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We calculate the binding energies for multinucleon bound states with the nuclear mass number less than

or equal to 4 in 2þ 1 flavor QCD at the lattice spacing of a ¼ 0:09 fm employing a relatively heavy quark

mass corresponding to m� ¼ 0:51 GeV. To distinguish a bound state from attractive scattering states, we

investigate the volume dependence of the energy shift between the ground state and the state of free

nucleons by changing the spatial extent of the lattice from 2.9 to 5.8 fm. We conclude that 4He, 3He,

deuteron and dineutron are bound at m� ¼ 0:51 GeV. We compare their binding energies with those in

our quenched studies and also with several previous investigations.
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I. INTRODUCTION

Lattice QCD has a potential ability to understand the
nature of nuclei quantitatively, whose characteristic feature
is a hierarchical structure in the strong interaction. The
nuclear binding energy is experimentally known to be about
10MeVper nucleon, which ismuch smaller than the typical
energy scale of hadrons. A measurement of the binding
energies is therefore the first step for direct investigation
of nuclei in lattice QCD. A key ingredient in the study is a
systematic change of the spatial volume of the lattice to
distinguish a bound state from an attractive scattering state.

We carried out a first attempt to measure the binding
energies of the 4He and 3He nuclei in quenched QCD
with a rather heavy quark mass corresponding to m� ¼
0:80 GeV, thereby avoiding a high computational cost [1].
We followed this work with a renewed investigation of the
bound state for the two-nucleon channel in quenched QCD
at the same quark mass, which found that not only the
deuteron in the 3S1 channel but also the dineutron in the
1S0 channel is bound [2]. Independently, the NPLQCD

Collaboration reported the possibility that a bound state
is formed in both channels at m� ¼ 0:39 GeV in 2þ 1
flavor QCD [3]. They later confirmed the bound states
for the helium nuclei and the two-nucleon channels at
m� ¼ 0:81 GeV in 3-flavor QCD taking a different choice
for the quark and gluon actions [4].

In this paper we report on our investigation of the dy-
namical quark effects on the binding energies of the helium
nuclei, the deuteron and the dineutron. We perform a 2þ 1
flavor lattice QCD simulation with the degenerate up and
down quark mass corresponding to m� ¼ 0:51 GeV. Four
lattice sizes are employed to take the infinite spatial volume
limit: 323 � 48, 403 � 48, 483 � 48 and 643 � 64, whose
spatial extent ranges from 2.9 fm to 5.8 fm with the lattice
spacing of a ¼ 0:08995ð40Þ fm [5].

For the helium nuclei, our main interest lies in the
magnitude of the binding energies since all studies carried
out so far, both in quenched and in unquenched QCD and
for several quark mass values, agree on the bound state
nature for helium nuclei. Much more intriguing is the two-
nucleon system, for which there are twoways to study. One
is a direct investigation [2–4,6–9] in which one calculates
the two-nucleon Green’s functions directly in lattice QCD,
and the other is an indirect calculation by means of the two-
nucleon effective potential extracted from the two-nucleon
wave function in lattice QCD [10,11].
So far only the former method has reported the binding

energies of the two-nucleon systems. In quenched QCD the
bound state nature has been confirmed for both channels at
m� ¼ 0:80 GeV in our recent work [2]. On the other hand,
unquenched studies show a complicated situation. A some-
what early study in 2þ 1 flavor QCD with a mixed action
[8] reported a positive energy shift (repulsive interaction)
in both channels at m� � 0:59 GeV. More recently, how-
ever, deep bound states were observed at m� ¼ 0:81 GeV
in 3-flavor QCD [4]. We hope to shed light on this situation
with our own investigation in 2þ 1 flavor QCD.
This paper is organized as follows. In Sec. II we explain

the simulation details including the simulation parameters
and the interpolating operators for the multinucleon chan-
nels. Section III presents the results of the binding energies
for the helium nuclei, the deuteron and the dineutron. We
compare our results with those in the previous studies.
Conclusions and discussions are summarized in Sec. IV.

