a
drawback. Direct access to information about dynamical
processes such as scattering and the decay of an unstable
state is obscured [1]. Extracting information about scatter-
ing from a two-point correlation function at large
Euclidean time separations is not straightforward and
cannot be done directly. A theoretical framework that
enables computation of elastic scattering properties from
Euclidean field theory was developed by Lüscher. In
Lüscher’s method, if accurate data on the discrete spectrum
of states in a finite volume can be obtained, preferably for a
range of different volumes, then scattering properties can
be deduced indirectly. More recently, new analysis paths
have been suggested that take a more intuitive, direct
approach to analyzing the same spectrum data [2]: levels
are used to estimate the density of states in energy ranges
and presented in a histogram. Once care is taken to subtract
the background, resonance features can emerge, usually
resembling the Breit-Wigner distribution. The validity of
the histogram method follows from Lüscher’s analysis.

Reference [3] proposes determining the parameters of a
resonance by fitting the correlator directly; this has the
evident advantage that a single simulation in one volume
is needed.
Over recent years, many more calculations of scattering

in lattice QCD have been made and new measurement
techniques have improved the prospects of performing
precise computations of scattering in QCD. The main focus
of these determinations [4–7] has been to use the rho
meson as a test case, and to investigate P-wave �-�
scattering close to this resonance. In spite of recent
progress, the subject is still regarded as in its infancy
primarily due to the difficulties in making suitable
Monte Carlo measurements from QCD with light dynami-
cal quark fields of correlation functions with more than
one particle in the creation operators. Some progress in
the operator creation methodology [8,9] has been made
recently making precision Monte Carlo simulations in
QCD feasible. For a recent review, see Ref. [10].
Motivated by both the technical challenges and recent
progress, a search for the best analysis path to take seems
very timely.
Since QCD has pions that are much lighter than the

intrinsic scale for internal hadronic excitations, the prob-
lem of studying resonances above inelastic thresholds
needs to be addressed in a robust way. In the inelastic
region, Lüscher’s formulation cannot be applied since it
relies on linking data from quantum field theory to quan-
tum mechanics, where inelastic scattering does not feature.
For promising generalizations of Lüscher’s method to
multichannel scattering see, e.g., Refs. [11,12]. The more
intuitive ideas of interpreting spectrum data from different
volumes might give a new direction for determining reso-
nance widths in the inelastic region.
This paper aims to compare proposed methods with

Monte Carlo data to determine whether they agree and
whether the precision obtained from different methods is
comparable. We generate data in the Oð4Þ sigma model on
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the lattice, where it is straightforward to choose parameters
of the model to ensure resonances emerge in lattice data.
Simulations in the inelastic region are also performed to
see if the histogram method can help to infer something
about the width of a high-lying resonance. A number of
technical issues in the construction of the appropriate
lattice measurements and challenges in analyzing lattice
data are observed and addressed. Preliminary progress
from this work is presented in Refs. [13,14].

The paper is organized as follows. Section II discusses
the theoretical issues surrounding resonances on the lattice,
as well as giving a heuristic derivation of both methods. In
Sec. III, the model used is discussed, including the relation
between the Lagrangian fields and the particle spectrum.
The Monte Carlo simulations and the applications of the
two methods are discussed in Sec. IV, along with the results
obtain from both methods. A third method is briefly dis-
cussed. Finally we draw some conclusions in Sec. V.

II. THEORETICAL BACKGROUND

Before describing our Monte Carlo simulations, we
review a few important aspects of the theoretical back-
ground to studying scattering in Euclidean lattice field
theory.

A. Two noninteracting particles in a box

We discuss the dispersion relation of two identical non-
interacting bosons when they are in a box of volume V ¼Q

3
i¼1 Li, as function of the dimension of the box, both in

the continuum and in the lattice case.
In the continuum, the particles of massm� characterized

by a relative momentum ~p, have a total energy E given by

E ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

� þ ~p2
q

; (1)

where due to the finite volume, the momenta pi are given
by pi ¼ 2�

Li
ni, with ni 2 Z. On the lattice, the correct

expression for the simplest discretization of the free scalar
field is

E ¼ 4sinh�1

�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

�;r þ ~p2
q �

; (2)

where ~pi ¼ 2 sin�
Li
ni and m�;r is the ‘‘subtracted’’ mass of

the pion; the reason of this name will be clarified in the
context of interacting particles in Sec. IVA where Eq. (2)
can also be used. We will focus in the following on the
case of a cubic lattice, characterized by a single side length
L; it is valuable to remember that, in a cubic box if n2 ¼P

3
i¼1 n

2
i is fixed, degenerate energy levels for different

values of ni can appear. Sometimes we will refer to a
specific level writing the three component vector as
ðnx; ny; nzÞ.

It is clear that the spacetime discretization can have a
strong effect in particular when the volume is small, i.e.,
large momentum, andm� is big. In Fig. 1 we show a plot of
the two formulas where it is evident that, for small volume
(L & 15) and a mass am� ¼ 0:46, the two spectra are very
different; therefore we cannot use the continuum formula
to describe our Monte Carlo results.
Note that in a general theory, such as QCD, where

an expression like Eq. (2) is not available, we need to
determine the nonzero-momentum single-particle energy
levels numerically and then, to determine the two-particle
energy spectrum, we simply multiply the results by a factor
of two.

B. Avoided level crossing

Let us introduce another particle � in the box (at the
moment, not interacting) with mass m�; we are interested
in studying the elastic scattering between the � particles,
therefore we impose the constraint 2m� <m� < 4m�. In
Fig. 2 (Top) the � energy level is the horizontal line that
intersects the two-particle levels at various system sizes L.
In Minkowski space if we introduce a three-point inter-

action ��� between the fields, the � will become an
unstable particle, a resonance, and decay into two � par-
ticles. In Euclidean space and in a finite volume the sce-
nario is different. First of all, the finite volume will prevent
the � from being a resonance. This can be seen from two
complimentary points of view. First of all, resonances
appear as poles on the second Riemann sheet of the
S-matrix. This second sheet is found by continuing through
the multiparticle branch cut. However, in a finite volume
the branch dissolves into a series of poles and hence this
second Riemann sheet is lost, so the � may only appear as
a pole on the physical sheet. Secondly, in a finite volume
only certain discrete values of momenta are allowed.
Conservation of momenta may require the two particles
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FIG. 1 (color online). The total energy E for four different
levels in the continuum (black lines) and in the lattice (red
dashed lines) case versus L.
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produced by the decay of the sigma to take on momenta
outside these values, hence rendering the � stable.
However because of the interaction, the energy eigenstates
are a mixture of this stable � and the 2� Fock-states. One
might attempt to avoid the fact that the � has become a
stable state, by measuring on the lattice some appropriate
n-point function which contains infinite-volume scattering
information, such as the phase shift �ðpÞ. However the
Maiani-Testa theorem, Ref. [1], forbids this, as the
Euclidean n-point functions lack the nontrivial complex
phase which would directly characterize �ðpÞ. Instead we
turn to the effect that the mixing of the � has on the finite
volume energy levels, which does contain information on
its behavior as a resonance in infinite volume: the most
obvious feature is the avoided level crossings (ALCs), as
shown in the lower panel of Fig. 2.

