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We describe the computation of the amplitude A2 for a kaon to decay into two pions with isospin

I ¼ 2. The results presented in [T. Blum et al., Phys. Rev. Lett. 108, 141601 (2012)] from an analysis of

63 gluon configurations are updated to 146 configurations giving ReA2 ¼ 1:381ð46Þstatð258Þsyst10�8 GeV

and ImA2 ¼ �6:54ð46Þstatð120Þsyst10�13 GeV. ReA2 is in good agreement with the experimental result,

whereas the value of ImA2 was hitherto unknown. We are also working toward a direct computation

of the K ! ð��ÞI¼0 amplitude A0 but, within the Standard Model, our result for ImA2 can be combined

with the experimental results for ReA0, ReA2 and "0=" to give ImA0=ReA0 ¼ �1:61ð28Þ � 10�4. Our

result for ImA2 implies that the electroweak penguin (EWP) contribution to "0=" is Reð"0="ÞEWP ¼
�ð6:25� 0:44stat � 1:19systÞ � 10�4.

DOI: 10.1103/PhysRevD.86.074513 PACS numbers: 11.15.Ha, 11.30.Rd, 12.15.Ff, 12.38.Gc

I. INTRODUCTION

It was in K ! �� decays that both indirect [1] and
direct [2–5] CP violation was first discovered and a quan-
titative understanding of the origin of CP violation, both
within and beyond the Standard Model, remains one of the
principal goals of particle physics research. Lattice QCD
provides the opportunity of computing the nonperturbative
QCD effects in general and in hadronic CP-violating
processes, in particular. The evaluation of these effects in
K ! �� decays is an important element in the research
programme of the RBC-UKQCD Collaboration and in this
paper we report on the evaluation of the (complex) decay
amplitude A2, corresponding to the decay in which the two-
pion final state has isospin 2. This is the first realistic
ab initio calculation of a weak hadronic decay. Our final
result can be found in Eq. (25), which we reproduce here
for the reader’s convenience:

ReA2 ¼ 1:381ð46Þstatð258Þsyst10�8 GeV;

ImA2 ¼ �6:54ð46Þstatð120Þsyst10�13 GeV:
(1)

This is an update of the result presented recently in
Ref. [6] with greater statistics (146 configurations com-
pared to 63 in [6]). More importantly, in this paper we
present the details of the calculation and the analysis which
could not be presented in the original letter [6]. For ReA2

we find good agreement with the known experimental

value [1:479ð4Þ � 10�8 GeV obtained from Kþ decays],
whereas the value of ImA2 was previously unknown.
This is the first quantitative calculation of an amplitude

for a realistic hadronic weak decay and hence extends the
framework of lattice simulations into the important domain
of nonleptonic weak decays. To reach this point has re-
quired very significant theoretical developments and tech-
nical progress. These are discussed in the following
sections and include:
(1) the control of �� rescattering effects and finite-

volume corrections when two hadrons are present
in the final state;

(2) the use of carefully devised boundary conditions to
tune the volume so that the decay can be simulated
at physical kinematics;

(3) the development of techniques for nonperturbative
renormalization which has made it possible to cal-
culate the matrix elements of the four-quark opera-
tors in the effective Hamiltonian with good
precision and without the use of lattice perturbation
theory;

(4) the improvement of algorithms and teraflops-scale
computing which has made it possible to perform
simulations at physical quark masses.

It has therefore required a major endeavor to control all the
ingredients of the calculation to arrive at the final result.
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The systematic errors in Eq. (1) are dominated by the
simple fact that the present calculation was performed at
a single, rather large, value of the lattice spacing (a ’
0:14 fm). With the greatly enhanced computing facilities
made available to our collaboration and to others, the
methods described in this paper can now be used at other
lattice spacings to eliminate, or at least greatly reduce, the
lattice artifacts.

A major goal of our research program is to calculate
directly the amplitude A0 for K ! ð��ÞI¼0 decays, in
which the final-state pions have total isospin I ¼ 0, and
"0=", the quantity which characterizes direct CP violation
inK ! �� decays, and we reviewed the status of our work
in [7]. The evaluation of A0 is considerably more difficult
than the present calculation. First, since the two-pion state
has vacuum quantum numbers we must evaluate discon-
nected diagrams with sufficient precision. Second, in order
to obtain physical kinematics while avoiding the use of
excited states, we must investigate alternative methods of
inducing momentum in the final state without breaking
isospin. (In the present calculation we do break isospin
symmetry through the use of different boundary conditions
on the u and d quarks, but circumvent the issue of mixing
with I ¼ 0 states since the final state has no I ¼ 0 compo-
nent because of charge conservation; this is explained in
Sec. III.) Potential methods of improving the statistical
precision in the calculation of disconnected diagrams in-
clude the use of advanced propagator-generation techniques
such as all-to-all propagators or low-mode or all-mode
averaging. We are also investigating the use of G-parity
boundary conditions [8] in order to achieve physical kine-
matics for decays into I ¼ 0 two-pion states. In the mean-
time, while we are developing and implementing these
techniques for the direct evaluation of A0, within the
Standard Model we can combine our result for ImA2

with the experimental values of ReA0, ReA2 and "0=" to
determine the remaining unknown quantity ImA0, so that
the values of both the complex amplitudes A0 and A2 are
now known (see Sec. III B). We repeat however, that our
ultimate goal is to compute A0 directly, and we look for-
ward to presenting results from a realistic computation in
the future.

This indirect determination of A0 is also important in
that it determines the Oð5%Þ contribution of direct CP
violation to " [9,10]. The relevance of such precision in
tests of the Standard Model is due to the major recent
improvement in the evaluation of the BK parameter for
which recent calculations have reduced the uncertainty to
less than 3% [11] (see Sec. III B).

Since different authors use different conventions for the
amplitudes, we should state ours carefully.We defineAI (I ¼
0; 2) by

ffiffiffi
2

p
AI¼hð��ÞIjHW jK0i and the corresponding ex-

perimental results are ReA2’jA2j¼1:479ð4Þ�10�8GeV
and ReA0’jA0j¼3:320ð2Þ�10�7GeV. Expressions for
the widths for Kþ ! �þ�0, KS!�þ�� and KS!�0�0

decays in terms of the amplitudes are given in Eqs. (26),
(34), and (35) and the surrounding discussion.
The structure of the remainder of the paper is as follows.

In the next section we present the details of the simulation
and explain the properties of the ensembles which were
used. This is followed in Sec. III by a description of our
analysis together with the final results. A presentation of
the technical details of some of the components of the
analysis, including the determination of the systematic
errors are postponed to later sections. The renormalization
of the operators present in the effective weak Hamiltonian
is described in Sec. IV and the remaining sections are
devoted to a detailed discussion of the systematic errors.
Since the matrix elements were calculated on a single coarse
lattice, the corresponding artifacts are the largest component
of the systematic error and we explain how we estimate them
in Sec. V. In Sec. VI we discuss the errors due to partial
quenching and in Sec. VII we present the remainder of the
error budget. Finally in Sec. VIII we summarize and discuss
the prospects for further work.

II. DETAILS OF THE SIMULATION

In this section we start with an explanation of the dis-
crete QCD action used in our simulations (Sec. II A). We
then present the quark masses which we use and discuss the
determination of the lattice spacing (Sec. II B) and finally
in Sec. II C we discuss some technical issues concerning
the calculation of the correlation functions from which the
required matrix elements are determined.

A. Lattice action

For the quarks, we choose to use the domain wall
fermion formulation [12–14]. This is a five dimensional
description of QCD on a hypercubic grid, in which the fifth
dimension of length Ls serves to separate the left- and
right-handed fermion chiralities which appear as surface
states bound to opposite four-dimensional faces of the fifth
dimension. The elusive chiral symmetry is restored in the
limit Ls ! 1. At finite Ls the chiral symmetry is explicitly
broken as the chiral modes can propagate across the fifth
dimension. The symmetry breaking can be parametrized
by the quantity mres, the residual mass, which additively
renormalizes the bare quark masses. Its magnitude is gov-
erned by the density of eigenmodes of the 4D Hamiltonian
obtained from the transfer matrix in the fifth dimension
[15]. The contributions of the extended eigenmodes with
eigenvalues above the mobility edge (which separates the
localized low modes from the extended high modes) are
dominant at small Ls but fall exponentially as Ls is in-
creased. In modern simulations with large Ls, mres is
dominated by the density of near-zero eigenmodes; these
are associated with localized and short-lived dislocations,
or tears in the gauge fields which cause a change in the
gauge-field topology.
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We now discuss the choice of the gauge action. Until
recently, our simulations [16,17] have been performed
using the Iwasaki renormalization-group improved gauge
action, which has been shown to allow adequate gauge-
field topology change while retaining good chiral proper-
ties in Monte Carlo simulations when used in conjunction
with domain wall fermions. The lightest (unitary) pions
in these simulations had masses of about 290 MeV and
the results were extrapolated to the physical value,
m� ’ 140 MeV. In the present computation of K ! ��
decay amplitudes, we perform the simulations with suffi-
ciently light quark masses so that the pions have (almost)
their physical masses. However as the quark masses are
decreased, the pions propagate over larger distances and
they are more strongly affected by finite-volume effects;
this necessitates the use of physically larger lattices. In
order to make the simulation affordable, the large lattice is
achieved by increasing the lattice spacing a (decreasing the
inverse gauge coupling � used in the simulation).
Unfortunately, as � is lowered, the dislocations appear
more frequently and thus mres becomes large. To counter
this effect we modify the Iwasaki gauge action with a
weighting factor known as the dislocation suppressing
determinant ratio (DSDR) [18–21], allowing us to tune
the molecular dynamics force in the gauge evolution to
suppress configurations with large numbers of near-zero
modes while retaining adequate topological change. This is
discussed in more detail in Ref. [22]. For the remainder of
this paper we label this action and the corresponding
ensembles by IDSDR (representing Iwasakiþ DSDR).
The gauge action and ensembles without the DSDR cor-
rection are referred to simply by the label ‘‘Iwasaki.’’