II. SIMULATION DETAILS

A. Simulation parameters

We generate 2þ 1 flavor gauge configurations with
the Iwasaki gauge action [12] and the nonperturbative
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OðaÞ-improvedWilson quark action at� ¼ 1:90withcSW¼
1:715 [13]. The lattice spacing is a¼0:8995ð40Þ fm,
corresponding to a�1 ¼ 2:194ð10Þ GeV, determined with
m� ¼ 1:6725 GeV [5]. We take four lattice sizes,
L3 � T ¼ 323 � 48, 403 � 48, 483 � 48 and 643 � 64, to
investigate the spatial volume dependence of the ground state
energy shift between the multinucleon system and the free
nucleons. The physical spatial extents are 2.9, 3.6, 4.3, and
5.8 fm, respectively. Since it becomes harder to obtain a
good signal-to-noise ratio at lighter quark masses for multi-
nucleon systems [7,14], we employ the hopping parameters
ð�ud;�sÞ¼ð0:1373316;0:1367526Þ which correspond to
m� ¼ 0:51 GeV andmN¼1:32GeV, and the physical value
for the strange quarkmass. These values are chosen based on
the previous results form� andms obtained by the PACS-CS
Collaboration [5,15].

We employ the domain-decomposed hybridMonte Carlo
algorithm [16,17] for the degenerate light quarks and the
UV-filtered polynomial hybrid Monte Carlo algorithm [18]
for the strange quark employing the Omelyan-Mryglod-
Folk integrator [19,20]. The algorithmic details are given
in Ref. [15]. We summarize the simulation parameters in
Table I including the block sizes in domain-decomposed
hybridMonteCarlo and the polynomial order inUV-filtered
polynomial hybrid Monte Carlo. We take � ¼ 1 for the
trajectory length of the molecular dynamics in all the
runs. The step sizes are chosen such that we obtain reason-
able acceptance rates presented in Table I. We generate the
gauge configurations in a single run except for the L ¼ 64
case for which we carry out two runs. The total trajectory

length is about 2000 for all the volumes, except for the case
of the smallest volume in which it is 4000.

B. Calculation method

We extract the ground state energies of the multinucleon
systems and the nucleon state from the correlation
functions

GOðtÞ ¼ h0jOðtÞ �Oð0Þj0i; (1)

with O being appropriate operators for 4He, 3He, two-
nucleon 3S1 and 1S0 channels, and the nucleon state N
(see the next subsection for actual expressions).
We carry out successive measurements in the interval of

ten trajectories. The errors are estimated by jackknife
analysis choosing 200 trajectories for the bin size for all
volumes, except for the largest volume for which we use
190. The numbers of configurations are listed in Table II.
We attempt to extract as much information as possible
from each configuration by repeating the measurement of
the correlation functions for a number of sources at differ-
ent spatial points and time slices. For the 484 and 644

lattices, we calculate the correlation functions not only in
the temporal direction but also in the three spatial direc-
tions exploiting the space-time rotational symmetry. We
found that this procedure effectively increases statistics by
a factor of 4. This factor is included in the number of
measurements on each configuration given in Table II.
We are interested in the energy shift between the ground

state of the multinucleon system and the free nucleons on
an L3 box,

�EL ¼ EO � NNmN; (2)

with EO being the lowest energy level for the multinucleon
channel, NN the number of nucleon and mN the nucleon
mass. This quantity is directly extracted from the ratio of
the multinucleon correlation function divided by the NNth
power of the nucleon correlation function

RðtÞ ¼ GOðtÞ
ðGNðtÞÞNN

; (3)

where the same source operator is chosen for the numerator
and the denominator. We also define the effective energy
shift as

TABLE I. Simulation parameters for gauge configuration gen-
eration at ð�ud; �sÞ ¼ ð0:1373316; 0:1367526Þ. The definition of
parameters is the same as in Ref. [15].