Avoided level crossings simple model. There is a very
simple model that can be used both as a method to plot a
spectrum where the ALCs are present but also as a model
to test numerical methods for extracting the resonance
parameters. The model is based on this correlation matrix:

C ¼
m� � �
� Eð0;0;0Þ 0
� 0 Eð1;0;0Þ

0
B@

1
CA; (3)

where Eði;j;kÞ are given by Eq. (2), here i2 þ j2 þ k2 ¼ n2.

The diagonal terms correspond to the three lowest energy
states of a theory where the � is stable and the off diagonal
terms represent the interaction between the � and the two-
particle states, of strength �. To determine the spectrum
associated to this matrix we have to diagonalize it; the
eigenvalues of this matrix plotted as functions of L give us
the spectrum of an interacting toy theory. As an application
we used it to plot Fig. 2 (Bottom); the ALCs can be seen
quite clearly.

C. Lüscher’s method

Probably the most well known method of obtaining
information on resonances on the lattice is the method
proposed by Lüscher in Refs. [15,16]. The method works
by using a mapping which converts information on the
two-particle spectrum in the elastic region, in a finite
volume, into information on the scattering phase shift in
infinite volume. The scattering phase shift will then contain
resonance parameters, for example near a resonance it will
take the form

�ðpÞ � �

2
� arctan

�
4p2 þ 4M2

� �M2
�

M���

�
; (4)

and from this it is possible to extract the resonance mass
and width. Note that, according to Eq. (4), the resonance
appears when �ðpÞ ¼ 0.
The energies of two-particle states are altered by a finite

volume in two ways. First of all each individual particle in
the pair has the virtual polarization coming from interac-
tions ‘‘around the world’’, discussed in Ref. [15]. However
there is also a second effect resulting from their direct
interaction with each other. It is this real interaction that
Lüscher’s method exploits.
This effect is first derived in the case of nonrelativistic

quantum mechanics and then proven in the field theory
case by relating it back to the nonrelativistic one. In the
quantum mechanical case, the finite volume Schrödinger
equation, provided that the potential has finite range
smaller than half the box volume, has two asymptotic
forms. First, from a scattering theory perspective, since
the potential has finite range, solutions will have the
same asymptotic form as in infinite volume and hence will
contain the scattering phase shift. Secondly, outside the
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FIG. 2 (color online). (Top) The spectrum of a system of two
noninteracting particles of mass am� ¼ 0:4544 worked out
using Eq. (2); the horizontal line describes the particle � at
rest with mass am� ¼ 1:3517. With these parameters the inter-
section between � and the two-particle level n2 ¼ 1, i.e.,
ð1; 0; 0Þ, is set at L ¼ 12. (Bottom) Avoided level crossings
where on the (Top) there were intersections between � and 2�.
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potential, the Schrödinger equation reduces to the
Helmholtz equation with eigenvalues given by the energy
eigenvalues of the two-particle finite volume Hamiltonian.
By matching these two asymptotic forms, a relationship
between the two-particle energies in a finite volume and
the scattering phase shift in infinite volume is obtained.

In quantum field theory one can decompose the four-
point function into an infinite sum involving the Bethe-
Salpeter kernel and the two-point function. The four-point
function contains information on the two-particle energy
spectrum and thus this expansion can be seen as an expan-
sion for the two-particle energies. Analytic properties of
the Bethe-Salpeter kernel allow the contours of integration
in this expansion to be shifted so that the two-point propa-
gators take on a nonrelativistic form. Once expressed this
way, the expansion is no different from the Born expansion
for a nonrelativistic theory, with the Bethe-Salpeter kernel
filling the role of a potential. This Born expansion can be
seen as coming from an effective Schrödinger equation for
the two-particle wave function c ðrÞ

� 1

2�
rc ðrÞ þ 1

2

Z
d3r0UWðr; r0Þc ðr0Þ ¼ Wc ðr0Þ: (5)

The constant W in Eq. (5) is the energy, when treated as
nonrelativistic problem, and it is related to the true physical

energy in the quantum field theory by E ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þmW

p
.

The same analytic properties mentioned above imply that
the Bethe-Salpeter kernel, as a potential, satisfies the con-
ditions on a potential required for the quantum mechanical
analysis. So the entire framework derived above for the
nonrelativistic case can simply be carried over to quantum
field theory and Lüscher’s formula holds in this case as
well.

This effective Schödinger equation is first constructed in
Ref. [15].

The relationship derived from this analysis is

�ðpÞ ¼ ��ð�Þ þ �n; (6)

tanð�ð�ÞÞ ¼
�

�3=2�

Z00ð1;�2Þ
�
; � ¼ pL

2�
; (7)

where p is the relative momentum between the two decay
particles.Zjsð1; q2Þ is a generalized zeta function, given by

Z jsð1;q2Þ ¼
X
n2Z3

rjYjsð�;�Þ
ðn2 � q2Þs ; (8)

where Yjsð�;�Þ are the spherical harmonics. Equation (6)

is known as Lüscher’s formula. It should be mentioned that
Eq. (6) is in fact a special case of the more general
expression derived in Ref. [16]. The formula quoted here
is for the spin-0 channel, which is the only one relevant
here. Also in deriving the formula a change in the contour
of integration allowed the propogators to be rewritten as
nonrelativistic propogators. However if the volume is quite

small this cannot be done because the two-point functions
will not have the correct initial form due to the polarization
from around the world as mentioned earlier. For this reason
one must check that these virtual polarization effects
become negligible in order to use Lüscher’s formula.
To obtain resonance parameters using this relationship

one proceeds as follows:
(1) Using the Monte Carlo data, obtain the two-particle

energy spectrum EnðLÞ as a function of the volume;
(2) Using dispersion relations, obtain a momentum

from the energy spectrum, pnðLÞ;
(3) Compute the appropriate values of �ð�Þ. Equation

(6) will then map the values pnðLÞ to values of
�ðpnðLÞÞ;

(4) If this procedure is repeated for several energy levels
and volumes, a profile of �ðpÞ is produced;

(5) This profile can then be fitted against the Breit-
Wigner form for �ðpÞ in the vicinity of a resonance
as given in Eq. (4). This fit should give the resonance
mass M� and width ��.