The bare K ! ð��ÞI¼2 matrix elements needed for the
determination of A2 are calculated on the IDSDR lattices
which are large enough to contain physical pions but are
relatively coarse. As explained briefly in the following
subsection and fully in Ref. [22], a combined analysis
of the Iwasaki and IDSDR ensembles is used to determine
the lattice spacings and physical quark masses on both the
Iwasaki and IDSDR datasets. In Sec. IV we also use the
Iwasaki lattices to run the renormalized operators nonper-
turbatively from the low renormalization scales accessible
on the IDSDR lattices to 3 GeV where they can be matched

to the MS scheme using perturbation theory.

B. Parameters of the simulation

We have generated two ensembles of 2þ 1 flavor do-
main wall fermions with the IDSDR gauge action at
� ¼ 1:75 (corresponding to a�1 ¼ 1:364 GeV, see below)
and a lattice size of 323 � 64� 32, where the final number
is Ls, the length of the fifth dimension. We determine the
residual mass to be mres ¼ 0:001 843ð8Þ, approximately
equal in size to the 3.6 MeV average of the up and down
quark masses [22]. [Masses written without explicit units
are to be understood as being in lattice units, so that, for

example, mres ¼ 0:001 843ð8Þ should be read as amres ¼
0:001 843ð8Þ.] The ensembles are generatedwith a simulated
strange-quark mass of mh ¼ 0:045 and have light-quark
masses ofml ¼ 0:001 andml ¼ 0:0042, with corresponding
unitary pion masses of approximately 170 and 250 MeV,
respectively. For the determination of the lattice spacing a
and the physical bare quark masses used in the current
project, as well as for the computation of the particle
spectrum, decay constants and the kaon bag parameter BK,
we generate quark propagators with three heavy valence
masses, 0.055, 0.045 and 0.035, and four light valence quark
masses, 0.008, 0.0042, 0.001 and 0.0001. The lightest par-
tially quenched pion has a near-physical mass of approxi-
mately 140 MeV. The analysis presented in this paper is
performed using 146 configurations from the 0.001 en-
semble, each separated by 8 molecular dynamics time units,
with additional strange-quark propagators withmh ¼ 0:049
corresponding to our original estimate of the physical value
of the (bare) strange-quark mass, and light-quark propaga-
tors with a valence mass of 0.0001. The subsequent detailed
analysis with greater statistics and improved procedures
have yielded the value 0.0472(6) for the bare physical
strange-quark mass.
We obtain the lattice spacing and the two physical quark

massesmud andms usinga combined analysis of these IDSDR
ensembles and our 323 � 64� 16 and 243 � 64� 16 do-
main wall fermion configurations with the Iwasaki gauge
action at � ¼ 2:25 and � ¼ 2:13, respectively [16,17].
This involves a combined fit of the pion and kaon masses
and decay constants and the mass of the � baryon as
functions of the quark masses and lattice spacing. We use
three different ansätze for the quark-mass dependence in
order to estimate the systematic error on the chiral extrap-
olations. Two of these are obtained from next-to-leading
order (NLO) partially quenched chiral perturbation theory
with and without finite-volume corrections, and the third
assumes a simple linear mass dependence ( labeled ana-
lytic in the following). Following our 2010 analysis [17] of
the two Iwasaki lattices, we extrapolate to the continuum
limit along a family of scaling trajectories (lines of constant
physics) that are defined by constant values of m�, mK and
m�; i.e. by imposing the condition that these masses have no
lattice cutoff dependence on the scaling trajectory. The lead-
ing dependence on a of the remaining quantities is expected
to be Oða2Þ and in our fits we assume such a quadratic
dependence. Note that the coefficients of the a2 terms are
not constrained to be equal for the two different lattice
actions. From the combined chiral and continuum fits we
determine the lattice spacings and physical quark masses
required for the pion, kaon and � masses to match their
physical values, obtaining for the IDSDR ensembles an
inverse-lattice spacing of a�1¼1:364ð9ÞGeV and dimen-
sionless physical quark masses of ~ml ¼ 0:00178ð3Þ and
~ms ¼ 0:0490ð6Þ, which correspond to 3:09� 0:11 and
84:1� 2:0 MeV, respectively, when expressed in physical
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units in the MS scheme at 3 GeV. Here ~m ¼ mþmres and
the quoted errors contain both statistical and systematic
contributions estimated using the procedures developed in
Ref. [17].

The technique used to perform combined fits to ensem-
bles with different actions is explained in detail in Sec. 4 of
Ref. [22]. Here we simply summarize the main idea.
Symanzik theory implies that for domain wall fermions
with large Ls the leading lattice artifacts are of Oða2Þ and
in practice we neglect higher-order terms including those
of Oða4Þ and Oða2m2

�Þ. If we have data for some physical
quantity at more than one lattice spacing for one of the
actions then both the continuum limit and the a2 correction
for that quantity and action can be determined. In the
present case we have results for a range of physical quan-
tities [e.g. hadron masses, decay constants, BK, the
Sommer scale, but not the K ! ð��ÞI¼2 matrix elements
of course] on the Iwasaki lattices at two lattice spacings.
By comparing the results obtained with the IDSDR lattices
(at a single spacing) to those obtained with the Iwasaki
ensembles, the a2 corrections corresponding to the IDSDR
action can also be determined. The above argument shows
that there is sufficient information to determine the Oða2Þ
corrections for both actions and hence to obtain the quan-
tities in the continuum limit. In practice we determine the
coefficients of a2 for the two actions using combined
global chiral and continuum fits simultaneously to all
ensembles [22]. It is this technique which we use to set
the lattice spacings and quark masses as described in the
previous paragraph and also to guide us in estimating the
lattice artifacts in the determination of A2 as explained in
Sec. V below.

The numbers presented above were all obtained from an
analysis of the 146 configurations used below in the evalu-
ation of the K ! �� matrix elements. Reference [22] con-
tains a detailed analysis on an extended set of ensembles
(including 180 configurations for ml ¼ 0:001). The corre-
sponding values in Ref. [22] include a�1¼1:371ð8ÞGeV
for the inverse lattice spacing, ~ml ¼ 0:00176ð2Þ and
~ms ¼ 0:0486ð6Þ for the dimensionless physical quark
masses and 3:05� 0:11 and 83:6� 2:1 MeV, respectively,

for the quark masses in physical units in theMS scheme at
3 GeV.

In order to correctly propagate the correlations between
the data used in the determination of the lattice spacings and
physical quark masses with that of the present calculation of
the K ! �� matrix elements we make use of the super-
jackknife method, in which the statistical fluctuations asso-
ciated with each ensemble are maintained separately, and
the total error is determined by combining these contribu-
tions in quadrature. This prevents accidental correlations
between the statistically independent data on each of the
ensembles, and therefore improves on the bootstrap and
standard jackknife methods for combining independent
data. (The super-jackknife technique also does not require

the number of samples on each ensemble to be the same, a
limitation of the traditional jackknife.) A clear description of
the super-jacknife technique can be found in [23].

C. Evaluation of the correlation functions

We now explain some technical details concerning the
evaluation of the correlation functions from which the
matrix elements for K ! �� decays are evaluated.
Quark propagators with periodic and antiperiodic bound-
ary conditions in the time direction were computed on each
configuration with a source at t ¼ 0. They were then
combined so as to effectively double the time extent of
the lattice. Meson correlation functions formed using the
sum of the propagators with periodic and antiperiodic
boundary conditions can be interpreted as containing for-
ward propagating mesons originating at time t ¼ 0,
whereas those calculated with the difference can be inter-
preted as containing backward propagating mesons origi-
nating from a source at t ¼ 64. The purpose of this
procedure is to suppress the so called ‘‘around-the-world’’
effects. An example of such effects can be seen in the two-
pion correlation function, C��ðtÞ:

C��ðtÞ ¼ h0jJ��ðtÞJy��ð0Þj0i
¼ jh0jJ��ð0Þj��ij2e�E��t þ � � � : (2)

The term on the right-hand side of (2) corresponds to the

creation of two pions at time zero by Jy�� and their anni-
hilation by J�� at t. The corresponding functional integral,

however, also has a contribution where each of Jy��ð0Þ and
J��ðtÞ annihilate one pion and create another, so that a
single pion propagates across the entire lattice. This con-
tribution to the correlation function is independent of t, and
although it contains the small factor e�E�T , where T is the
temporal size of the lattice, it may nevertheless lead to a
loss of precision. Combining the propagators obtained with
periodic and antiperiodic boundary conditions effectively
replaces T by 2T thus suppressing this unwanted contribu-
tion. A similar effect can occur in theK ! �� correlator if
the weak operator in the effective Hamiltonian annihilates
the kaon and one pion and creates a new pion, before the
two-pion interpolating operator annihilates this pion and
creates another (see Fig. 1). Strange-quark propagators,
with periodicþ antiperiodic combinations, were generated
with sources at tK ¼ 20, 24, 28, 32, 36, 40 and 44 in order
to calculate K ! �� correlation functions with kaon
sources at these times, while the two-pion sources re-
mained at either t ¼ 0 or t ¼ 64. Thus we could achieve
time separations between the kaon and two pions of 20, 24,
28 and 32 lattice time units in two different ways, which
increased the statistics. These separations were chosen so
that the signals from the kaon and two pions did not decay
into noise before reaching the four-quark weak operator.
We end this section with an explanation of the sources

which were used for the quark propagators and hence of the
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operators which create and annihilate the mesons. For the
propagators of the u and s quarks, which have periodic
spatial boundary conditions, we use Coulomb gauge-fixed
wall sources. For the d quark, on the other hand, we impose
antiperiodic boundary conditions in some spatial directions
and use Coulomb gauge-fixed momentum wall sources of
the ‘‘cosine’’ type

sp;cosðxÞ ¼ cosðpxxÞ cosðpyyÞ cosðpzzÞ: (3)

Here the components of momentum are given by pi¼
nið�=LÞ where ni is an even or odd integer depending on
whether periodic or antiperiodic boundary conditions were
imposed on the quark field in direction i. For our lattice, the
choice n1 ¼ n2 ¼ 1 and n3 ¼ 0 (or permutations) corre-
sponds approximately to the kinematics of a physical
K ! �� decay.