L3 � T 323 � 48 403 � 48 483 � 48 643 � 64
# run 1 1 1 2

ðN0; N1; N2Þ (2, 2, 10) (2, 2, 15) (2, 2, 16) (2, 2, 18)

Block size 83 � 6 103 � 6 122 � 62 83 � 4
Npoly 260 320 320 340

MD time 4000 2000 2000 (1090, 810)

Pacc (HMC) 0.840 0.925 0.916 (0.880, 0.867)

Pacc (GMP) 0.957 0.969 0.963 (0.978, 0.974)

TABLE II. Number of configurations, separation of trajectories between each measurement,
bin size in jackknife analysis, number of measurements on each configuration, exponential
smearing parameter set ðA;BÞ in Eq. (12), pion mass m� and nucleon mass mN are summarized
for each lattice size.

L T # Config. �sep Bin size # Meas. ðA; BÞ m� [GeV] mN [GeV]

32 48 200 20 10 192 (1.0, 0.18) 0.5109(16) 1.318(4)

40 48 200 10 20 192 (0.8, 0.22) 0.5095(8) 1.314(4)

48 48 200 10 20 192 (0.8, 0.23) 0.5117(9) 1.320(3)

64 64 190 10 19 256 (0.8, 0.23) 0.5119(4) 1.318(2)
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�Eeff
L ¼ ln

�
RðtÞ

Rðtþ 1Þ
�
; (4)

which is useful to check the plateau region in later sections.
Note that the definitions for �EL and �Eeff

L follow those
in Ref. [2], but are opposite to those used in Ref. [1].

C. Interpolating operators

We use an interpolating operator for the proton given by

p� ¼ "abcð½ua�tC�5dbÞu�c ; (5)

where C ¼ �4�2 and � and a, b, c are the Dirac index and
the color indices, respectively. The neutron operator n� is
obtained by replacing u�c by d�c in the proton operator. To
save on the computational cost we use the nonrelativistic
quark operator in which the Dirac index is restricted to the
upper two components.

The 4He nucleus has zero total angular momentum,
positive parity JP ¼ 0þ and zero isospin I ¼ 0. We em-
ploy the simplest 4He interpolating operator with zero
orbital angular momentum L ¼ 0, and hence J ¼ S with
S being the total spin. Such an operator was already given a
long time ago in Ref. [21],

4He ¼ 1ffiffiffi
2

p ð ���� � ��Þ; (6)

where

� ¼ 1

2
ð½þ �þ�� þ ½�þ�þ� � ½þ��þ�

� ½�þþ��Þ; (7)

�� ¼ 1ffiffiffiffiffiffi
12

p ð½þ �þ�� þ ½�þ�þ� þ ½þ��þ�

þ ½�þþ�� � 2½þ þ��� � 2½� �þþ�Þ; (8)

withþ=� being the up/down spin of each nucleon, and �,
�� are obtained by replacing þ=� in �, �� by p=n for the
isospin. Each nucleon in the sink operator is projected to
zero spatial momentum.

We also calculate the correlation function of the 3He
nucleus whose quantum numbers are JP ¼ 1

2
þ, I ¼ 1

2 and

Iz ¼ 1
2 . We employ the interpolating operator in Ref. [22],

3He ¼ 1ffiffiffi
6

p ðjp�nþpþi � jpþnþp�i þ jnþpþp�i

� jnþp�pþi þ jpþp�nþi � jp�pþnþiÞ; (9)

with the zero momentum projection on each nucleon in the
sink operator.