D. Histogram method

An alternative method of determining the parameters of
a resonance is based on a different way of analyzing the
finite volume energy spectrum, Ref. [2]. The basic idea is
to construct a probability distribution WðEÞ according to
the prescriptions:
(1) Measure the two-particle spectrum EnðLÞ for differ-

ent values of L and for n ¼ 1; � � � ; N levels;
(2) Interpolate the data with fixed n in order to have a

continuous function EnðLÞ in an entire range L 2
½L0; LM�;

(3) Slice the interval ½L0; LM� into M equal parts with
length �L ¼ ðLM � L0Þ=M;

(4) Determine EnðLiÞ for each Li (i ¼ 0; � � � ;M);
(5) Choose a suitable energy interval ½Emin; Emax� and

introduce an equal-size energy bin with length �E;
(6) Count how many eigenvalues EnðLiÞ are contained

in each bin;
(7) Normalize this distribution in the interval

½Emin; Emax�.
The distribution considered in Ref. [2] is WðpÞ but this

does not have an important effect on our analysis; as a
matter of fact, the relation between them is [it is based on
the definition given in Eq. (10)]:

WðpÞ ¼ WðEÞ
�
@E

@p

�
; (9)

where the correct dispersion relation we should use is
Eq. (2); the multiplicative term will not modify the Breit-
Wigner shape near the resonance.
It is possible to show that the probability distribution

WðpÞ is given by

PIETRO GIUDICE, DARRAN MCMANUS, AND MICHAEL PEARDON PHYSICAL REVIEW D 86, 074516 (2012)

074516-4



WðpÞ ¼ c
XN
n¼1

½p0
nðLÞ��1 (10)

and differentiating the Lüscher formula with respect to L, it
turns out (c is a normalization constant):

WðpÞ ¼ c

p

XN
n¼1

�
LnðpÞ þ 2��0ðpÞ

�0ðqnðpÞÞ
�
: (11)

If one expands LnðpÞ around the case of � ¼ 0, when the
there is no interaction between the � and the two-particle
states, this takes the form:

C�1WðpÞ ¼ XN
n¼1

2�

p2
��n �

XN
n¼1

2�

p

1

�0ð ��nÞ
�
�ðpÞ
p

� �0ðpÞ
�

þOð�2Þ: (12)

The first term is equivalent to the histogram that would be
constructed in a theory where the � is a stable particle. We
will call this histogram the free background, C�1

0 W0ðpÞ,
where C0 is its normalization constant. If we subtract it
from the interacting histogram we obtain

C�1WðpÞ�C�1
0 W0ðpÞ ¼�XN

n¼1

2�

p

1

�0ð ��nÞ
�
�ðpÞ
p

��0ðpÞ
�

þOð�2Þ: (13)

In the limit of an infinite number of energy levels, i.e.,
infinite volume, the terms of Oð�2Þ are very small for the
vast majority of energy levels and so become negligible.
Hence we obtain:

C�1WðpÞ�C�1
0 W0ðpÞ��

�XN
n¼1

2�

�0ð ��nÞ
�
1

p

�
�ðpÞ
p

��0ðpÞ
�
:

(14)

However we can see that

XN
n¼1

2�

�0ð ��nÞ (15)

is just a constant independent of � or p and so it can just be
absorbed into the normalization constant of the histogram
to give us:

WðpÞ �W0ðpÞ / 1

p

�
�ðpÞ
p

� �0ðpÞ
�
: (16)

This last quantity is determined by �ðpÞ alone and close
to the resonance, assuming a smooth dependence on p for
the other quantities, it follows the Breit-Wigner shape of
the scattering cross section with the same parameters:

WðpÞ �W0ðpÞ / 1

½EðpÞ2 �M2
��2 þM2

��
2
: (17)

To emphasize the approximations that are present we
note that, because

�ðpÞ ¼ arctan

�
M��

M2
� � E2ðpÞ

�
; (18)

then we can work out:

�0ðpÞ ¼ 8M��p

½M2
� � E2ðpÞ�2 þM2

��
2
; (19)

therefore we can see that the Breit-Wigner shape of
Eq. (17) is entirely due to �0ðpÞ. It should also be noted
that this histogram method does not require one to have
knowledge of the function �ð�Þ, unlike Lüscher’s method.
In Ref. [2] this method is tested on synthetic data

produced using the Lüscher formula by experimentally
measured phase shifts and in Ref. [17] it is tested on
nonrelativistic quantum mechanics. The main task of our
work is to test this method on an effective field theory
where a resonance emerges, producing data by lattice
simulations.

III. THE Oð4Þ SIGMA MODEL

The model we have used in our simulations is the Oð4Þ
model in the broken phase. This model has previously been
used to test Lüscher’s method, Ref. [18]. The Lagrangian is
the following (with i ¼ 1, 2, 3, 4):

L ¼ 1

2
@�i@�i þ �ð�2

i � 	2Þ2 �m2
�;0	�4: (20)

The term proportional to �4 is introduced to break the
symmetry explicitly in order to give mass to the three
Goldstone bosons. To understand the meaning of the terms
and the parameters in the Lagrangian, we first introduce the
new fields � and 
i (with the constraint 
i
i ¼ 1):

�i ¼ ð	þ �Þ
i; with i ¼ 1; 2; 3; 4; (21)

then, we expand the potential around the classical mini-
mum �i�i ¼ 	2 (using also 
i@
i ¼ 0):

L ¼ 1

2
	2@
i@
i þ 1

2
�2@
i@
i þ 1

2
@�@�

þ 	�@
i@
i þ ��4 þ 4	2��2

þ 4	��3 �m2
�;0	

2
4 �m2
�;0	�
4: (22)

The � field is clearly related to the massive �4 field in the
original Lagrangian, whereas the four constrained fields

i are related to the three ‘‘pions’’. In the form Eq. (22)
we cannot directly interpret the physical content of the
Lagrangian, due to the presence of linear terms.
Particularly it is not obvious that the explicit breaking
term has given the three Goldstone bosons a mass.
There is an easy way to rewrite the Langrangian to make

all of this more obvious, based on the treatment of the
nonlinear sigma model (see for example Ref. [19],
Sec. 2.4.3.).
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We introduce the pions using an element of SUð2Þ:

U ¼ e
i
	�j�j ¼ cos

�j ~�j
	

�
þ i�j

�j

j ~�j sin
�j ~�j
	

�
; (23)

where�j are the three Pauli matrices and where 	 plays the

role of the pion decay constant. On the other hand, we can
also form SUð2Þ-valued fields from our 
-fields by