As explained at the beginning of Sec III, we use the
Wigner-Eckart theorem to relate the physical amplitude A2

which we wish to determine to unphysical Kþ ! �þ�þ
matrix elements which we compute directly. When study-
ing the propagation of two �þ mesons, we use the same
cosine source for each d quark, which introduces cross
terms in correlation functions that couple to two-pion
states with nonzero total momentum. For illustration, con-
sider the case p ¼ ð�=L; 0; 0Þ so that the product of the
sources of the two d quarks is

sp;cosðx1Þsp;cosðx2Þ ¼ cos

�
�

L
x1

�
cos

�
�

L
x2

�

¼ 1

4
ðei�Lx1ei�Lx2 þ ei

�
Lx1e�i�Lx2

þ e�i�Lx1ei
�
Lx2 þ e�i�Lx1e�i�Lx2Þ: (4)

We require the two pions to have individual momenta
p1 ¼ �

L x̂ and p2 ¼ � �
L x̂ (or vice-versa), but the first and

last terms on the right-hand side of Eq. (4) couple to two-
pion states with total momentum 2 �

L and�2 �
L , respectively.

We eliminate the unwanted terms in the two-pion correla-
tion functions by using different sinks, expð�i�xi=LÞ, for
the two d quarks ensuring that they carry equal and opposite
momenta which constrain the final state to have zero total
momentum. In the K ! �� correlation functions, the kaon
has zero momentum and the sum over the spatial position of

the weak operator then ensures that the two-pion final state
also has zero total momentum.
The advantage of using the cosine sources is that it

halves the number of inversions which have to be per-
formed for the d quark. Had we used the more conventional
momentum source,

spðxÞ ¼ eip�x; (5)

we would have needed to perform two separate d-quark
inversions with momentum þp for one and �p for the
other. The cosine source eliminates one of these inversions.
In practice we only compute d-quark propagators with
antiperiodic boundary conditions in 0 or 2 spatial direc-
tions, corresponding to pions with ground-state momenta

jpj ¼ 0 and jpj ¼ ffiffiffi
2

p
�=L. As explained above, this choice

is motivated by the expectation that, with our choice of

quark masses, jpj ¼ ffiffiffi
2

p
�=L corresponds to on-shell kine-

matics, i.e. that the energy of the two-pion state is (almost)
equal to mK.
We mention one further subtlety. As explained above,

the use of antiperiodic boundary conditions in two spatial
directions for the �d quark enabled us to match the two-pion
energy with mK. It was shown in [24] that it is sufficient to
use the antiperiodic boundary conditions only on the va-
lence down antiquarks in the �þ mesons, and to use
periodic boundary conditions for the sea quarks used in
the simulations. Thus we can use the gluon configurations
already generated in which periodic boundary conditions
were imposed on all the sea quarks.

III. THE ANALYSIS

In this section we describe the evaluation of A2. While
the results presented in Eq. (25) toward the end of this
section contain our estimates of the uncertainties, we post-
pone the detailed discussion of the determination of the
systematic errors to the subsequent sections.
The generic form of the effective Hamiltonian for

K ! ð��ÞI¼2 decays is

Heff ¼ GFffiffiffi
2

p V�
usVud

X
i

CiQ
3=2
i ; (6)

where GF is the Fermi constant, Vud and Vus are Cabibbo-
Kobayashi-Maskawa-matrix elements, Vud ¼ 0:974 29,
Vus ¼ 0:2253 and the Ci are Wilson coefficient functions.
The Ci contain a dependence on � ¼ �V�

tsVtd=V
�
usVud ¼

0:001 460 6� 0:000 604 08i, as explained below.
The three four-quark operators contributing to the effec-

tive Hamiltonian for �I ¼ 3=2 decays are

Q3=2
ð27;1Þ ¼ ð�sidiÞLfð �ujujÞL�ð �djdjÞLgþð �siuiÞLð �ujdjÞL; (7)

O3=2
ð8;8Þ ¼ ð �sidiÞLfð �ujujÞR � ð �djdjÞRg þ ð �siuiÞLð �ujdjÞR; (8)

FIG. 1. An illustration of around-the-world effects in the
K ! �� correlation function. In the left-hand figure the two-
pion operator at t ¼ 64 annihilates one pion and creates another,
while the weak Hamiltonian annihilates the kaon and a pion and
creates a pion. The right-hand diagram illustrates the K ! ��
transition whose matrix element we evaluate.
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O3=2
ð8;8Þmix ¼ ð�sidjÞLfð �ujuiÞR � ð �djdiÞRg þ ð�siujÞLð �ujdiÞR;

(9)

where the superscript 3=2 denotes �I ¼ 3=2 transitions
and the subscripts denote how the operators transform
under the SUð3ÞL � SUð3ÞR chiral symmetry. i; j are color
labels which run from 1 to 3 and L;R denote left and right
[e.g. ð �sdÞLð �uuÞL ¼ ð �s��ð1� �5ÞdÞð �u��ð1� �5ÞuÞ and
ð �sdÞLð �uuÞR ¼ ð�s��ð1� �5ÞdÞð �u��ð1þ �5ÞuÞ with the
spinor labels contracted within each pair of parentheses].

In physical Kþ ! �þ�0 decays the third component of
isospin, Iz, changes by 1=2, �Iz ¼ 1=2. As proposed and
first explored in [25,26], it is particularly convenient to use
the Wigner-Eckart theorem to relate the matrix elements of
the operators in (7)–(9) between jKþi and j�þ�0i states to
those of the corresponding operators with �Iz ¼ 3=2 for
the unphysical process Kþ ! �þ�þ:

h�þ�0jQ�I¼3=2
�Iz¼1=2jKþi ¼

ffiffiffi
3

p
2

h�þ�þjQ�I¼3=2
�Iz¼3=2jKþi: (10)

On the left-hand side of Eq. (10) the operator Q�I¼3=2
�IZ¼1=2 is

one of the three operators in Eqs. (7)–(9), whereas on the

right-hand side the operators Q�I¼3=2
�IZ¼3=2 operators areffiffiffi

3
p

Qi, where i runs over the labels (27, 1), (8, 8) and
ð8; 8Þmix and

Qð27;1Þ ¼ ð�sidiÞLð �ujdjÞL; Qð8;8Þ ¼ ð �sidiÞLð �ujdjÞR;
Qð8;8Þmix ¼ ð�sidjÞLð �ujdiÞR: (11)

ffiffiffi
3

p
=2 in Eq. (10) is the Clebsch-Gordan factor and, ne-

glecting violations of isospin, Eq. (10) is exact. A2 can
therefore be determined by computing the matrix elements
of the three operators in Eq. (11) and indeed it is these three
matrix elements which we compute directly. For compact-
ness of notation we suppress the labels �I and �Iz on the
operators both in Eq. (11) and in the following.

The use of the Wigner-Eckart theorem to replace the
operators in Eqs. (7)–(9) by those in Eq. (11) leads to
very significant practical simplifications. All the quarks

participating directly in �I ¼ 3=2 decays are valence
quarks and in such cases the effects of introducing partially
twisted boundary conditions (for which the valence and sea
quarks satisfy different boundary conditions) are exponen-
tially small [24]. In particular, we assign antiperiodic
boundary conditions in some directions to the valence d
quarks, so that the corresponding components of the mo-
menta of the final-state �þ mesons are ð2nþ 1Þ�=L,
where n is an integer and L is the spatial extent of the
lattice. The volume of the lattice has been chosen so that for

pions with momenta
ffiffiffi
2

p
�=L, the energy of the two-pion

state E�� is very close to mK, the mass of the kaon, mK ’
E��, corresponding to a physical decay. (The total three-
momentum of the kaon and of the two-pion state are zero.)
The most significant simplification is that the two-pion state
is the lightest one with these boundary conditions. With
periodic boundary conditions, the lightest two-pion state is
one with each of the two pions at rest and so when comput-
ing physicalK ! �� amplitudes one is obliged to consider
excited two-pion states [27]. Moreover, for Kþ ! �þ�0

matrix elements even with antiperiodic boundary conditions
on one or more of the quark fields, the momentum of the �0

is 2n�=L with integer n, negating the advantages described
above. Finally we note that by using antiperiodic boundary
conditions one can achieve the kinematics of a physical
decay on a smaller lattice than with periodic boundary
conditions.
We now turn to the determination of the matrix ele-

ments. The pion and kaon two-point correlation functions
at zero momentum are fit to the form

CPðtÞ¼ h0jJPðtÞJyPð0Þj0i¼ jZPj2ðe�mPtþe�mPðT�tÞÞ; (12)

where T ¼ 128 is the total effective time extent of the
lattice and mP is the mass of pseudoscalar meson P. JP
and JyP are interpolating annihilation and creation operators
for the meson P and Eq. (12) defines Z� and ZK for P ¼ �
and P ¼ K, respectively. For both the pion and kaon the
final results are obtained by fitting between t ¼ 5 and
t ¼ 63. The masses extracted from these fits are super-
imposed on the effective mass plots in Figs. 2(a) and 2(b),
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FIG. 2 (color online). Effective mass plots for the (a) pion and (b) kaon. Results for m� and mK obtained from the fits of the
correlation functions to Eq. (12) are shown as the horizontal lines in each plot.
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and the numerical results are given in Table I. The effective
mass in these plots mP;eff is defined by CPðtÞ=CPðtþ 1Þ ¼
coshðmP;effðt� T=2ÞÞ= coshðmP;effðtþ 1� T=2ÞÞ.