The two-nucleon operators for the 3S1 and
1S0 channels

are given by

NN3S
1
ðtÞ ¼ 1ffiffiffi

2
p ½pþðtÞnþðtÞ � nþðtÞpþðtÞ�; (10)

NN1S
0
ðtÞ ¼ 1ffiffiffi

2
p ½nþðtÞn�ðtÞ � n�ðtÞnþðtÞ�: (11)

In the spin triplet channel the operators for the other two
spin components are constructed in a similar way. We take
the average over the three spin components.
The quark propagators are solved with the periodic

boundary condition in all the spatial and temporal direc-
tions using the exponentially smeared source of form

q0ð ~x; tÞ ¼ X
~y

Ae�Bj ~x� ~yjqð ~y; tÞ (12)

after the Coulomb gauge fixing. We choose the smearing
parameters depending on the volume (see Table II) in order
to obtain reasonable plateaus of the effective energy for the
ground states in the multinucleon channels as well as for
the nucleon. For the source operators explained above we
insert the smeared quark fields of Eq. (12) for each nucleon
operator located at the same spatial point ~x. Each nucleon
in the sink operator, on the other hand, is composed of
the point quark fields, and projected to zero spatial
momentum.

D. Difficulties for multinucleon channel

There are several computational difficulties in the
calculation of the correlation functions GOðtÞ for the 3He
and 4He channels. One is a factorially large number of
Wick contractions for the quark-antiquark fields. A naive
counting gives ð2Np þ NnÞ!ð2Nn þ NpÞ! for a nucleus

composed of Np protons and Nn neutrons, which quickly

becomes prohibitively large beyond three-nucleon sys-
tems, e.g., 2880 for 3He and 518400 for 4He. To overcome
the difficulty, we use the reduction techniques proposed
in our exploratory work [1]. After the reduction, only
1107 (93) contractions are required for the correlation
function in the 4He (3He) channel. Other reduction tech-
niques for the large number of the Wick contractions have
been proposed for the multimeson [23] and multibary
on [24,25] channels.
Another difficulty in studying a multinucleon bound

state is the identification of the bound state nature in a
finite volume because an attractive scattering state yields a
similar energy shift due to the finite volume effect [26–28].
To solve the problem we need to investigate the volume
dependence of the measured energy shift [1,2]: For a
scattering state, the energy shift decreases in proportion
to 1=L3 at the leading order in the 1=L expansion [26,29],
while for a bound state the energy shift remains at a finite
value in the infinite spatial volume limit. In order to dis-
tinguish a nonzero constant from a 1=L3 behavior in
the energy shift, we employ four spatial extents from
2.9 to 5.8 fm.
Furthermore, when the mass number increases we need

to consider the possibility of multinuclei states such as the
two-deuteron state in the 4He channel. In the present work
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we simply calculate only the energy shift of the ground
state from the free multinucleon state, but we will briefly
comment on this problem in Sec. IV.

III. RESULTS

A. Nucleon

We first show the effective nucleon mass on the
ð5:8 fmÞ3 box in Fig. 1 as a typical result. The plateau of
the effective mass is clearly observed. A fit result of the
correlation function with an exponential form is also
drawn in the figure with the one standard deviation error
band. We list the nucleon mass together with the pion mass
in Table II.

B. 4He nucleus

The effective energy shift �Eeff
L defined in Eq. (4) is

plotted in Fig. 2. The signal is clear up to t ¼ 12, beyond
which the statistical error increases rapidly. The energy
shift �EL is extracted from RðtÞ of Eq. (3) by an exponen-
tial fit over the range of t ¼ 10–14. The fit result is denoted
by the solid lines with the statistical error band in Fig. 2.
The systematic error in the fit is estimated from the
variation of the fit results with the minimum or maximum
time slice changed by �1. Results with similar quality
are obtained on other volumes. We summarize the values
of �EL with the statistical and systematic errors in
Table III.

Figure 3 shows the volume dependence of �EL as a
function of 1=L3. The inner bar denotes the statistical error
and the outer bar represents the statistical and systematic
errors combined in quadrature. The negative energy shifts
are obtained in all the four volumes. We extrapolate the
results to the infinite volume limit with a simple linear
function of 1=L3,

�EL ¼ �E1 þ CL

L3
: (13)

