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Using a standard cooling method for SUð3Þ lattice gauge fields, constant Abelian magnetic field

configurations are extracted after dyon-antidyon constituents forming metastable Q ¼ 0 configurations

have annihilated. These so-called Dirac sheets, standard and nonstandard ones, corresponding to the two

Uð1Þ subgroups of the SUð3Þ group, have been found to be stable if emerging from the confined phase,

close to the deconfinement phase transition, with sufficiently nontrivial Polyakov loop values. On a finite

lattice we find a nice agreement of the numerical observations with the analytic predictions concerning the

stability of Dirac sheets depending on the value of the Polyakov loop.
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I. INTRODUCTION

In lattice gauge theories the cooling method is used to
remove short distance fluctuations in order to search for
(approximate) classical solutions of the Euclidean field
equations [1–4]. We consider this technique as a device
[5] (like smearing or filtering based on low-lying modes of
the Dirac operator) that may help to identify topological
excitations generically present in the sample configura-
tions representing the zero-temperature (or thermal)
ensemble of gauge fields [6–8].

Cooling studies of nonzero-temperature SUð2Þ lattice
fields [5] have identified as topological excitations both
caloronswith nontrivial holonomy [9–11] or dyon-antidyon
pairs which finally annihilate. Sometimes this annihilation
process provides a constant Abelian magnetic field called
Dirac sheet (DS), which turns out to be either stable or
unstable under further cooling [12]. The stability is strongly
correlated with the spatial average value of the Polyakov
loop (the holonomy) in the given stage of cooling. In
Ref. [13] an explanation for this observation was presented.

Some time ago we started cooling studies of SUð3Þ
gluodynamics, applying the Cabibbo-Marinari procedure
in the cooling mode for the standard Wilson action [14].
On plateaus characterized by values of the action within
the range 0.5–1.5 times the one-instanton action Sinst the
emerging topological objects turned out to be either calo-
rons or anticalorons (dissociated or not dissociated into
their three respective dyon or antidyon constituents) or one
or two dyon-antidyon pairs. Sometimes [similar to the
SUð2Þ case] the annihilation process of a dyon-antidyon
pair leaves behind a constant Abelian magnetic field. In the
SUð3Þ case the structure of such Dirac sheets is somewhat
richer than in the SUð2Þ case. Below we will describe
their analytic construction following a seminal paper by

Gerard ’t Hooft [15]. We will expand the concept of
marginal stability [16–18] to the SUð3Þ case. We shall
find agreement between the analytically worked-out pre-
conditions—in terms of the holonomy—for stability of
the Dirac sheets in a finite volume on one hand and the
numerical observations for Monte Carlo generated—and
subsequently cooled—lattice gauge fields.

II. DIRAC SHEET SOLUTIONS

In lattice gauge theories usually periodic boundary con-
ditions are applied for the gauge fields (by default, if no
special needs suggest something else). Thus, the DS con-
figurations that can be obtained by the cooling procedure
are periodic as well. The simplest way, however, to present
analytic solutions with a constant color-magnetic field on a
hypertorus uses twisted boundary conditions [15]. In this
case most of the structure of the solutions is absorbed into
twists (the gauge transformations that the gauge fields
acquire over the periods on a hypertorus). They look rather
complicated and are even non-Abelian while the gauge
fields themselves are rather simple. To have periodic solu-
tions we should make clear that the twists can be removed
by appropriate gauge transformations. The necessary con-
dition for this is the commutativity of twists in different
directions. Below we will apply this condition to find those
solutions that allow to be made periodic.
Discussing the special self-dual solutions, ’t Hooft

was considering the general SUðNÞ case. The gauge field
A�ðxÞ and the field strength F��ðxÞ are strictly Abelian

while the twists are non-Abelian. The gauge field A�ðxÞ
is proportional to the diagonal traceless matrix ! ¼
2� diagðl; . . . ; l;�k; . . . ;�kÞ with positive integers l and
k such that lþ k ¼ N,
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A�ðxÞ ¼ !
X