The pions in the final state for K ! �� decays have

momentum jpj ¼ ffiffiffi
2

p
�=L and in Fig. 3 we plot the effec-

tive energy for a pion with this momentum. Since the
correlation functions become noisier when the pion has a
nonzero momentum, we now fit over the time interval
t ¼ ½5; 35� where we can neglect the contribution from
the backward propagating pion and use the form,

C�ðt; p ¼ ffiffiffi
2

p
�=LÞ ¼ jZ�ðp ¼ ffiffiffi

2
p

�=LÞj2e�E�t; (13)

where p ¼ jpj and E� is the corresponding energy.
The value E�;2 ¼ 0:173 86ð91Þ obtained from the fit

(see Table I) is nicely consistent with the (continuum)
dispersion relation for a pion with mass 0.104 21(22).
The subscript 2 in E�;2 indicates that the momentum of

the pion is
ffiffiffi
2

p
�=L, i.e. that antiperiodic boundary condi-

tions have been imposed on the d quark in two directions.
Next we consider the two-pion correlation function

which has a larger statistical error. Having suppressed the
around-the-world contributions by combining propagators
with periodic and antiperiodic boundary conditions in time
and neglecting the contributions from excited states, the
expected behavior of the two-pion correlation function is

C��ðtÞ � h0jJ��;eðtÞJy��;cð0Þj0i
¼ 1

2ntw
jZ��;ej2ðe�E��t þ e�E��ðT�tÞÞ; (14)

where the labels c and e refer to the cosine and exponential
sources discussed in Sec. II C and ntw is the number of

directions with antiperiodic boundary conditions on the d
quark. The leading around-the-world effects would mani-
fest themselves as a time-independent constant on the
right-hand side of Eq. (14).
We find it effective in reducing the statistical errors to

calculate the quotient of two-pion and single-pion correla-
tors and fit the ratio to the form

C��ðtÞ
ðC�ðtÞÞ2

’ R2e��Et; (15)

where �E ¼ ðE�� � 2E�Þ and R2 ¼ jZ��;ej2
2ntw jZ�j4 . The energy

difference �E is not equal to zero because of the repulsive
interaction between the two pions with isospin 2 in a
finite volume. The two-pion energy E�� is then given by
E�� ¼ �Eþ 2E�, and Z��;e is found from

Z��;e ¼ ð2ntw
2 ÞZ2

�R: (16)

We can use Eq. (15) for values of t which are sufficiently
large to neglect excited states and sufficiently smaller than
T=2 so that the backward propagating states (and the
around-the-world effects) can also be neglected. In prac-
tice, in order to improve the statistical precision, we fold
the correlation functions, averaging the equivalent results
at t and T � t. We calculate the ratio in Eq. (15) for p ¼ 0,
in which case Z� and E� are just the normalization factor

and pion mass found from the fit to Eq. (12) and for p¼ffiffiffi
2

p
�=L in which case Z� and E� are taken from the fit to

Eq. (13). The fit regions for the quotients are t ¼ ½5; 48� for
p ¼ 0 and [5, 22] for p ¼ ffiffiffi

2
p

�=L. Plots of the quotients at
the two values of p are shown in Fig. 4. The results for all
the meson masses and energies are presented in Table I. We
also present the results for mK � E�� to demonstrate that
our kinematics are close to being energy conserving.
The momentum k� of each pion in the two-pion state is

defined from the two-pion energy using the dispersion

relation E�� ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

� þ k2�
p

. The interactions between

the two pions lead to k� being different from 0 or
ffiffiffi
2

p
�=L.

Next we come to the evaluation of the K ! �� matrix
elements. In the calculation as described below, we place
the two-pion source at time t�� ¼ 0 (or equivalently at 64)
and vary the position of the kaon source tK. The operators
of the weak Hamiltonian are inserted between t�� and tK.
The symmetries of lattice QCD (including translation in-
variance and time reversal) allow us to translate the results
into K ! �� matrix elements.
For eachof the three operatorsQi inEq. (11),where i labels

the operator, the corresponding K ! �� matrix element
Mi � h�þ�þjQijKþi is extracted by calculating the ratios

TABLE I. Results for meson masses and energies. The subscripts 0, 2 denote p ¼ 0 and p ¼ ffiffiffi
2

p
�=L, respectively, where p ¼ jpj.

Units m� mK E�;2 E��;0 E��;2 mK � E��;2

Lattice 0.104 21(22) 0.370 66(68) 0.173 86(91) 0.210 02(43) 0.3560(23) 0.0146(23)

MeV 142.11(94) 505.5(3.4) 237.1(1.8) 286.4(1.9) 485.5(4.2) 20.0(3.1)
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FIG. 3 (color online). Effective energy plot for a pion with
momentum p ¼ ffiffiffi

2
p

�=L. The horizontal line corresponds to the
value of E� obtained from a fit to Eq. (13).
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Ci
K��ðtÞ

CKðtK � tÞC��ðtÞ
¼ Mi

ZKZ��;e

(17)

and fitting to a constant in time t. The quantity Ci
K�� is the

K ! �� correlator with the operatorQi inserted at t and the
kaon and two-pion interpolating operators placed at fixed
times tK and 0, respectively. ZK and Z��;e are determined

from the kaon and two-pion correlation functions using
Eqs. (12) and (14). For illustration, the left-hand side of
Eq. (17) is plotted in Fig. 5 for each of the three operators
for the choice tK ¼ 24. The figure demonstrates that suffi-
ciently far from the kaon and two-pion sources the data is
indeed consistent with the expected constant behavior. We
determine the matrix elements by fitting the data between
t ¼ 5 and t ¼ tK � 5, where t denotes the time distance
from the two-pion source. The results for Mi=ðZKZ��;eÞ

obtained from the fits are indicated on the plot together with
their errors.
The finite-volume matrix elements computed in the

lattice simulations Mi are related to the corresponding
infinite-volume ones Ai by the Lellouch-Lüscher factor
[27,28]:

Ai ¼
2
4 ffiffiffiffiffiffiffiffi

2ntw
p
2�q�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@�

@q�
þ @�

@q�

s 3
5 2ffiffiffiffiffiffiffiffi

2ntw
p L3=2 ffiffiffiffiffiffiffi

mK

p
E��Mi;

(18)

where the quantity in square brackets (denoted by LL in
Table III) contains the effects of the Lellouch-Lüscher
factor beyond the free-field normalization. � is the
s-wave phase shift, q� is a dimensionless quantity related
to the pion momentum k� by q� ¼ k�L=2� and � is a
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FIG. 4 (color online). The ratios C��ðtÞ=ðC�ðtÞÞ2 defined in Eq. (15) at p ¼ 0 (a) and at p ¼ ffiffiffi
2

p
�=L (b). The minimum seen in the

left-hand panel around t ¼ 52 results from the different large-time behavior of the numerator and denominator. While the denominator
decreases exponentially as t increases from 0 to 64, the numerator contains a small t-independent constant (caused by one backward
propagating pion) which lessens its decrease at large time. If examined for 0 � t � 128 the ratio shown in the left-hand panel is
symmetrical about the point t ¼ 64.
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FIG. 5 (color online). The ratios defined in Eq. (17) for p ¼ ffiffiffi
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�=L. The two-pion source is at t ¼ 0 while the kaon source is at

tK ¼ 24. Panel (a) indicates the (27, 1) operator, (b) the (8, 8) operator, and (c) the (8, 8) mix operator. The dashed line shows the error
on the fit.
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kinematic function defined in [27]. Once E�� has been
measured and q� determined, � can be calculated using the
Lüscher quantization condition [29]:

n� ¼ �ðk�Þ þ�ðq�Þ: (19)

Results for E��, k�, q� and � are presented in Table II.
Since @�=@q� can be calculated analytically the only

unknown in Eq. (18) is @�=@q�. The results for the phase
shift are plotted against k� and compared with experimen-
tal results [30,31] in the left-hand plot of Fig. 6; we see
good agreement. Near p ¼ 0 we assume that � is linear in
k� in order to calculate @�=@q� (see the right-hand plot of

Fig. 6). For p ¼ ffiffiffi
2

p
�=L we use the phenomenological

curve [32] shown in Fig. 6 to calculate the derivative of
the phase shift at the corresponding value of q�. The
derivative of the phase shift is found to be a small term
in comparison with @�=@q�. Results for @�=@q� and
@�=@q� are presented in Table III.

We perform the analysis for four separations �t between
the kaon and two-pion sources, �t ¼ 20, 24, 28 and 32.
The physical decay amplitude A2 is given in terms of the
matrix elements Ai by

A�t
2 ¼ a�3

ffiffiffi
3

p
2

GFffiffiffi
2

p VudV
�
us

X
i;j

Cið�ÞZijð�aÞA�t
j ; (20)

where we have added the label �t to indicate the separation
being used and the labels i and j run over the three
operators in Eq. (11). Ci are the Wilson coefficients, which

are generally calculated in schemes based on dimensional

regularization; we take them to be in theMS-NDR scheme
(where NDR represents nave dimensional reduction with
an anticommuting�5). The Zij are the renormalization

constants which relate the bare weak operators defined in
the lattice theory (where the lattice spacing a acts as a

cutoff) to those in the MS-NDR scheme at scale �. The
(27, 1) operator renormalizes multiplicatively, whereas the
(8, 8) and ð8; 8Þmix operators mix under renormalization.
The calculation of the Zij is described in detail in Sec. IV

and involves a nonperturbative calculation of the renor-
malization constants in regularization invariant symmetric
momentum (RI-SMOM) schemes, step-scaling to run the
results to � ¼ 3 GeV and matching perturbatively to the

MS-NDR scheme at 3 GeV. As explained in Sec. IV, four
possible choices for the intermediate RI-SMOM schemes
are considered. The results presented in Table IV are
calculated using the renormalization constants with the
intermediate scheme ðIv; IqÞ ¼ ð6q; 6qÞ (see Sec. IV). The

factor of
ffiffiffi
3

p
=2 on the right-hand side of Eq. (20) is needed

to convert from the unphysical Kþ ! �þ�þ amplitudes
back to the physical Kþ ! �þ�0 amplitudes.
Results for ReA2 and ImA2 for the four different separa-

tions�t are shown inTable IV for the (almost) physical choice

p ¼ ffiffiffi
2

p
�=L. Our final result for A2 is an error weighted

average (EWA) over the four separations, defined by

AEWA
2 ¼

P
�t A

�t
2 =ðe�tÞ2P

�t 1=ðe�tÞ2
; (21)

where e�t is the statistical error in the evaluation of A
�t
2 .

The errors in the results labeled by EWA(a) in Table IV
are due to the statistical fluctuations on the Ai calculated
using Eq. (18). In the row marked EWA(b) the first error
combines the uncertainty due to these fluctuations with the
statistical uncertainty in the value of the lattice spacing and
the second error is �Z, which arises from the statistical

TABLE II. The two-pion energy E��, k�, q� and s-wave
phase shift.

p E�� (MeV) k� (MeV) q� � (degrees)

0 286.4(1.9) 17.63(36) 0.0659(13) �0:311ð18Þffiffiffi
2

p
�=L 485.5(4.2) 196.8(2.2) 0.7350(72) �7:96ð2:07Þ
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FIG. 6 (color online). Plots of the I ¼ 2 two-pion s-wave phase shift against momentum k�. Our results at p ¼ 0 and p ¼ ffiffiffi
2

p
�=L

are denoted by the red circles and the dashed curve is the phenomenological representation from Ref. [32]. The left-hand plot is a
comparison of the calculated phase shift with experimental results [30–32]. The right-hand plot is a zoom into the small k� region,
demonstrating the approximate linear behavior of the phenomenological curve in the region of p ¼ 0. The scattering length used in the
straight (dotted) line is calculated using chiral perturbation theory [61].