The systematic error is estimated from the variation of the
results obtained by alternative fits which contain a constant
fit of the data obtained with a different fit range in t. The
nonzero negative value obtained for the infinite volume
limit �E1 shown in Fig. 3 and Table III leads us to
conclude that the ground state is bound in this channel
for the quark masses employed. The binding energy
��E1 ¼ 43ð12Þð8Þ MeV, where the first error is statisti-
cal and the second one is systematic, is consistent with the
experimental result of 28.3 MeVand also with the previous
quenched result at m� ¼ 0:80 GeV [2]. Note that the error
is still quite large.
A recent work in 3-flavor QCD at m� ¼ 0:81 GeV

reported a value 110(20)(15) MeV for the binding energy
of the 4He nucleus [4]. This is about three times deeper
than our value. Whether this difference can be attributed to
the quark mass dependence in unquenched calculations
needs to be clarified in the future.

0 4 8 12 16 20
t

0.595

0.6

0.605

0.61

m
N

FIG. 1 (color online). Nucleon effective mass on the ð5:8 fmÞ3
box in lattice units. Fit result with one standard deviation error
band is expressed by solid lines.

0 4 8 12 16 20
t

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

4
He

FIG. 2 (color online). Effective energy shift �Eeff
L for the 4He

channel on the ð5:8 fmÞ3 box in lattice units. Fit result with one
standard deviation error band is expressed by solid lines.

TABLE III. Energy shift ��EL in physical units and fit range
for the 4He and 3He channels on each spatial volume.
Extrapolated results in the infinite spatial volume limit are also
presented. The first and second errors are statistical and system-
atic, respectively.

4He 3He
L ��EL [MeV] Fit range ��EL [MeV] Fit range

32 47(24)(5) 10–14 23.2(7.6)(1.4) 10–14

40 30(15)(23) 9–13 20.2(6.9)(2.8) 9–14

48 39(20)(27) 10–14 25.5(5.3)(1.7) 10–14

64 46(11)(8) 10–14 19.5(3.7)(1.2) 9–14

1 43(12)(8) � � � 20.3(4.0)(2.0) � � �
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C. 3He nucleus

Figure 4 shows the effective energy shift�Eeff
L of Eq. (4).

The quality of the signal is better than the 4He channel in
Fig. 2. An exponential fit of RðtÞ in Eq. (3) with the range
of t ¼ 9–14 yields a negative value, which is denoted by
the solid lines with the statistical error band in Fig. 4. The
systematic error in the fit is estimated in the same way as in
the 4He case.

As listed in Table III, we find nonzero negative values
for the energy shift �EL for all the volumes. The volume
dependence is illustrated in Fig. 5 as a function of 1=L3

with the inner and outer error bars as explained in the
previous subsection. We carry out a linear extrapolation
of Eq. (13). The systematic error is estimated in the same

way as in the 4He channel. The energy shift extrapolated
to the infinite spatial volume limit is nonzero and
negative (see Fig. 5 and Table III), which means that the
ground state is a bound state in this channel. The value of
��E1 ¼ 20:3ð4:0Þð2:0Þ MeV is roughly three times
larger than the experimental result, 7.72 MeV, though
consistent with our previous quenched result at m� ¼
0:80 GeV [2].
In 3-flavor QCD,��E1 ¼ 71ð6Þð5Þ MeV was reported

[4] at a heavier quark mass corresponding to m� ¼
0:81 GeV. Here again future work is needed to see if a
quark mass dependence explains the difference from the
experiment.

D. Two-nucleon channels

1. Present work

In Fig. 6 we show the time dependence for �Eeff
L of

Eq. (4) in the 3S1 channel. The signals are lost beyond

t � 14. We observe negative values beyond the error bars
in the plateau region of t ¼ 9–14. We extract the value of

0 4 8 12 16 20
t

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

3
He

FIG. 4 (color online). Same as Fig. 2 for the 3He channel.