U ¼ 
4 þ i�j
j; (24)

with j ¼ 1, 2, 3 and the constraint 
2
4 þ 
j
j ¼ 1. We can

therefore identify the connection between the three fields
�j and the fourth 
j, using Eq. (23) and (24):


4 ¼ cos

�j ~�j
	

�
; (25)


j ¼
�j

j ~�j sin
�j ~�j
	

�
: (26)

We can now replace the 
 fields in the Langrangian using
the expression 1

2 Trð@�U@�U
yÞ. For the 
 fields this is

1

2
Trð@�U@�U

yÞ ¼ X4
i¼1

@�
i@�
i: (27)

For the pion fields this gives

1

2
Trð@�U@�U

yÞ ¼ 1

	2

X3
i¼1

@��i@��i; (28)

and so we have:

X4
i¼1

@�
i@�
i ¼ 1

	2

X3
i¼1

@��i@��i: (29)

Equation (25) and (29) can then be substituted into the

original Lagrangian, Eq. (22). Expanding the cosðj ~�j	 Þ,
which has replaced the 
4 field, we obtain as our
Lagrangian:

L ¼ 1

2
@��j@��j þ 1

2	2
�2@��j@��j þ 1

2
@��@��

þ 1

	
�@��j@��j þ ��4 þ 4	2��2 þ 4	��3

þ 1

2
m2

�;0�j�j þ
m2

�;0

2	
��j�j þ . . . ; (30)

where the higher order terms include higher order cou-
plings between the pions and the � resonance, as well as
pion self-interaction terms. We can see that the � field gets
a bare mass

m� ¼ 2	
ffiffiffiffiffiffi
2�

p
; (31)

and due to terms such as the three-point interaction
	�@
i@
i the sigma particle is unstable. We can also see

that the parameter m�;0, that we introduced in Eq. (20),

functions as the bare pion mass. So our explicit soft-
breaking term has given the Goldstone bosons a mass.
Two things should be noted about the three-point inter-

action term. First of all, it depends on 	, so the sigma
resonance should be broader with decreasing values of 	.
We will not however make direct use of this, since making
	 too small leads to symmetry restoration. The interaction
also contains a derivative. In momentum space this will
give an extra p2 term to the vertex appearing in Feynman
diagrams. We expect the interaction between the pions and
the sigma resonance to be stronger when the pions have
larger relative momentum. The decay rate of the sigma
resonance will also depend on �, since the � field self-
coupling terms will affect the interactions between the
�-particle and the pions.
For certain values of the parameters the Oð4Þ symmetry

will be restored and the theory will enter the unbroken
phase. Since we do not want this to occur we must avoid
the region of the �, 	 parameter space in which the
symmetry remains unbroken. For any fixed value of �
the symmetry is restored when 	 is sufficiently small.
The point of this phase transition 	�ð�Þ increases with
increasing �. In particular

lim
�!1

	�ð�Þ � 0:78: (32)

Hence we will always keep 	 above 0.78, specifically we
use 	 ¼ 1 or 1.05, to guarantee that the symmetry remains
broken.
A derivation of Eq. (32) is contained in Ref. [18],

although there, due to different parameters being used, it
appears as �c � 0:304.

IV. MONTE CARLO SIMULATION

The theory described by the Lagrangian in Eq. (20), was
simulated using an over-relaxation algorithm for the first
three near-Goldstone fields, followed by a Metropolis up-
date to guarantee the ergodicity, and a Metropolis algo-
rithm for the massive field, �4.
In order to determine the single particle spectrum we

first introduce the partial Fourier transform (PFT) of the
four fields �i:

~�ið ~n; tÞ ¼ 1

V

X
x

�ið ~x; tÞe�i ~x ~p; pi ¼ 2�

Li

ni; (33)

where ni ¼ 0; . . . ; Li � 1. The single particle mass is
extracted from the zero momentum correlation function

( ~n ¼ ~0):

CiðtÞ ¼ h ~�ið ~n; tÞ ~�ið� ~n; 0Þi: (34)

In particular with i ¼ 1, 2, 3 we can determine the mass of
the three pion fields; with i ¼ 4 we extract the mass of the
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� particle. In Monte Carlo simulation, the mass of the
lightest state is usually determined with better statistical
precision, and this is observed here, where m� is deter-
mined with a higher precision then m�; this is not a
problem because we are mainly interested in a good reso-
lution of states consisting of two pions and these energies
are well determined.

The two-particle spectrum is measured by introducing
operators with zero total momentum and zero isospin:

O~nðtÞ ¼
X3
i¼1

~�ið ~n; tÞ ~�ið� ~n; tÞ; (35)

we take into accountN � 1 different operators correspond-
ing to n2 ¼ 0; 1; . . . ; N � 2. An N-th operator, that clearly
has the correct quantum number is the PFT of the field �
(actually of �4) with ~p ¼ 0. To determine the energy
levels we use a method, introduced in Ref. [20] (see also
Ref. [21]), based on a generalized eigenvalue problem
applied to the correlation matrix function CijðtÞ ¼
hOiOji, that is a matrix whose elements are all possible

correlators between the N operators:

CðtÞc ¼ �ðt; t�ÞCðt�Þc ; (36)

where t� is fixed to a small value (we verified that in this
model the results are insensitive to its value, so we chose
t� ¼ 0). It is possible to show that the eigenvalues, for
� ¼ 1; . . . ; N, behave as

��ðt; t�Þ ¼ e�ðt�t�ÞE�; (37)

where E� describes the spectrum of the theory; a typical
result is shown in Fig. 3. Using this method we can see a
wide plateau of approximately six lattice spacings for the
ground state, dominated by two pions at rest that starts

from t0 ¼ 1 in this case. The width of the plateau decreases
with increasing energy and it is just 2 lattice spacing for the
level ð2; 0; 0Þ the onset of the plateau also occurs later.
In Fig. 3, it is evident there is strong mixing between
the state resembling two pions, each with momentum
n ¼ �ð1; 0; 0Þ and the � state, illustrating an example
avoided level crossing.