LATTICE DETERMINATION OF THE . . . PHYSICAL REVIEW D 86, 074513 (2012)

074513-9



uncertainty in the evaluation of the renormalization con-
stants Zij. This is calculated using

�2
Z ¼ ½Cð27;1Þ�Zð27;1ÞAð27;1Þ�2 þ

X
i;j

½Ci�ZijAj�2; (22)

where i; j run over (8, 8) and ð8; 8Þmix and the �Z are the
statistical uncertainties in the corresponding renormaliza-
tion constants as explained in Sec. IV. The presence of the
four terms in the sum over i and j reflects the mixing of
Qð8;8Þ and Qð8;8Þmix

under renormalization. Að27;1Þ, Að8;8Þ
and Að8;8Þmix

on the right-hand side of Eq. (22) are ob-

tained from the corresponding bare matrix elements using
Eq. (18). The numerical results presented here were ob-
tained by using the statistical errors e�t in the evaluation of
A2 so that, for example,

A ð27;1Þ ¼
P

�t A
�t
ð27;1Þ=ðe�tÞ2P

�t 1=ðe�tÞ2
; (23)

and similarly for the remaining operators. We have
checked that performing the error weighted average on
each operator using the statistical error corresponding to
the operator makes only a negligible difference to the
estimate of the final errors.

For the Wilson coefficients we use the standard nota-
tion Ci ¼ zið�Þ þ �yið�Þ where, as explained above,
� ¼ �V�

tsVtd=V
�
usVud. The Wilson coefficients are calcu-

lated using the equations in [33], which uses a 10-operator
basis for the effective Hamiltonian. The equations in [33]
are based on the pioneering next-to-leading order QCD and

QED calculations from the Munich and Rome groups
[34–36]. The Wilson coefficients in the 10-operator basis
are related to the three �I ¼ 3=2 Wilson coefficients by

Cð27;1Þð�Þ ¼ C1ð�Þ þ C2ð�Þ
3

þ C9ð�Þ þ C10ð�Þ
2

;

Cð8;8Þð�Þ ¼ C7ð�Þ
2

; Cð8;8Þmix
ð�Þ ¼ C8ð�Þ

2
:

(24)

Results for zi and yi at � ¼ 3 GeV in the MS-NDR
scheme are presented in Table V. We observe that the
Wilson coefficients are sensitive to the value of �s. This

calculation is based on �ð3Þ
s ð3 GeVÞ ¼ 0:245 44 which is

found by solving the 4-loop running formula for �s [37]

with initial condition �ð5Þ
s ðMZÞ ¼ 0:1184 for MZ ¼

91:1876 MeV [38]. The superscript (n) indicates the num-
ber of flavors.
Using the procedures described above, we obtain our

final results for the complex amplitude A2:

ReA2 ¼ 1:381ð46Þstatð258Þsyst10�8 GeV;

ImA2 ¼ �6:54ð46Þstatð120Þsyst10�13 GeV:
(25)

The result for ReA2 agrees well with the experimental
value of 1:479ð4Þ � 10�8 GeV obtained from Kþ decays
and 1:573ð57Þ � 10�8 GeV obtained from KS decays (the
difference arises from the unequal u and d quark masses
and from electromagnetism, two small effects not included
in our calculation). ImA2 is unknown so that the result in
Eq. (25) provides its first direct determination (updating
the value quoted in [6]).
A detailed discussion of the determination of the sys-

tematic errors will be presented in the following sections.
As explained in Sec. II B, the statistical error was obtained
by analyzing configurations each separated by 8 molecular
dynamics time units. With the aim of reducing the corre-
lations between successive measurements, the gauge fields
were shifted by 16 lattice spacings in the time direction

TABLE III. Contributions to Lellouch-Lüscher factor. The
second and third columns provide numerical values for two of
the quantities entering the Lellouch-Lüscher factor given within
the square brackets in Eq. (18), while the fourth column gives the
value of the complete factor.

p @�=@q� @�=@q� LL

0 0.2413(90) �0:0824ð32Þ 0.9632(14)ffiffiffi
2

p
�=L 5.014(21) �0:2911ð23Þ 0.9411(71)

TABLE IV. Final results for A2. The errors on each A�t
2 ,

on EWA(a) and the first error in EWA(b) (EWA¼
errorweightedaverage) are the statistical errors only. In the
EWA(b) result the second error is that due from the uncertainty
in the evaluation of the renormalization constants as explained in
Sec. IV below.

�t ReA2 (units of 10�8 GeV) ImA2 (units of 10�13 GeV)

20 1.411(56) �6:59ð19Þ
24 1.346(64) �6:67ð22Þ
28 1.427(73) �6:28ð25Þ
32 1.295(94) �6:56ð33Þ
EWA(a) 1.381(38) �6:54ð15Þ
EWA(b) 1.381(44)(12) �6:54ð19Þð42Þ

TABLE V. Wilson coefficients at 3 GeV in the MS-NDR
scheme.

weak operator zi yi

Q1 �0:241 415 0

Q2 1.112 28 0

Q3 �0:003 924 23 0.021 109 6

Q4 0.0169 695 �0:055 873 4
Q5 �0:003 499 63 0.011 7843

Q6 0.0120 747 �0:061 023 5
Q7 0.000 094 019 8 �0:000 161 911
Q8 �0:000 104 478 0.000 652 032

Q9 0.000 027 529 0 �0:010 382 8
Q10 0.000 079 855 7 0.002 437 75

Qð27;1Þ 0.290 342 �0:003 972 52
Qð8;8Þ 4:700 99� 10�5 �8:095 55� 10�5

Qð8;8Þmix
�5:223 90� 10�5 3:260 16� 10�4
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relative to the previous configuration prior to measuring
the quark propagators. In order to check that shifting the
gauge fields is sufficient to overcome potential autocorre-
lations, we have repeated the entire analysis, including the
determination of the physical quark masses and lattice
spacings, by binning all quantities over four successive
measurements (32 molecular dynamics time units). This
is a natural choice as it matches the periodicity of the quark
propagator measurements. The effects of the binning are
completely negligible. For illustration we show in Table VI
a comparison of the results for A2 obtained with and
without the binning.

In the remainder of the section we present the results for
each of the three matrix elements which contribute to A2

(Sec. IIIA) and also deduce the value of the unknown
quantity ImA0 by combining our result for ImA2 with the
experimental values of "0=" and other quantities (Sec. III B).
In order to explain fully our conventions, we also present the
explicit expressions for A0, A2 and the partial widths for the
K ! �� decays in terms of the matrix elements.

A. Results for the matrix elements

Equation (25) contains our final results for A2 within the
Standard Model. In order to facilitate detailed comparisons
with results from future computations and to enable our
results to be used in extensions of the Standard Model for
which the Wilson coefficient functions are different, we
now present the results for the matrix elements themselves.
The results are presented for operators renormalized in the

MS-NDR scheme at a renormalization scale of 3 GeV. Our

convention is that
ffiffiffi
2

p
A2 ¼ hð��ÞI¼2

Iz¼0jHW jK0i. With this

definition jA2j ¼
ffiffi
2
3

q
jAþ0j, where Aþ0 ¼ h�þ�0jHW jKþi

and the corresponding partial width is given by

�ðKþ ! �þ�0Þ ¼ 1

8�
jAþ0j2 pþ0

m2
Kþ

; (26)

where

pþ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Kþ

4
�m2

�þ þm2
�0

2
þ ðm2

�0 �m2
�þÞ2

4m2
Kþ

vuut : (27)

1. Kþ ! �þ�þ matrix elements

We start with the results for the Kþ ! �þ�þ matrix
elements of the operators defined in Eq. (11) in terms of
which A2 is given by

A2¼GFffiffiffi
2

p VudV
�
us

ffiffiffi
3

p
2

X
i

Cið3GeVÞAMS-NDR
i ð3GeVÞ; (28)

where AMS-NDR
i ¼ h�þ�þjQijKþi and the label i runs

over (27, 1), (8, 8) and ð8; 8Þmix. The Ai take the values

AMS-NDR
ð27;1Þ ð3 GeVÞ ¼ 0:030 71ð97Þ GeV3; (29a)

AMS-NDR
ð8;8Þ ð3 GeVÞ ¼ 0:583ð33Þ GeV3; (29b)

AMS-NDR
ð8;8Þmix

ð3 GeVÞ ¼ 2:64ð15Þ GeV3: (29c)

2. Kþ !�þ�0 matrix elements

Alternatively we may express A2 in terms of the matrix
elements for the physical Kþ ! �þ�0 decay. In this case,

A2¼GFffiffiffi
2

p VudV
�
us

1ffiffiffi
3

p X
i

Cið3GeVÞA0MS-NDR
i ð3GeVÞ; (30)

where the two-pion final state is symmetrized
[ 1ffiffi

2
p ðh�þð ~pÞ�0ð� ~pÞj þ h�þð� ~pÞ�0ð ~pÞjÞ]. We find the

matrix elements to be

A0MS-NDR
ð27;1Þ ð3 GeVÞ ¼ 0:0461ð14Þ GeV3; (31a)

A0MS-NDR
ð8;8Þ ð3 GeVÞ ¼ 0:874ð49Þ GeV3; (31b)

A0MS-NDR
ð8;8Þmix

ð3 GeVÞ ¼ 3:96ð23Þ GeV3: (31c)

3. Contributions to A2 from the matrix elements

Finally we present the separate contributions to A2 in
Eq. (26) from the matrix elements of the three different
operators:

ReðA2Þð27;1Þ ¼ ð1:398� 0:044Þ10�8 GeV;

ImðA2Þð27;1Þ ¼ ð1:55� 0:36Þ10�13 GeV;

ReðA2Þð8;8Þ ¼ ð4:29� 0:24Þ10�11 GeV;

ImðA2Þð8;8Þ ¼ ð4:47� 0:25Þ10�14 GeV;

ReðA2Þð8;8Þmix
¼ ð�2:14� 0:12Þ10�10 GeV;

ImðA2Þð8;8Þmix
¼ ð�8:14� 0:47Þ10�13 GeV:

(32)

TABLE VI. Final results for ReA2 in units of 10�8 GeV and
ImA2 in units of 10�13 GeV. The table shows a comparison
between the results obtained as in Table IV (146 bins each with a
single configurations) and those with bin-size 4 (36 bins each
with 4 configurations). The errors are statistical ones only.