0 1×10-05 2×10-05 3×10-05 4×10-05
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f
=2+1 mπ=0.51GeV

N
f
=0     mπ=0.80GeV

∆E
L
(
4
He) [GeV]

FIG. 3 (color online). Spatial volume dependence of �EL in
GeV units for the 4He channel. Outer bar denotes the combined
error of statistical and systematic ones added in quadrature. Inner
bar is for the statistical error. Extrapolated result in the infinite
spatial volume limit is shown by filled square symbol together
with the fit line (dashed). Experimental value (star) and
quenched result (open diamond) are also presented.
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FIG. 5 (color online). Same as Fig. 3 for the 3He channel.
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FIG. 6 (color online). Same as Fig. 2 for the 3S1 channel.
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�EL from an exponential fit for RðtÞ of Eq. (3) in the range
of t ¼ 9–14. The systematic error of the fit is estimated as
explained in the previous subsections.

Figure 7 shows the result for �Eeff
L in the 1S0 channel on

the ð5:8 fmÞ3 box. The value of �Eeff
L is again negative

beyond the error bars in the plateau region, though the
absolute value is smaller than in the 3S1 case. The energy
shift �EL is obtained in the same way as for the 3S1
channel.

The volume dependences of �EL in the 3S1 and 1S0
channels are plotted as a function of 1=L3 in Figs. 8 and 9,
respectively. The numerical values of �EL on all the
spatial volumes are summarized in Table IV, where the
statistical and systematic errors are given in the first and
second parentheses, respectively. There is little volume
dependence for �EL, indicating a nonzero negative value
in the infinite volume and a bound state, rather than the
1=L3 dependence expected for a scattering state, for the
ground state for both channels.

The binding energies in the infinite spatial volume limit
in Table IV are obtained by fitting the data with a function

including a finite volume effect on the two-particle bound
state [27,28],

�EL ¼ � �2

mN

8<
:1þ

C�

�L

X0

~n

expð��L
ffiffiffiffiffi
~n2

p
Þffiffiffiffiffi

~n2
p

9=
;; (14)

where � and C� are free parameters, ~n is a three-

dimensional integer vector and
P0
~n

denotes the summation

without j ~nj ¼ 0. The binding energy��E1 is determined
from

� �E1 ¼ �2

mN

; (15)

where we assume

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N � �2
q

� 2mN � � �2

mN

: (16)

The systematic error is estimated from the variation of the
fit results choosing different fit ranges in the determination
of �EL and also using constant and linear fits as
alternative fit forms. We obtain the binding energies
��E1 ¼ 11:5ð1:1Þð0:6Þ MeV and 7.4(1.3)(0.6) MeV for
the 3S1 and 1S0 channels, respectively. The result for the
3S1 channel is roughly five times larger than the experi-
mental value, 2.22 MeV. Our finding of a bound state in the
1S0 channel contradicts the experimental observation.

0 4 8 12 16 20
t

-0.01

-0.005

0

0.005

0.01

0.015

1
S

0

FIG. 7 (color online). Same as Fig. 2 for the 1S0 channel.
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FIG. 8 (color online). Same as Fig. 3 for the 3S1 channel.
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FIG. 9 (color online). Same as Fig. 3 for the 1S0 channel.

TABLE IV. Same as Table III for the 3S1 and 1S0 channels.

3S1
1S0

L ��EL [MeV] Fit range ��EL [MeV] Fit range

32 12.4(2.1)(0.5) 9–14 6.2(2.4)(0.5) 10–14

40 12.2(1.9)(0.6) 10–15 8.2(4.0)(1.5) 11–15

48 11.1(1.7)(0.3) 10–14 7.3(1.7)(0.5) 10–14

64 11.7(1.2)(0.5) 9–14 7.2(1.4)(0.3) 10–14

1 11.5(1.1)(0.6) � � � 7.4(1.3)(0.6) � � �
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These features are consistent with our quenched results
with a heavy quark mass corresponding to m� ¼
0:80 GeV [2].

2. Comparison with previous studies

A number of studies have been performed for the two-
nucleon channel after the firstwork ofRef. [7]. It is therefore
instructive to summarize the results and make a comparison
with each other. TableV tabulates in chronological order the
results for��EL for the

3S1 and
1S0 channels together with

the pion massm� and the spatial extent L in physical units.
The numbers are plotted in Figs. 10 and 11 for the 3S1 and
1S0 channels, respectively, as a function of m

2
�.