A. Histogram results

In order to test the applicability of the two methods for
different widths of resonance, we consider three different
sets of parameters in the Lagrangian. In all three simula-
tions, the time extent of the lattice is fixed to L ¼ 64a. The
first simulation is performed using 	 ¼ 1:0, � ¼ 1:4,
am�;0 ¼ 0:36. These parameters were determined to

have the intersection between the � energy level and
n ¼ ð1; 0; 0Þ two-particle energy level in the absence of
interaction at around L ¼ 12a. The measured mass for the
pion turns out to be am� ¼ 0:460ð2Þ. The first six energy
levels were determined clearly for different volumes in the
range 8 � L=a � 19. The fractional error on the measured
energies was in the range 0.5–1.0%. The top panel of
Fig. 4 shows the results of this set of simulations. Each
energy was determined from statistical fitting, choosing the
onset of the plateau to be t0 ¼ 2. Constructing a histogram
where a resonance is clearly seen requires a large set of
lattice volumes and energy levels. We found the stability of
the histogram could be enhanced by interpolating the
spectrum data using polynomials in L over all values of
L=a in the measured range and using these polynomials
to generate more data for the histogram. The lower panel of
Fig. 4 shows the resulting polynomial fit. Polynomials
of order 3, 4, and 5 were used, which provided a means
of evaluating the systematic errors in the final results. The
dashed lines in Fig. 4 show the free two-particle spectrum,
calculated using Eq. (2).
In order to control the dominant distortions in the free

spectra arising simply from discretization artifacts for
these high-lying states, the energy curves for the noninter-
acting pions were computed using the free dispersion
relation after first computing the subtracted mass m�;r

using the rest energy of a single pion m�:

m� ¼ 4sinh�1

�
1

2
m�;r

�
: (38)

These curves show very good agreement with the observed
spectra away from the resonance even at very high ener-
gies. The pion mass measured in these simulations is
am� ¼ 0:460ð2Þ, which differs from the parameter in the
lattice Lagrangian am�;0 ¼ 0:36 due to renormalization

effects of the interacting theory. This free spectrum is
used to determine the distribution W0ðpÞ which is then
subtracted from W, obtained from the interacting spec-
trum. It is important to note that if N levels are used to
plot W in the interacting spectrum, then the number of
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FIG. 3 (color online). Effective mass versus time as deter-
mined by the diagonalization of the correlation matrix Cij.

The dashed constant lines describe the free two-particle spec-
trum. Simulation parameters: 	 ¼ 1:0, � ¼ 1:4, am� ¼ 0:36,
volume ¼ 123 � 64.
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levels needed from the free spectrum to determine W0 is
N � 1. This takes into account the extra level arising from
the resonance and ensures the correct modes are subtracted
at the upper and lower ends of the energy range. Note that,
in the general case, if the same numberN of levels are used
the final result will be affected by the presence of unwanted
peaks which potentially could hidden the presence of the
resonance.

Using polynomials, we are able to produce a large
number of data at arbitrary values of L=a; we use a
resolution of a�L ¼ 0:001. Using a bin width of a�E ¼
0:005, we get the probability distribution W, described in
Sec. II D, and, consequently, the histogram ~W ¼ W �W0

of Fig. 5. Note that to get ~W bothW andW0 are determined
from the same range of L=a 2 ½8; 19�. The error bars in
Fig. 5 then include both the systematic (determined by the
different results we get using the different polynomials)
and statistical errors coming from the histogram W and
the statistical errors coming from the determination of W0

including the statistical error propagating from m� via
Eq. (2).
Clearly, the shape of the histogram in Fig. 5 is far from a

Breit-Wigner distribution. The dominant reason for the
distortions is that our Monte Carlo measurement deter-
mined only six energy levels while the conclusions of
Sec. II D are true only in the limit of an infinite number
of levels. Many jumps and spikes are seen. Our task is now
to try to modify the analysis in order to get fewer artifacts
from the same raw data. We investigated the origin of the
spikes and concluded that they are related to subtractions
of an ‘‘incorrect’’ background W0. It is easy to see that the
spikes appear every time there is the intersection between
the six levels of the interacting spectrum or of the five
levels of the free spectrum with the extremities of the
volume range at L=a ¼ 8 and L=a ¼ 19. Near those two
extremities a more careful modelling of the free back-
ground is needed; Fig. 6 (Top) shows a corrected back-
ground subtraction. In order to correctly subtract the free
background, each free spectrum line is extended using the
polynomial fitting form. This is done so that the extremity
of each line has energy equal to the value at the end of the
interacting spectrum line closest to it. In this way all
interacting lines are subtracted correctly rather than the
subtraction being affected by the limit of the volume range
that we are actually using in our simulations. Using this
procedure to determine W0 we get the corrected histogram
of Fig. 7 (Top). Unfortunately, in Fig. 7 (Top), we continue
to see a discontinuity at aE � 1:35; the origin of this can
be understood by looking at Fig. 6 (Top). There are two
extremity lines, one at L ¼ 8a and one at L ¼ 19a which
are both aroundE � 1:35, that occur without a correspond-
ing ‘‘background’’; actually, in this case the background is
the resonance itself we are looking for.
Therefore, there is no way to avoid the presence of this

jump because we do not know anything about the reso-
nance; the only thing we can do is to completely exclude
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FIG. 5 (color online). The probability distribution ~W¼W�W0

obtained from data from Fig. 4.
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FIG. 4 (color online). (Top) Spectrum of the theory for differ-
ent values of the volume for the following simulation parame-
ters: 	 ¼ 1:0, � ¼ 1:4, am�;0 ¼ 0:36. The dashed lines describe

the free two-particle spectrum. (Bottom) The interpolated data
using a polynomial.
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from our analysis those two levels, Fig. 6 (Bottom), hoping
that the resonance still appears in other modes. In Fig. 7
(Bottom) we show the probability distribution ~W in this
last case; now clearly a Breit-Wigner distribution emerges.

It is now possible to fit these data to Eq. (17) to deter-
mine the parameters of the resonance, Fig. 8. Applying a
sliding window procedure around the peak gives: aM� ¼
1:330ð5Þ and a�� ¼ 0:10ð5Þ.

We simulated the theory at a second set of parameters
corresponding to a broader resonance: 	 ¼ 1:0, � ¼ 4:0,
am�;0 ¼ 0:56. In this case, the parameters were chosen

such that the intersection occurs between the � energy
level and n ¼ ð1; 0; 0Þ two-particle energy level close to
L ¼ 8a. The measured mass for the pion turns out to be
am� ¼ 0:657ð3Þ. In Fig. 9 (Top) we plot the spectrum for
6 � L=a � 20 for the first six levels; in this case the onset
value for the plateaux is t0 ¼ 1 and the relative error varies
in the range 0.05–0.2%.