ReA2 ImA2

�t 146 bins 36 bins 146 bins 36 bins

20 1.411(56) 1.418(52) �6:59ð19Þ �6:55ð16Þ
24 1.345(64) 1.344(57) �6:67ð22Þ �6:60ð20Þ
28 1.427(73) 1.411(83) �6:28ð25Þ �6:23ð29Þ
32 1.295(94) 1.28(10) �6:56ð33Þ �6:58ð31Þ
EWA(a) 1.381(38) 1.386(34) �6:54ð15Þ �6:52ð14Þ
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B. Prediction for ImA0

Before describing our indirect determination of the un-
known quantity ImA0, we summarize our conventions. A0

is defined by
ffiffiffi
2

p
A0 ¼ hð��ÞI¼0

Iz¼0jHW jK0i. Defining the

amplitudes Aþ� and A00 by

Aþ� ¼ h�þ��jHW jKSi and A00 ¼ h�0�0jHW jKSi;
(33)

the corresponding partial widths are given by

�ðKS ! �þ��Þ ¼ 1

8�
jAþ�j2 pþ�

m2
KS

; (34)

�ðKS ! �0�0Þ ¼ 1

16�
jA00j2 p00

m2
KS

; (35)

where the relative momenta are given by

pþ� ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

KS
� 4m2

�þ

q
and p00 ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

KS
� 4m2

�0

q
:

(36)

Aþ� and A00 are given in terms of A0 and A2 by

Aþ� ¼
ffiffiffi
2

3

s
A2e

i�2 þ 2ffiffiffi
3

p A0e
i�0 ; (37)

A00 ¼ 2

ffiffiffi
2

3

s
A2e

i�2 � 2ffiffiffi
3

p A0e
i�0 ; (38)

where �I is the s-wave �� phase shift for isospin I. With
these definitions we now evaluate ImA0.

Having obtained A2, and recalling that ReA0 is known
from experiment, the remaining unknown quantity is ImA0.
We now determine this by combining our result for
ImA2=ReA2 from Table VII, with the experimental values of

Re

�
"0

"

�
¼ !ffiffiffi

2
p j	j

�
ImA2

ReA2

� ImA0

ReA0

�
; (39)

!, j"j and ReA0, where ! ¼ ReA2=ReA0 and

" ¼ 2
þ� þ 
00

3
where 
ij ¼ AðKL ! �i�jÞ

AðKS ! �i�jÞ : (40)

The numerical values which we use for these quantities are
given in Table VII. The systematic error on ImA2=ReA2 is
found by combining in quadrature the systematic error on

ReA2 and ImA2 with the error due to lattice artifacts ex-
cluded. We then add in quadrature a single estimate of 5%
systematic error on ImA2=ReA2 due to lattice artifacts. This
estimate is based on the Symanzik theory of improvement
which implies that the artifacts are proportional to a2 and in
the absence of any knowledge of the constant of proportion-
ality, we use the spread of the derived values of the lattice
spacing in Table VIII below as a guide. Our result and error
for ImA0=ReA0 are very insensitive to the estimate of the
artifacts in ImA2=ReA2.
Rearranging Eq. (39) we determine the unknown quan-

tity ImA0 within the Standard Model, finding

ImA0 ¼ �5:34ð62Þstatð68Þsyst � 10�11 GeV: (41)

The error on ImA0 is obtained by combining the errors on
the quantities in Table VII in quadrature. The relative
contribution to ImA0=ReA0 from ImA2=ReA2 and the
term containing the experimentally known contributions
is given by

ImA0

ReA0

¼ ImA2

ReA2

�
ffiffiffi
2

p j"j
!

"0

"
� 1:61ð19Þstatð20Þsyst � 10�4

¼ �4:42ð31Þstatð89Þsyst � 10�5 � 1:16ð18Þ � 10�4:

(42)

Thus we see that while the error on the determination of
ImA0 is dominated by the uncertainty in the experimental
value of "0=", the contribution of ImA2=ReA2 is significant
(about 25%). Of course our ultimate aim is to calculate A0

directly and we hope to be able to report on this soon; an
important step towards this goal was presented in [7].
The ratio ImA0=ReA0 allows us to determine the effect

of direct CP violation in KL ! �� on ", customarily
denoted by �" [9], ð�"Þabs ¼ 0:924� 0:006. where the
subscript ‘‘abs’’ denotes that at present only the absorptive
long-distance contribution (Im �12) is included [10] (the
error is now dominated by the experimental uncertainty in
"0="). The analogous contribution from the dispersive part
(Im M12) [10] is yet to be determined in lattice QCD, but
we describe progress toward being able to do this in [39].

TABLE VII. Experimental values of the quantities in Eq. (39)
which is used in the determination of ImA0, together with the
result for ImA2=ReA2 from this paper.

"0=" ð1:65� 0:26Þ � 10�3

! 0.04454(12)

j"j ð2:228� 0:011Þ � 10�3

ReA0 3:3201ð18Þ � 10�7 GeV
ImA2=ReA2 (lattice) �4:42ð31Þstatð89Þsyst � 10�5

TABLE VIII. Values of the inverse-lattice spacing obtained
using different physical quantities to set the scale. For the
Sommer scale r0 we use the value r0 ¼ 2:433ð50Þð18Þ�
ð13Þ GeV�1 ¼ 0:4795ð99Þð35Þð26Þ fm from our detailed analy-
sis in [22]. The two columns of results correspond to the use of
finite-volume SU(2) chiral perturbation theory and the analytic
ansatz for the light-quark-mass dependence.

Quantity ChPTFV Analytic

m� 1.364(8) GeV 1.362(11) GeV

f� 1.410(27) GeV 1.386(19) GeV

fK 1.413(29) GeV 1.392(28) GeV

r0 1.357(4) GeV 1.362(7) GeV
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Using our value of ImA2 in Eq. (25) and taking the
experimental value given above for ReA2 from Kþ decays,
we obtain the electroweak penguin (EWP) contribution
to "0=", Reð"0="ÞEWP ¼ �ð6:25� 0:44stat � 1:19systÞ �
10�4 [the experimental value for the complete Reð"0="Þ
is 1:65ð26Þ � 10�3 [38]]. Even though we have labeled this
contribution EWP, and indeed it is dominated by the matrix
element of the EWP operator Qð8;8Þmix

, the result contains

contributions from all three components to ImA2 in
Eq. (33). The (renormalization-group invariant) sum of
the contributions from the two EWP operators Qð8;8Þ and
Qð8;8Þmix

is �ð7:34� 0:52stat � 1:39systÞ � 10�4.

We end this section with a brief comparison of an earlier
result obtained using finite-energy sum rules [40], where
the contribution to "0=" from the operator Qð8;8Þmix

(renor-

malized at 2 GeV) was found to be�ð11:0� 3:6Þ � 10�4.
Our result for this particular contribution is
ð�7:88� 0:43Þ � 10�4. [Note that the contribution from

Qð8;8Þmix
by itself is not renormalization-group invariant.]

We also note that our result is consistent with expectations
based on the vacuum saturation approximation at scales
around 2 GeV [40,41]. For a comprehensive general recent
review on kaon decays we refer the reader to Ref. [42].

IV. RENORMALIZATION OF THE
LATTICE OPERATORS

We have seen in Sec. III above, that in order to determine
the physical amplitudes we need to combine the K ! ��
matrix elements with Wilson coefficient functions. The
coefficient functions are calculated in perturbation theory
and most often correspond to renormalization schemes

based on dimensional regularization, such as the MS-NDR
scheme.We therefore need to determine the matrix elements

of the weak operators also renormalized in the MS-NDR
scheme and schematically this is done as follows:

fbare lattice operatorsg !NPRfoperators renormalized in intermediate schemeðsÞ ðRI-MOM;RI-SMOMÞg
!Pert:Th:foperators renormalized inMS-NDR scheme:g

In the first step we perform nonperturbative renormalization
(NPR) on the bare lattice operators to obtain operators
defined in a renormalization schemewhich can be simulated
numerically, such as the RI-MOM or RI-SMOM schemes
discussed below [43–45]. Since we cannot perform simula-
tions in a noninteger number of space-time dimensions, the
introduction of intermediate schemes is necessary. In the
second step continuum, perturbation theory is used to relate
the operators in these intermediate schemes to theMS-NDR
scheme. In this way we avoid the use of lattice perturbation
theory, which frequently converges more slowly than its
continuum counterpart and for which it is more difficult to
calculate the higher-order corrections.

Of course the relations between the bare lattice operators

and those renormalized in the MS-NDR scheme are, in
principle, independent of the choice of the intermediate
scheme. In practice, in addition to the remaining lattice
systematic uncertainties, the fact that the matching be-
tween the operators in the intermediate schemes and

MS-NDR is performed only at a relatively low order of
perturbation theory means that there is a small dependence
on the choice of intermediate scheme. As explained in the
following subsections, we find it useful to use a number of
intermediate schemes and to use the spread of results as an
indication of the uncertainties due to the truncation of
perturbation theory.