The early studies in Refs. [7,8,11] employed a single
volume, and we do not observe a common feature or trend
among them. The positive values for��EL inRef. [8]mean
repulsive interaction for both channels, which is not seen in
other studies. The results for��EL in Ref. [11] is an order
of magnitude smaller compared to other groups, probably
due to significant contamination from excited states.

TABLE V. Energy shift��EL in physical units for the 3S1 and
1S0 channels together with the previous works. The values marked by

* are estimated from the scattering length in Ref. [8] employing the leading term of finite volume formula in the 1=L expansion [26]
with the nucleon mass obtained from the same ensemble in Ref. [30]. The values for Ref. [2] are taken from the results with the O1

interpolating operator.

��EL [MeV]

Ref. Quark action # Flavor m� [GeV] L [fm] 3S1
1S0

[7] Wilson 0 0.72 2.7 29.8(6.9) 14.7(4.3)

0 0.99 2.7 15.7(6.5) 10.7(4.3)

0 1.55 2.7 18.1(5.6) 12.2(3.9)

[8] Mixed (DW on Asqtad) 2þ 1 0.35 2.5 �16ð19Þ� �16ð13Þ�
2þ 1 0.49 2.5 �9:5ð6:5Þ� �15:1ð4:2Þ�
2þ 1 0.59 2.5 0:4ð2:8Þ� 0:0ð1:1Þ�

[11] Wilson 0 0.38 4.4 0.97(37) 0.68(26)

0 0.53 4.4 0.56(11) 0.509(94)

0 0.73 4.4 0.480(97) 0.400(83)

[2] Wilson-clover 0 0.80 3.1 10.2(2.2)(1.6) 6.1(2.3)(2.2)

0 0.80 6.1 9.6(2.6)(0.9) 5.2(2.6)(0.8)

0 0.80 12.3 7.8(2.1)(0.4) 4.6(2.0)(1.1)

0 0.80 1 9.1(1.1)(0.5) 5.5(1.1)(1.0)

[9] Aniso. Wilson-clover 2þ 1 0.39 2.4 1.6(2.6)(4.3) 3.9(1.7)(2.6)

[3] Aniso. Wilson-clover 2þ 1 0.39 3.0 22.3(2.3)(5.4) 10.4(2.6)(3.1)

2þ 1 0.39 3.9 14.9(2.3)(5.8) 8.3(2.2)(3.3)

2þ 1 0.39 1 11(5)(12) 7.1(5.2)(7.3)

[4] Stout Wilson-clover 2þ 1 0.81 3.4 25(3)(2) 16(3)(1)

2þ 1 0.81 4.5 21(3)(1) 11(2)(1)

2þ 1 0.81 6.7 25(3)(2) 19(3)(1)

This work Wilson-clover 2þ 1 0.51 2.9 12.4(2.1)(0.5) 6.2(2.4)(0.5)

2þ 1 0.51 3.6 12.2(1.9)(0.6) 8.2(4.0)(1.5)

2þ 1 0.51 4.3 11.1(1.7)(0.3) 7.3(1.7)(0.5)

2þ 1 0.51 5.8 11.7(1.2)(0.5) 7.2(1.4)(0.3)

2þ 1 0.51 1 11.5(1.1)(0.6) 7.4(1.3)(0.6)
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FIG. 10 (color online). m2
� dependence of �E1 for the 3S1