�

���x�=L�L�;

F��ðxÞ ¼ �!ð��� � ���Þ=L�L�;

(1)

where L�, � ¼ 1; . . . ; 4 are the linear extensions of the

hypertorus,

��� � ��� ¼ nð2Þ��=Nl� nð1Þ��=Nk: (2)

The integers nð2Þ�� and nð1Þ�� summed to n�� ¼ nð1Þ�� þ nð2Þ��

define the so-called twist tensor n��. For n�� ¼ 0 (mod.

N) the twists are commuting and can be removed by
appropriate gauge transformations such that gauge fields
become periodic.

For nð2Þ12 ¼ �nð1Þ12 ¼ 1 (with other components equal to

zero) n�� ¼ 0, �12 � �21 ¼ 1=kl we get a constant mag-

netic field in the third direction B3 ¼ F12. The action of
this field on the hypertorus with L1 ¼ L2 ¼ L3 ¼ Ls and
L4 ¼ Lt is equal to

SDS ¼ 1=2g2ðBa
3Þ2V4 ¼ 1=g2 TrðB3Þ2V4

¼ 8�2=g2 � N=2kl� Lt=Ls: (3)

Thus, for SUð2Þ SDS ¼ SinstLt=Ls, for SUð3Þ SDS ¼
3=4SinstLt=Ls, where the instanton action is Sinst ¼
8�2=g2. In the SUð2Þ case the magnetic field B3 is
equal to B3 ¼ 2� diagð1;�1Þ=L2

s , and its flux � over
the 12-plane of the hypertorus is a multiple of 2�:
� ¼ 2� diagð1;�1Þ. This means that in the periodic
gauge such a field could remain Abelian because of
expði�Þ ¼ 1. In the SUð3Þ case the magnetic field B3 ¼
� diagð1; 1;�2Þ=L2

s has a flux over the 12-plane of the
hypertorus equal to� ¼ � diagð1; 1;�2Þ. Now expði�Þ ¼
diagð�1;�1; 1Þ is not equal to the unity matrix, and this
means that in the periodic gauge such a field could not
remain Abelian.

III. SUð2Þ EMBEDDED DIRAC SHEET SOLUTIONS

The Dirac sheet seen on the lattice in the SUð2Þ case
[12,13] is observed also in SUð3Þ lattice simulations. We
will call it standard DS. New, specific for the SUð3Þ case, is
the Dirac sheet with an action value equal to 3=4 of the
action of the standard DS. In the following we will call it
nonstandard DS. It is also seen in lattice simulations.

In SUð2Þ a constant Abelian magnetic field is not stable
under fluctuations of the gauge field. Charged (off diago-
nal) components of the gauge field have a Savvidy eigen-
mode [19] with negative eigenvalue

� ¼ �4�=L2
s : (4)

The situation can be stabilized by introducing a constant
Abelian scalar potential A3

4. Normally a constant Abelian

scalar potential can be gauged away. In our case due to
periodicity in time direction it can be gauged away only
modulo 2�=Lt. The interaction of charged (off-diagonal)

components of the gauge field with this potential adds a
positive term to the eigenvalue �, turning it into

� ¼ �4�=L2
s þ ðA3

4Þ2: (5)

The presence of the scalar potential leads to a nontrivial
holonomy H that is defined as

H ¼ lim
j ~xj!1

P exp

�
i
Z Lt

0
A4ð ~x; tÞdt

�
: (6)

The holonomy is parametrized as H ¼ diagðe2�i�1 ; e2�i�2Þ
with �1 � �2 � �3 ¼ 1þ�1 and �1 þ�2 ¼ 0. Thus,
positive numbers m1 ¼ �2 ��1, m2 ¼ �3 ��2 sum up
to unity m1 þm2 ¼ 1. The eigenvalue � then becomes
equal to