A. The intermediate renormalization schemes

The intermediate renormalization schemes we use are
natural extensions of those we introduced in our recent

study of the BK parameter of neutral kaon mixing [46].
These in turn were based on the schemes we had intro-
duced for quark bilinear operators in which there are no
exceptional channels, i.e. no channels with small or zero
momenta [44,45]. By imposing the renormalization con-
ditions on quark and gluon Green functions with no excep-
tional channels we suppress the systematic errors due to the
breaking of chiral symmetry by infrared effects. We now
explicitly explain the schemes which we use. For all the
operators we introduce two ways of treating the vertex
renormalization and two ways of defining the wave func-
tion renormalization, leading to four renormalization
schemes for the operators themselves.
The three operators which we need to renormalize are

defined in Eq. (11). Qð27;1Þ renormalizes multiplicatively,

whereas the two electroweak penguin operators Qð8;8Þ and
Qð8;8Þmix mix under renormalization so that there is a

corresponding 2� 2 matrix of renormalization constants.
We start with a discussion of the renormalization ofQð27;1Þ
for which we compute the Green function for the process

dðp1Þ �sð�p2Þ ! �dð�p1Þuðp2Þ; (43)

with p2
1 ¼ p2

2 ¼ ðp1 � p2Þ2 ¼ �2 for a variety of mo-
menta satisfying this condition. The process is illustrated
in the diagram of Fig. 7 and � is taken to be the renormal-
ization scale.

Let �ð27;1Þij;kl
��;�� ðp1; p2Þ be the amputated Landau-gauge

Green function of the bare lattice Qð27;1Þ, where �, �, �
and � are the spinor labels corresponding to the incoming d
and �s quarks and outgoing �d and u quarks, respectively, and
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i; j; k; l are the corresponding color labels. Since Qð27;1Þ is
multiplicatively renormalizable, the relation between the
bare lattice and renormalized operator is of the form

Q
ðIv;IqÞ
ð27;1Þ ¼ Z

ðIv;IqÞ
ð27;1ÞQ

ðlattÞ
ð27;1Þ; (44)

where Iv labels the choice of the intermediate (one-particle
irreducible) vertex renormalization scheme and Iq the in-

termediate scheme for the wave function renormalization.
The index ‘‘latt’’ reminds us that the operator on the right-
hand side is the bare lattice operator. The overall renor-
malization constant is obtained by evaluating a trace of �

with a projection operator PðIvÞ

Z
ðIv;IqÞ
ð27;1Þ ¼ Z

ðIqÞ2
q

1

PðIvÞij;kl
��;�� �ð27;1Þij;kl

��;��

; (45)

where Z
ðIqÞ
q is the wave function renormalization constant

which will be discussed below. The two choices we make
for the projection operators are labeled by Iv ¼ �� or

Iv ¼ 6q [44]:

Pð��Þij;kl
��;�� ¼ 1

128NðN þ 1Þ ½ð�
�Þ��ð��Þ��

þ ð���5Þ��ð���5Þ����ij�kl; (46)

Pð6qÞij;kl
��;�� ¼ 1

32q2NðN þ 1Þ ½ð6qÞ��ð6qÞ��
þ ð6q�5Þ��ð6q�5Þ����ij�kl; (47)

where N ¼ 3 is the number of colors. These projectors are
constructed to give 1 when contracted with the tree-level

results for �ð27;1Þij;kl
��;�� .

For the wave function renormalization we use the
schemes defined as RI-SMOM and RI-SMOM�� in

Ref. [45], which for compactness of notation, we label as
Iq ¼ 6q and Iq ¼ ��, respectively. The corresponding re-

normalization constants are defined as

Zð6qÞ
q ¼ q�

12q2
Tr½��

V 6q� and Z
ð��Þ
q ¼ 1

48
Tr½��

V�
��;
(48)

where�
�
V is the amputated Green function of the conserved

vector current. This completes the description of the deter-
mination of the renormalization constant for Qð27;1Þ in the

four schemes in which each of Iq and Iv are either 6q or ��.

We now turn to the determination of the renormalization
constants of the electroweak penguin operatorsQ7 ¼ Qð8;8Þ
and Q8 ¼ Qð8;8Þmix, where the notation Q7 and Q8 is

another standard one and will prove convenient in the fol-
lowing discussion. In this case we define two projection

operators PðIvÞ
7 and PðIvÞ

8 for each scheme (Iv ¼ �� or 6q):
½Pð��Þ

7 �ij;kl��;�� ¼ ½ð��Þ��ð��Þ��
� ð���5Þ��ð���5Þ����ij�kl; (49)

½Pð��Þ
8 �ij;kl��;�� ¼ ½ð��Þ��ð��Þ��

� ð���5Þ��ð���5Þ����il�jk; (50)

½Pð6qÞ
7 �ij;kl��;�� ¼ 1

q2
½ð6qÞ��ð6qÞ�� � ð6q�5Þ��ð6q�5Þ����ij�kl;

(51)

½Pð6qÞ
8 �ij;kl��;�� ¼ 1

q2
½ð6qÞ��ð6qÞ�� � ð6q�5Þ��ð6q�5Þ����il�jk:

(52)

For each scheme, let Mab (a; b ¼ 7; 8) be the matrix ob-
tained by tracing Pb with the amputated Green function �a

over spinor and color indices:

Mab � ½Pb�ij;kl��;��½�a�ij;kl��;��; (53)

with an implicit sum over all repeated indices and we have
suppressed the index Iv ¼ �� or 6q defining the renormal-
ization scheme. The matrix of renormalization constants Zab

(a, b ¼ 7, 8) is defined by

1

Z2
q
ZM ¼ M0; (54)

where the matrix M0 is the free-field expression for M.
With a single choice of boundary conditions, the com-

ponents of momenta are quantized in steps of 2�=L,
where L is the spatial extent of the lattice. In order to study
the momentum dependence of the Green functions from
which the renormalization constants are calculated we
need to take a range of values for each component of
momentum. The presence of lattice artifacts which are
not invariant under theOð4Þ group (but which are invariant
under the lattice discrete symmetry group) leads to irreg-
ularities in the computed momentum dependence.
Examples of such contributions are terms proportional to
a2ðP�p

4
�Þ=ð

P
�p

2
�Þ. Such terms are not proportional to

a2p2 (where p2 � P
�p

2
�) and introduce a scatter in Green

functions when plotted as functions of p2, making it diffi-
cult to extrapolate the results to the continuum limit. The
use of partially twisted boundary conditions [24,47] allows

FIG. 7. Schematic diagram illustrating the process in Eq. (43).
In the diagram the arrows refer both to the flow of the indicated
flavor quantum number and also to the indicated momentum. The
spinor ð�;�; �; �Þ and color ði; j; k; lÞ labels are also indicated.
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us to scale the components of the momenta (almost) con-
tinuously, so that ðP�p

4
�Þ=ð

P
�p

2
�Þ and p2 scale in the

same way and the scatter is eliminated. This technique was
used in our recent calculation of the BK parameter [46]
where it is described in detail and it is used throughout the
present calculation of the renormalization constants.

B. Step scaling

In the preceding subsection we described how we obtain

the renormalized operators Q
ðIv;IqÞ
ð27;1Þ ð�Þ, Q

ðIv;IqÞ
ð8;8Þ ð�Þ and

Q
ðIv;IqÞ
ð8;8Þmix

ð�Þ on the coarse IDSDR lattice, where the renor-

malization scale�2 ¼ p2
1 ¼ p2

2 ¼ ðp1 � p2Þ2 [see the dis-
cussion around Eq. (43)]. In order to limit the lattice
artifacts on this coarse lattice (a ’ 0:14 fm) � should not
be very large. On the other hand if we choose � to be too
small then perturbation theory cannot be used reliably to
relate the operators in the intermediate schemes to those in

theMS-NDR scheme. The use of step scaling [48,49], and,
in particular, its recent generalization to the RI-SMOM
schemes being used in this work [46,50,51], overcomes
this last limitation as explained below. This step-scaling
approach can also be generalized to operators which mix
under renormalization [52,53] and this is applied in our
calculation.

Imagine that we use the procedure of Sec. IVA to obtain

the renormalization constants Z
ðIv;IqÞ
ð27;1Þ ð�0Þ and Z

ðIv;IqÞ
ab ð�0Þ,

(a; b ¼ 7; 8), on the IDSDR lattice for a renormalization
scale�0 which is sufficiently small that lattice artifacts can
be neglected and which is therefore likely to be outside
of the perturbative regime. We then repeat the same
renormalization procedure to obtain the corresponding
renormalization constants, and hence the corresponding
operators, on the finer Iwasaki lattices mentioned in
Sec. II. (Renormalization constants on the Iwasaki ensem-
bles were presented in [52].) The benefit of doing this is
that on the finer lattices we can run the renormalization
constants nonperturbatively from �0 to a larger scale � at
which perturbation theory can be applied. TakingQð27;1Þ as
an example, we define a step-scaling function on the finer
lattices:

�
ðIv;IqÞ
ð27;1Þ ð�;�0;aÞ¼ lim

m!0
½ZðIv;IqÞ

ð27;1Þ ð�;a;mÞðZðIv;IqÞ
ð27;1Þ ð�0;a;mÞÞ�1�;

(55)

where m is the quark mass. Since we have results at two
different lattice spacings on the finer Iwasaki lattices we
can perform the continuum extrapolation and define the
continuum step-scaling functions as

�
ðIv;IqÞ
ð27;1Þ ð�;�0Þ ¼ lim

a!0
�

ðIv;IqÞ
ð27;1Þ ð�;�0; aÞ: (56)

The step-scaling function �ð27;1Þð�;�0Þ describes the con-
tinuum nonperturbative running of the 4 quark operator

Qð27;1Þ in a given scheme. Because it does not depend on

the lattice action, we can use it to run the Z factor obtained
from the IDSDR lattice at a low scale�0 to a higher energy
� where perturbation theory is more convergent. Finally,
the operator Qð27;1Þ renormalized in the intermediate

scheme ðIv; IqÞ at a perturbative scale � is related to the

IDSDR lattice operator by

Q
ðIv;IqÞ
ð27;1Þ ð�Þ ¼ �

ðIv;IqÞ
ð27;1Þ ð�;�0ÞZðIv;IqÞ

ð27;1Þ ð�0ÞQðlattÞ
ð27;1Þ: (57)

Having obtained the operator renormalized in the inter-
mediate schemes at a perturbative renormalization scale,

we convert it to the MS-NDR scheme using one-loop
perturbation theory

QMS
ð27;1Þð�Þ ¼ S

ðIv;IqÞ!MS

ð27;1Þ ð�ÞQðIv;IqÞ
ð27;1Þ ð�Þ: (58)

The expressions for the conversion factors S
ðIv;IqÞ!MS

ð27;1Þ ð�Þ
can be found in Ref. [54]. Since these are known to Oð�sÞ
the determinations of QMS

ð27;1Þð�Þ via different intermediate

schemes ðIv; IqÞ will differ from one another at Oð�2
sÞ. The

difference of results calculated via different intermediate
schemes provides an estimate for the size of this effect.
For the electroweak operators the above equations become

2� 2matrix equations with the constantsZ
ðIv;IqÞ
ð27;1Þ replaced by

the matricesZ
ðIv;IqÞ
ab and similarly for the step-scaling factors.