channel. Closed (open and cross) symbol denote the 2þ 1=3
flavor (quenched) result. The results of Refs. [2,3] and this work
are extrapolated values in the infinite volume limit. Experimental
result (star) is also presented for comparison.
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The four recent studies [2–4] have made a systematic
investigation of the spatial volume dependence. Our
quenched and 2þ 1 flavor results show qualitatively the
same feature that the binding energy for the 3S1 channel is
much larger than the experimental value and the bound
state is observed in the 1S0 channel. The 2þ 1 flavor results
from Refs. [3,4] at m� ¼ 0:39 GeV give nonzero negative
values for �EL in both channels on the � ð3:9 fmÞ3 box,
which are consistent with our results as shown in Table V.
Unfortunately, the extrapolation to the infinite spatial vol-
ume limit introduces large errors so that �E1 becomes
consistent with zero within the error bars. The most recent
study [4] worked at a heavier quark mass of m� ¼
0:81 GeV in 3-flavor QCD and found large values for the
binding energies: 25(3)(2) MeV for the 3S1 channel and
19(3)(1) MeV for the 1S0 channel [4]. While all recent

studies are consistent with a bound ground state for both
3S1 and

1S0 channels when quark masses are heavy, quan-

titative details still need to be clarified.

IV. CONCLUSION AND DISCUSSION

We have calculated the binding energies for the helium
nuclei, the deuteron and the dineutron in 2þ 1 flavor QCD
with m� ¼ 0:51 GeV and mN ¼ 1:32 GeV. The bound
states are distinguished from the attractive scattering states
by investigating the spatial volume dependence of the
energy shift �EL. In the infinite spatial volume limit we
obtain

��E1¼

8>>>>><
>>>>>:

43ð12Þð8Þ MeV for 4He;

20:3ð4:0Þð2:0Þ MeV for 3He;

11:5ð1:1Þð0:6Þ MeV for 3S1;

7:4ð1:3Þð0:6Þ MeV for 1S0:

(17)

In the present work we have discussed only the energy
shift of the nucleus from the free multinucleon state, but
there are other states we need to distinguish when the mass
number increases, e.g., the two-deuteron state in the 4He
channel. The distinction of the 4He nucleus from the
two-deuteron state is less clear than the case with the
four-nucleon state since the relative energy shift
�E1ð4HeÞ � 2�E1ð3S1Þ ¼ �19ð13Þ MeV is away from
zero in less than 1.5 standard deviations due to large
statistical error. The situation could be improved by
increasing statistics.
While the binding energy for the 4He nucleus is compa-

rable with the experimental value, those for the 3He
nucleus and the deuteron are much larger than the experi-
mental ones. Furthermore, we detect the bound state in
the1S0 channel as in the previous study with quenched

QCD, which is not observed in nature. These findings
and the enhanced binding energies at m� ¼ 0:81 GeV in
3-flavor QCD [4] tell us that a next step of primary
importance is to reduce the up-down quark mass toward
the physical values. A possible scenario in the two-nucleon
channels is as follows. The binding energy in both channels
diminishes monotonically as the up-down quark mass
decreases. At some point of the up-down quark mass the
binding energy in the 1S0 channel vanishes and the

bound state evaporates into the attractive scattering state,
while the binding energy in the 3S1 channel remains finite
up to the physical point. This is a dynamical question on
the strong interaction, and only lattice QCD could
answer it.
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FIG. 11 (color online). Same as Fig. 10 for the 1S0 channel.
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[17] M. Lüscher, Comput. Phys. Commun. 165, 199 (2005).
[18] K.-I. Ishikawa et al. (PACS-CS Collaboration), Proc. Sci.,

LAT2006 (2006) 027.
[19] I. P. Omelyan, I.M. Mryglod, and R. Folk, Comput. Phys.

Commun. 151, 272 (2003).
[20] T. Takaishi and P. de Forcrand, Phys. Rev. E 73, 036706

(2006).
[21] J. E. Beam, Phys. Rev. 158, 907 (1967).
[22] M. Bolsterli and E. Jezak, Phys. Rev. 135, B510

(1964).
[23] W. Detmold and M. J. Savage, Phys. Rev. D 82, 014511

(2010).
[24] T. Doi and M.G. Endres, arXiv:1205.0585 [Comput. Phys.

Commun. (to be published)].
[25] W. Detmold and K. Orginos, arXiv:1207.1452.
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