� ¼ �4�=L2
s þ ð2�m1=LtÞ2; (7)

and its positiveness requires Lt=Ls

ffiffiffiffi
�

p
<m1;2 < 1� Lt=

Ls

ffiffiffiffi
�

p
. Therefore, nontrivial holonomy stabilizes DS and

just this situation was observed in SUð2Þ lattice cooling
[12] and elucidated in Ref. [13].
Now let us consider the embedding of this standard DS

event into the SUð3Þ group. Let vector potentials A1;2 be

proportional to diagð1;�1; 0Þ and the scalar potential to
give the holonomy

H ¼ diagðe2�i�1 ; e2�i�2 ; e2�i�3Þ; (8)

with �1 � �2 � �3 � �4 ¼ 1þ�1 and �1 þ�2 þ
�3 ¼ 0. Now three positive numbers m1 ¼ �2 ��1,
m2 ¼ �3 ��2, m3 ¼ �4 ��3 sum to unity m1 þm2 þ
m3 ¼ 1. Stability of the DS under fluctuations of charged
(off-diagonal) ð1; 2Þ � ð2; 1Þ components of the gauge
fields requires Lt=Ls

ffiffiffiffi
�

p
<m1 < 1� Lt=Ls

ffiffiffiffi
�

p
. The other

off-diagonal ð2; 3Þ � ð3; 2Þ and ð3; 1Þ � ð1; 3Þ components
of the gauge fields have charges with respect to the
diagð1;�1; 0Þ generator of the SUð3Þ group being two
times smaller than the ð1; 2Þ � ð2; 1Þ components. Hence
the stability of DS under their fluctuations requires

Lt=Ls

ffiffiffiffiffiffiffi
2�

p
<m2 < 1� Lt=Ls

ffiffiffiffiffiffiffi
2�

p
and Lt=Ls

ffiffiffiffiffiffiffi
2�

p
<

m3 < 1� Lt=Ls

ffiffiffiffiffiffiffi
2�

p
, correspondingly. Taking into ac-

count that the magnetic Abelian field could lie also in other
SUð2Þ subgroups of the SUð3Þ group, i.e., it would then be
proportional to diagð1; 0;�1Þ or to diagð0; 1;�1Þ genera-
tors, we see that the standard DS in the SUð3Þ group will be
stable for values of the holonomy restricted by the follow-
ing constraints on the holonomy parameters m1, m2, m3:

Lt=Ls

ffiffiffiffiffiffiffi
2�

p
<m1;2;3 < 1� Lt=Ls

ffiffiffiffiffiffiffi
2�

p
: (9)

We shall visualize the stability criteria in a ðX; YÞ
plot in the complex plane, X ¼ <ð1=3TrHÞ and Y ¼
=ð1=3TrHÞ. The corresponding region for the standard
DS configurations is shown on Fig. 1. The external curved
triangle encloses all possible values of one third of the trace
of a unitary matrix (the holonomy) that can be obtained by
the variation of the phase parameters m1, m2, m3 in the
region 0<m1;2;3 < 1, while the sum is constrained by
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m1 þm2 þm3 ¼ 1. The smaller, inscribed curved triangle
(bounded by the dashed line) is the region of stability of
standard DS events.

IV. NONSTANDARD DIRAC SHEETS

Coming now to the discussion of the stability of
nonstandard DS solutions, one should first stress that by
construction constant Abelian magnetic fields can be sup-
plemented only by a constant Abelian scalar potential
proportional to the same diagonal SUð3Þ generator to
which the magnetic field is proportional. If the magnetic
field is equal to B3 ¼ � diagð1; 1;�2Þ=L2

s , then in a con-
stant Abelian scalar potential

A4 ¼ diagð2��1=Lt; 2��2=Lt; 2��3=LtÞ; (10)

the holonomy parameters �1 and �2 should be equal to
each other: �1 ¼ �2 (m1 ¼ 0). The fluctuations of the
ð1; 2Þ � ð2; 1Þ components of gauge fields in this case do
not interact with both the magnetic field and the static
scalar potential. For fluctuations of charged ð2; 3Þ � ð3; 2Þ
and ð3; 1Þ � ð1; 3Þ components the lowest modes have
eigenvalues