We repeat the procedure described above. Taking care of
the correct subtraction of the background we get the

histogram of Fig. 9 (Bottom). Clearly we see two disconti-
nuities, related to the two levels in the interacting theory
that appear without a corresponding background: one at
E � 1:95 is due to the intersection at L ¼ 6a and the other
one at E � 2:00 which is due to the intersection at
L ¼ 20a. When we exclude the two levels which have
no corresponding background signal, we get the histogram
of Fig. 10 (Top). In this case again we can clearly see a
Breit-Wigner shape and we can fit these data, as shown in
Fig. 10 (Bottom), obtaining the following parameters:
aM� ¼ 2:01ð2Þ, a�� ¼ 0:35ð10Þ.
Finally, a third series of simulations was performed with

parameters 	 ¼ 1:0, � ¼ 200:0, am�;0 ¼ 0:86. They have

been tuned to have the intersection between the � energy
level and ð2; 0; 0Þ two-particle energy level around
L ¼ 10a. Because in this case we are considering pions
with higher momentum, we expect the width of the reso-
nance to be larger than the previous cases, for reasons
discussed at the end of Sec. III. For this analysis, we take
into account 13 levels to describe the shape of the reso-
nance better. In Fig. 11 the spectrum for 6 � L=a � 15 is
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FIG. 6 (color online). (Top) Energy levels of Fig. 4 (Bottom)
with the correct free two-particle spectrum background.
(Bottom) Energy levels where we deleted the two levels that
appear without their own background.
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FIG. 7 (color online). (Top) Probability distribution ~W ob-
tained by data from Fig. 6 (Top). (Bottom) Probability distribu-
tion ~W obtained from Fig. 6 (Bottom).
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plotted. The onset value for the plateaux is t0 ¼ 1 and the
relative error varies in the range 0.15–0.4%. The measured
mass for the pion is am� ¼ 0:938ð3Þ. In Fig. 12 (Top) as in
the previous cases we show the probability distribution
taking in account all levels. We can see that a possible
peak is present around a value of the mass am � 2:8.
Unfortunately, as seen in Fig. 12 (Bottom), when we ex-
clude the two levels the probability distribution plot is flat
and no Breit-Wigner shape emerges. It is clear that in this
case, the only way to determine the parameters of the
resonance is to considerably increase the number of mea-
surements and consequently to decrease the relative errors
in the spectrum determination.

B. Lüscher’s method results

As outlined in Sec. II C, Lüscher’s method provides a
way to relate information on the two-particle spectrum in
the elastic region to the scattering phase shift. As the
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FIG. 8 (color online). Data from Fig. 7 (Bottom) that we fitted
to determine the resonance parameters with the final curve
fitting.
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FIG. 9 (color online). (Top) Spectrum of the theory for differ-
ent values of the volume for the following simulation parame-
ters: 	 ¼ 1:0, � ¼ 4:0, am�;0 ¼ 0:56. (Bottom) The probability

distribution considering the correct background.
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FIG. 10 (color online). (Top) Probability distribution ~W using
the correct background and excluding the two levels that are
without a corresponding background. (Bottom) Data we fitted to
determine the resonance parameters with the final curve fitting.
Simulation parameters: 	 ¼ 1:0, � ¼ 4:0, am�;0 ¼ 0:56.
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scattering phase shift depends on momentum the first step
is to convert the energy spectra data into momentum
spectra data.
The relation between the energy and the momentum is

given by the dispersion relations; however there is the
choice of using the lattice dispersion relations or the con-
tinuum dispersion relations. Naturally the lattice dispersion
relations are seen to better represent the data, but it is
interesting to observe what occurs when the continuum
dispersion relations are used. When the momenta spectrum
pnðLÞ has been obtained through the dispersion relations it
is necessary to have some knowledge of the function �ð�Þ
appearing in Eq. (6) in order to translate to the scattering
phase shift �ðpÞ. In some works, �ð�Þ � ��2 is taken as a
good approximation, but it is possible that for low values of
� this will not be sufficiently accurate. For more accurate
results one should numerically evaluate �ð�Þ. In essence
this amounts to a numerical evaluation of Z00ðr; q2Þ.
However, in the expression Eq. (8) for Z00ðr;q2Þ the value
of r ¼ 1, used in the application of Lüscher’s method, is
outside the domain of convergence.
Fortunately there is an integral representation of

Z00ð1; q2Þ (Appendix C of Ref. [22]) which analytically
continues to the point r ¼ 1. The expression is also ame-
nable to numerical evaluation. Using the values obtained
from this evaluation of Z00ð1; q2Þ, we performed a fit of
�ð�Þ to obtain as our approximation in the range � 2
½0:1; 1:5�

�ð�Þ � ð�0:09937Þ�8 þ ð0:47809Þ�6

þ ð�0:62064Þ�4 þ ð3:38974Þ�2: (39)

Note that it can be shown from its definition that�ð�Þ has a
Taylor expansion consisting of only even powers of �. The
error of using this approximation in place of the true
values, within the given range, is significantly less than
other errors and can be neglected at later stages of the
analysis. This approximation is used here simply to dem-
onstrate the deviation of the function from �ð�Þ � ��2

and how this can affect the results. We can now use Eq. (6)
to map our energy spectrum data to �ðpÞ. The choice of
dispersion relations and approximation of �ð�Þ could pos-
sibly change the results significantly so all four choices are
considered.
Firstly, for the choice of dispersion relations, Fig. 13

shows that the lattice relation brings the energy levels close
to a single arctangent profile whereas the continuum rela-
tions give a much more scatter. Also notice that the third
energy level is not mapped to the elastic region with the
lattice dispersion relations. The lattice dispersion relations
also have smaller errors.
After fitting, the results for the resonance mass and

decay width in the two approximations using continuum
dispersion relations are shown in Table I and the lattice
dispersion relations in Table II.
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FIG. 11 (color online). Spectrum of the theory with simulation
parameters: 	 ¼ 1:0, � ¼ 200:0, am�;0 ¼ 0:86.
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FIG. 12 (color online). (Top) The probability distribution con-
sidering the correct background. (Bottom) Probability distribu-
tion ~W using the correct background and excluding the two
levels that are without a corresponding background. Simulation
parameters: 	 ¼ 1:0, � ¼ 200:0, am�;0 ¼ 0:86.
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The choice of approximation for �ð�Þ can be seen to
most strongly affect the errors and values of the decay
width. A possible reason for this is that different approx-
imations of �ð�Þ will change the slope of the scattering
phase shift, which is directly related to the the decay width
of the resonance. So it would appear that the lattice
dispersion relations should be used for a clear arctangent
profile and a good approximation to�ð�Þ, such as Eq. (39),

so that the slope remains undistorted to give accurate
information on the decay width.
It can be seen that the errors increase as the resonance

gets broader. Similar to the histogrammethod this is related
to the distinctive profile of the resonance being washed out.
In the histogram method the distinctive Breit-Wigner form
flattened out into a flat profile, here the typical arctangent
profile of the phase shift becomes a straight line. In this case
the resonance width can be changed within a wide margin
without affecting the profile of the phase shift, hence the
greater errors. Figure 14 shows a comparison between the
broadest case and the narrowest case.

C. Comparison

Results from a comparison between Lüscher’s method
and the histogrammethod are shown in Table III. Lüscher’s
method gives smaller errors than the histogrammethod, but
the results are broadly consistent. Lüscher’s method man-
ages to provide some estimate on the width of the reso-
nance in the broad case. The broad resonance becomes a
problem for the histogram method because there is no
obvious peak to indicate the resonance mass and hence
no width of that peak to determine the decay width. One
would need very precise data in order to avoid a washing
out of the structure of the histogram. Lüscher’s method
also becomes more difficult to apply in the case of broad
resonances. Here, the profile of �ðpÞ is quite flat, hence a
large range of parameters will be capable of fitting to the
profile. Again an accurate determination of the energy
levels is required to determine the profile precisely enough
so that this is prevented. Considering the amount of work
necessary until one can use the histogram method (as de-
tailed above), Lüscher’s method is considerably easier to
apply, provided one has a good approximation of �ð�Þ.
However, the histogrammethod can be used as a visual tool
for spotting the resonance.
One restriction of Lüscher’s formula is that it only

applies in the elastic region. It is possible that the histo-
gram method will provide a means of determining the
presence of a resonance in the inelastic region. Certainly,
a histogram can be constructed in the inelastic region; the
only difficulty is that with the inapplicability of Lüscher’s
formula it is unclear that the parameters of this histogram
will have any relation to those of the resonance.
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FIG. 13 (color online). (Top) �ðpÞ using Lattice dispersion
relations at: 	 ¼ 1:0, � ¼ 1:4, am�;0 ¼ 0:36. (Bottom) Same

parameters, but with continuum dispersion relations. Both done
with our �ð�Þ approximation.

TABLE I. Resonance mass and decay width using two differ-
ent approximations for �ð�Þ, with continuum dispersion rela-
tions.

�ð�Þ ��2

	 � aM� a�� aM� a��

1.0 1.4 1.32(8) 0.117(9) 1.4(1) 0.16(5)

1.0 4 2.1(4) 0.39(4) 2.2(4) 0.42(5)

1.0 200 3(1) 1.2(7) 3(1) 2(2)

TABLE II. Resonance mass and decay width determinations
using two different approximations for �ð�Þ and lattice free
dispersion relations.

�ð�Þ ��2

	 � aM� a�� aM� a��

1.0 1.4 1.35(2) 0.115(8) 1.36(4) 0.17(2)

1.0 4 2.03(2) 0.35(2) 2.2(2) 0.42(5)

1.0 200 3.1(7) 1.2(5) 3(1) 2(1)
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D. Inelastic scattering

We want to discuss now what happens when we tune the
resonance parameters to have a mass resonance greater
then four times the pion mass, i.e., greater then the elastic
threshold.

We run a series of simulations with parameters 	 ¼ 1:05,
� ¼ 0:85, am�;0 ¼ 0:17. They have been tuned to have

the intersection between the � energy level and ð1; 0; 0Þ
two-particle energy level around L ¼ 11a.

The physical mass for the pion turns out to be am� ¼
0:2213ð5Þ. In Fig. 15 we plot the spectrum for 8 � L=a �
20 for the first six levels; in this case the onset value for the
plateaux is t0 ¼ 2 and the relative error varies in the range
0.08%—0.4%.
For Lüscher’s method the results are nonsensical, as

would be expected since the method can only be demon-
strated in the elastic region due to the restrictions of the
Bethe-Salpeter kernel and more fundamentally the fact that
the formula is first derived in quantum mechanics.
Figure 16 shows an example of applying the method

beyond the inelastic threshold for 	 ¼ 1:0 and � ¼ 1:4. It
can be seen that the profile does not fit what would ex-
pected of the scattering phase shift and in fact the second
point after the threshold, being above �=2, could even
break unitarity. Fortunately for these values of 	 and �
the resonance is not above the threshold. For 	 ¼ 1:05,
� ¼ 0:85, where the resonance is above threshold, the
problems mentioned above make the results uninterpret-
able. It is worth noting that in Fig. 15 we do not have any
hints of the expected 4� level; an explicit implementation
of an interpolator should therefore be necessary.
In Fig. 17 (Top) the probability distribution is shown

considering the correct background and all levels. The
distribution without the two levels, characterized by the
absence of their own background, is shown in Fig. 17
(Bottom). In this case a bad and unexpected result is
obtained: a jump around m � 1:13 is present; this is a
further proof of how laborious this method is.
The background was subtracted following the same

procedure as before but around L ¼ 20a for the energy
levels around ð1; 1; 1Þ a new problem arises. We have
already seen that the only way to avoid a jump in the
histogram ~W is to make the correct correspondence at the
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FIG. 15 (color online). Spectrum of the theory for different
values of the volume for the following simulation parameters,
describing an inelastic scattering: 	 ¼ 1:05, � ¼ 0:85, am�;0 ¼
0:17. The horizontal blue dotted line shows the elastic threshold.

TABLE III. A comparison between the Lüscher and the histo-
gram method. For the very broad resonance, no determination of
the resonance parameters was obtained.

Lüscher histogram

	 � aM� a�� aM� a��

1.0 1.4 1.35(2) 0.115(8) 1.33(5) 0.10(5)

1.0 4 2.03(2) 0.35(2) 2.01(2) 0.35(10)

1.0 200 3.1(7) 1.2(5) - -
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FIG. 14 (color online). Phase shift for narrow (	 ¼ 1:0, � ¼
1:4, am�;0 ¼ 0:36) and broad (	 ¼ 1:0, � ¼ 200:0, am�;0 ¼
0:86) resonances.
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two extremities of the volume interval (L ¼ 8a and
L ¼ 20a in this case) between the energy levels of the
interacting theory and the corresponding background.
They should coincide or at least be parallel (after the
lengthening of the free spectrum lines). Figure 6 (Top)
demonstrates that this is exactly what happened in the
previous cases; this characteristic is not present in this
case. The two lines are not parallel because for L ¼ 20a
the effect of the interaction is too strong. Note that this
problem is not related to the inelastic regime, but could be
present in the previous cases as well; it is only by chance
that this did not happen. The only way to avoid this new
problem is to consider a different volume range. In par-
ticular we have verified that in this case a better choice is
8 � L=a � 18. Using this new interval we can determine
the probability distribution shown in Fig. 18 (Top); exclud-
ing the two levels as before we get the result of Fig. 18
(Bottom). Finally, we can see a Breit-Wigner shape that
we can fit as shown in Fig. 19 obtaining the following
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FIG. 16 (color online). Inelastic data with Lüscher’s formula.
For the case of 	 ¼ 1:0, � ¼ 1:4, am�;0 ¼ 0:36. (Onset of

inelastic region marked).
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FIG. 17 (color online). (Top) The probability distribution con-
sidering the correct background. (Bottom) Probability distribu-
tion ~W using the correct background and excluding the two
levels that are without a corresponding background. Simulation
parameters: 	 ¼ 1:05, � ¼ 0:85, am�;0 ¼ 0:17.
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FIG. 18 (color online). Like Fig. 17 but considering a volume
range 8 � L=a � 18 in Fig. 15. Simulation parameters: 	 ¼
1:05, � ¼ 0:85, am�;0 ¼ 0:17.
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parameters: aM� ¼ 1:11ð3Þ, a�� ¼ 0:11ð3Þ. It is clear
therefore that in the inelastic regime we can also apply
exactly the same procedure as was developed for the elastic
case and finally we can determine in this case the reso-
nance parameters also. Unfortunately, in contrast with the
elastic regime there is no theoretical support in this case.
Therefore, even if we can determine the parameters for the
Breit-Wigner shape of the probability distribution histo-
gram, there is no reason to link these numbers with the
resonance parameters.