�23 ¼ �3�=L2
s þ ð2�m2=LtÞ2 (11)

and

�13 ¼ �3�=L2
s þ ð2�m3=LtÞ2; (12)

correspondingly. So, the stability of such nonstandard DS
solutions is possible for

m1¼0;
ffiffiffiffiffiffiffiffiffiffiffiffi
3=4�

p
Lt=Ls<m2;3<1�

ffiffiffiffiffiffiffiffiffiffiffiffi
3=4�

p
Lt=Ls: (13)

For other nonstandard DS solutions the region of stabil-
ity can be obtained by the permutations of holonomy
parameters m1,m2,m3, The stability region is shown in

the ðX; YÞ plot of Fig. 2 and happens to coincide with the
boundary of the unclosed SUð3Þ triangle of Fig. 1.

V. NUMERICAL RESULTS

For a numerical study of standard and nonstandard DS
solutions we have employed the standard Wilson plaquette
action SW , creating an ensemble with � ¼ 6=g2 where g
denotes the bare coupling constant. On a lattice for Lt ¼ 4,
Ls ¼ 16 the coupling constant related to the first order
deconfinement transition is equal to �c ’ 5:69. The initial
Monte Carlo ensemble was generated in the confined phase
at � ¼ 5:63. As expected, this has guaranteed that in the
process of cooling the holonomy has remained sufficiently
nontrivial, such that the emerging DS configurations were
stable. We have found configurations stable against further
cooling with the action S ¼ 1=4Sinst and S ¼ 3=16Sinst in
perfect agreement with analytical knowledge. We have
stopped cooling at the moment, when the relative variation
of action density inside the configuration became smaller
than 10�4 (homogeneous configurations) and have mea-
sured the value of holonomy (the average Polyakov loop).
The Polyakov loop also has happened homogeneously. The
distance of local values of it from the average value was not
larger than 10�5. The scatter plots of DS events in the ðX; YÞ
plane of the real and imaginary part of the Polyakov loop are
shown in Figs. 1 and 2. The dots lie perfectly inside the
regions of stability for the respective type of DS configura-
tions. The configurations obtained turned out to be purely
magnetic and—applying maximally Abelian gauge—show
constant Abelian magnetic fluxes.
We did not particularly attempt to find Dirac sheets at

higher temperature, �> �c. We know from other simula-
tions that the holonomy of such equilibrium configurations
under cooling rapidly evolves towards central elements
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FIG. 2 (color online). The region of stability of nonstandard
DS configurations [the three sides of the unclosed SUð3Þ tri-
angle] compared with nonstandard DS events found in actual
lattice cooling (filled circles).
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FIG. 1 (color online). The SUð3Þ triangle and the inscribed
region of stability expected for standard DS configurations
(enclosed by the dashed line) compared with standard DS events
found in actual lattice cooling (filled circles).
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where Dirac sheets are unstable and therefore would have
escaped observation.

VI. CONCLUSION

In conclusion, purely Abelian constant magnetic field
configurations have been observed emerging from the pro-
cess of cooling equilibrium (Monte Carlo) lattice fields
representing the confined phase of SUð3Þ gluodynamics.
They were found to be absolutely stable provided their
Polyakov loop was sufficiently nontrivial. We have shown
here that this fact is related to the notion of marginal stability
of the appropriate constant magnetic field configurations.

Finally we have to admit that the Dirac sheet configu-
rations discussed in this paper will not play any role in the
thermodynamic limit of the theory since their action tends
to zero in this limit.
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