E. Correlator method

We have also performed a preliminary investigation of a
third method described in Ref. [3]. This method attempts to
extract resonance parameters via fitting the correlator to
some asymptotic form at small times. This avoids the
Maiani-Testa theorem, as the theorem only restricts access
to scattering information via the n-point functions with
n 	 3. Also, in using the correlator we are treating reso-
nances on the same footing as stable states. The form of the
correlator that we fit to is:

DðtÞ ¼ e�!mint

�
c0F

ð0Þðt;ERÞþ c1F
ð1Þðt;ERÞþ

X1
k¼0

xk

tlþkþ3=2

�
;

(40)

!min being the value of the multiparticle threshold, which
in this work is !min ¼ 2m�; ER is the location of the pole
associated with the resonance relative to the multiparticle

threshold, namely ER ¼ ðM� �!minÞ � i �2 , with M� and

� the mass and width of the resonance respectively. We
label the real part of ER as E0 in what follows, E0 ¼
ðM� �!minÞ. The FðiÞðt; ERÞ functions have the following
definition:

Fð0Þðt; ERÞ ¼ � 2

�
Im�ðt; ERÞ

Fð1Þðt; ERÞ ¼ Re�ðt; ERÞ � 2E0

�
Im�ðt; ERÞ:

(41)

The function �ðt; ERÞ is calculated via the expression:

�ðt; ERÞ ¼ ��
ffiffiffiffiffiffiffiffiffiffiffi�ER

p
e�ERt þ

ffiffiffiffi
�

t

r �
1þX1

i¼0

ð�2ERtÞiþ1

ð2iþ 1Þ!!
�
:

(42)

A resonance is to be found as a pole on the second
(unphysical) Riemann sheet of the Kallen-Lehmann spec-
tral function. However since the branch cut that gives rise to
this second Riemann sheet dissolves into a series of poles in
finite volume, it is not obvious how the resonance can have
an effect on the correlator. However if, in infinite volume,
the resonance is very narrow then it is close enough to the
branch cut for it to have an effect on the first (physical)
Riemann sheet and so its influence will show up in the
infinite-volume correlator. The finite volume correlator
converges to the infinite volume one rapidly at large vol-
umes and so the influence of the resonance shows up in the
finite volume correlators we observe on the lattice. We
should then be able to apply Eq. (40) at large volumes. In
Eq. (40) the xk represent the nonresonant scattering, which
in our model we expect to be small. We chose the value
k ¼ 2, as smaller values were found to give poor results.
We then fitted the sigma correlator for the L ¼ 19 lattice
for the 	 ¼ 1:0, � ¼ 1:4, am� ¼ 0:36 parameters and
obtained the following results (the fit is shown in Fig. 20):

aM� ¼ 1:32ð5Þ; a�� ¼ 0:107ð7Þ;
c0 ¼ �0:00122ð4Þ; c1 ¼ 0:00023ð8Þ;
x0 ¼ 0:078ð1Þ; x1 ¼ 0:158ð5Þ:

1.00 1.05 1.10 1.15 1.20 1.25
aE

-40

-20

0

20

40

60

80
W

FIG. 19 (color online). Data from Fig. 18 (Bottom) that we fit
to determine the resonance parameters with the final curve fitting.
Simulation parameters: 	 ¼ 1:05, � ¼ 0:85, am�;0 ¼ 0:17.
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FIG. 20 (color online). Fit to sigma correlator; parameters:
	 ¼ 1:0, � ¼ 1:4, am� ¼ 0:36.
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The fit, which was done in the window t 2 ½1; 8�, has a
chi-squared per degree of freedom of �2=	 ¼ 0:8362.
The resonance width � appeared to be quite sensitive to
the fit window if values of t greater than 10 were taken.
However this is possibly not a surprising result as the form
for the correlator Eq. (40) is derived for small times.
It should be noted that this method obtained these
results via a fit to the correlator in a single, large volume.
Of course the method also introduces new fitting parame-
ters, c0, c1, x0 and x1, which make the fit less discriminat-
ing. The method also appears to be restricted to narrow
resonances, attempts to apply the method to the broader
resonance data of this work were not successful. The results
are however consistent with the two preceding methods.
Only a preliminary investigation of this method was made,
in particular a more precise estimate of the errors via the
Bayesian analysis suggested in Ref. [3] might improve the
situation.

V. CONCLUSIONS AND OUTLOOK

The investigation of the two methods studied in this
work has elucidated their relative strengths and weaknesses
when they are applied to data from a Monte Carlo study,
which have finite statistical precision. Lüscher’s method
requires an estimation on the functional form of the scat-
tering phase shift, in our case we used the ansatz of the
Breit-Wigner form associated to an isolated resonance.
Once these two requirements are met the method is rela-
tively straight forward to apply. The main disadvantage is
the increasing errors as the resonance becomes broader and
the clear restriction to studying elastic scattering.

The histogram method, since it has the form of a Breit-
Wigner peak, provides a distinctive visual check of the
presence of resonances. However the method of construct-
ing a histogram from Monte Carlo data with a limited
range of volumes is not as straightforward as applying
Lüscher’s technique and one also finds increasing errors
for broader resonances. For very broad resonances, the
method misses the state entirely.
Lüscher’s method is then the stronger of the two based

on our experience here due to its ease of application. For
narrow resonances however, results from both techniques
appear to be complimentary and have similar statistical
precision. We briefly investigated a third method which
makes more direct use of the time dependence of correlator
data and would treat resonances similarly to stable states,
but much remains to be done to show it is useful for the
analysis of Monte Carlo data.
The major drawback for all methods is that they are

restricted to the elastic region. Studying the inelastic region
is of crucial importance to learning more detail about the
resonances that emerge from QCD. What is clear is that
any more advanced method that has potential in that region
will need to be able to deal with statistical uncertainty in a
robust way without the need for delicate fine-tuning.
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