C. Numerical evaluation of the
renormalization constants

We now present the numerical results for the conversion

matrices that relate our bare lattice operators, QðlattÞ
i [i ¼

ð27; 1Þ; ð8; 8Þ; ð8; 8Þmix], to those renormalized in the

MS-NDR scheme at the renormalization scale�;QMS
i ð�Þ,

QMSð�Þ ¼ SðIv;IqÞ!MSð�Þ�ðIv;IqÞð�;�0ÞZðIv;IqÞð�0ÞQðlattÞ;
(59)

� ZMS;ðlattÞ
ðIv;IqÞ ð�ÞQðlattÞ: (60)

As explained in Sec. IVB, the conversion matrix

½ZMS;ðlattÞ
ðIv;IqÞ ð�Þ�ab is a product of the three factors explicitly

exhibited in Eq. (59). We have studied the four different
intermediate schemes ðIv; IqÞ introduced in Sec. IVA in

order to estimate the uncertainty from perturbative trunca-

tion errors in the ðIv; IqÞ to MS matching factors

SðIv;IqÞ!MSð�Þ, which are known at one loop [54], and
also the uncertainty from discretization effects.
In the evaluation of BK [46], our study of the renormal-

ization of the (27,1) operator concluded that of the four
choices of ðIv; IqÞ it was the nonperturbative running

functions �ð6q;6qÞ
ð27;1Þð�;�0Þ and �ð��;��Þ

ð27;1Þ ð�;�0Þ which were
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best approximated by perturbation theory for � 	 3 GeV.
These two intermediate schemes were then chosen for the

determination of the matrix elements of QMS
ð27;1Þ and in

estimating the truncation uncertainty. In the current work,
we again find that the running functions in the ð6q; 6qÞ and
ð��; ��Þ schemes, now 3� 3 matrices, are generally well
described by perturbation theory. We therefore choose to
adopt the same procedure as in [46]: we take the results
from the ð6q; 6qÞ intermediate scheme as our central values
for ReA2 and ImA2, and use the difference between these
and the results obtained in the ð��; ��Þ scheme as an
estimate of the uncertainty.

In order to minimize discretization effects in the calcu-
lation of the Z factors on the IDSDR lattices, where a is
large and only one lattice spacing is available, we take as a
matching point the low scale �0 ¼ 1:136 GeV. We obtain

Zð��;��Þð�0Þ ¼
0:443ð1Þ 0 0

0 0:505ð1Þ �0:114ð1Þ
0 �0:022ð3Þ 0:231ð2Þ

0
BB@

1
CCA;
(61)

Zð6q;6qÞð�0Þ ¼
0:489ð1Þ 0 0

0 0:510ð2Þ �0:116ð1Þ
0 �0:077ð6Þ 0:305ð4Þ

0
BB@

1
CCA;

(62)

where the quoted errors are statistical only. Here and in the

remainder of this section we estimate and propagate the
statical errors by using 100 bootstrap samples.
The block structure of the matrices given in Eqs. (61)

and (62) is justified by the short-distance chiral symmetry
of the domain wall fermion formulation which implies that
changes in action and lattice spacing can be compensated
by multiplicative renormalization of Qð27;1Þ and mixing

between Q7 and Q8. The method described above deter-
mines the five elements of the 3� 3 matrix Z which are
expected to be nonzero and the remaining four are set
to zero because the chiral symmetry of the theory implies
that operators with different chirality do not mix under
renormalization.
The renormalization constants at �0 are converted to

the higher scale � ¼ 3 GeV using step-scaling functions
calculated on the Iwasaki lattices, extrapolated to the con-
tinuum limit. When performing the continuum extrapola-
tion, we match scales on the different lattices by
interpolating the simulated data, which are very smooth
on account of our use of twisted boundary conditions.
Twisted boundary conditions also ensure that the data lie
along a continuum trajectory, and with two Iwasaki en-
sembles we can attempt to remove Oða2Þ artifacts using a
straight-line fit. Since we have only two lattice spacings,
we choose to quote a conservative systematic error: the
difference between the results on our finest Iwasaki lattice
and those obtained by extrapolating to the continuum. In
this way we obtain

�ð��;��Þð3 GeV; �0Þ ¼
0:942ð4Þð1Þ 0 0

0 0:964ð9Þð13Þ 0:386ð20Þð79Þ
0 0:038ð23Þð17Þ 2:210ð76Þð103Þ

0
BB@

1
CCA; (63)

�ð6q;6qÞð3 GeV; �0Þ ¼
0:876ð7Þð9Þ 0 0

0 0:973ð11Þð6Þ 0:309ð16Þð67Þ
0 0:166ð38Þð50Þ 1:884ð84Þð45Þ

0
BB@

1
CCA: (64)

The first quoted errors are statistical, while the second are the systematic ones from the continuum extrapolation.

The matching to the MS-NDR scheme is performed at the scale � ¼ 3 GeV where perturbation theory is more

convergent than at the conventional scale of � ¼ 2 GeV. Using �MS
s ð3 GeVÞ ¼ 0:245 44, we obtain for the matching

factors:

Sð��;��Þ!MSð3 GeVÞ ¼
1:004 14 0 0

0 1:000 84 �0:002 53

0 �0:031 52 1:087 81

0
BB@

1
CCA; (65)

Sð6q;6qÞ!MSð3 GeVÞ ¼
0:991 12 0 0

0 1:000 84 �0:002 53

0 �0:011 99 1:029 21

0
BB@

1
CCA: (66)

Multiplying these results together and propagating the systematic errors in quadrature gives our final result:
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ZMS;ðlattÞ
ð��;��Þ ð3 GeVÞ ¼

0:419ð2Þð1Þ 0 0

0 0:479ð5Þð8Þ �0:022ð5Þð20Þ
0 �0:047ð13Þð11Þ 0:552ð19Þð28Þ

0
BB@

1
CCA; (67)

ZMS;ðlattÞ
ð6q;6qÞ ð3 GeVÞ ¼

0:424ð4Þð4Þ 0 0

0 0:472ð6Þð8Þ �0:020ð5Þð21Þ
0 �0:067ð23Þð30Þ 0:572ð28Þð20Þ

0
BB@

1
CCA: (68)

For each result, the first quoted error is statistical errors,
while the second is the systematic uncertainty due to the
continuum extrapolation in (63).

D. Is 3 GeV a sufficiently large momentum
for perturbative matching?

In the previous subsections we described how we calcu-
late the renormalization constants relating the bare lattice
operators on the IDSDR lattices to those renormalized in
the RI-SMOM schemes at a renormalization scale of
3 GeV. This calculation is entirely nonperturbative. In
order to obtain the physical amplitude A2 the matrix ele-
ments of these renormalized operators have to be combined
with the Wilson coefficient functions which are calculated
in perturbation theory, most often in schemes based on
dimensional regularization. We therefore convert our re-

sults to theMS-NDR scheme at � ¼ 3 GeV and, since we
cannot perform simulations in a noninteger number of
dimensions, this conversion has necessarily to be per-
formed using (continuum) perturbation theory. At present
we know the conversion factor to one-loop order and the
difference of the results in Eqs. (67) and (68) provides an
estimate of the systematic error due to the truncation of the
perturbative matching to one-loop order in going from the

RI-SMOM to theMS-NDR schemes. In this subsection we
investigate further whether 3 GeV is a sufficiently large
scale at which to use perturbation theory. We do this in two
ways. First we study how well the nonperturbative running
tracks perturbation theory in the vicinity of � ¼ 3 GeV.
We then check whether the infrared chiral symmetry
breaking effects are small at 3 GeV.

1. Comparing perturbative and nonpertubative running

It is instructive to start with the four plots in Fig. 8. These
represent the running of the step-scaling functions for
Qð27;1Þ, determined nonperturbatively, normalized by the

LO or NLO perturbative expressions for the four RI-
SMOM schemes considered in this paper. The ratios are
fixed to be 1 at� ¼ 3 GeV where we match perturbatively

to the MS-NDR scheme. We see that for the ð6q; 6qÞ scheme
the running is very much as expected from NLO perturba-
tion theory (and indeed LO perturbation theory) in the
vicinity of 3 GeV and this was the primary reason why
our central values for BK [which is also obtained from the

matrix element of an operator which transforms as an
SUð3ÞL � SUð3ÞR (27,1) and is related to the operator
studied here by a chiral rotation] were quoted using ð6q; 6qÞ
as the intermediate scheme [46]. The ð�; �Þ scheme shows a
reasonable agreement between the perturbative and non-
perturbative running in the vicinity of 3 GeV and we used
the results with this intermediate scheme to estimate the

truncation error of the matching to the MS-NDR scheme.
For the electroweak penguin operators, while the nu-

merical details are different, the same general features are
also present. For illustration we present the results for the
diagonal terms, which are the most important ones, in
Figs. 9 and 10 and we follow the same procedure in quoting
our central values and systematic errors. More details can
be found in Ref. [53].

2. Infrared chiral symmetry breaking effects

We initially impose the RI-SMOM renormalization con-
ditions at the relatively low scale of �0 ¼ 1:136 GeV
where we might expect that infrared effects due to the
spontaneous breaking of chiral symmetry may not be neg-
ligible, even after the quark masses are set to zero. This
does not matter however, since we do not need to introduce
perturbation theory until we have run all our results to
3 GeV. Recall that we have determined the renormalization
constants needed to relate the bare lattice operators defined
on the coarse IDSDR lattices to the RI-SMOM renormal-
ized operators completely nonperturbatively, including the
infrared effects. At 3 GeV we would expect that these
effects are very small, indeed we require this to be the
case in order later to apply perturbation theory at this scale.
To illustrate that this is indeed the case, we study the size of
the ‘‘wrong-chirality traces’’ as we now describe.
For the purposes of this discussion it is convenient to

modify the projection operators defined in Sec. IVA so that
the tree-level projections give the identity. The 5 renormal-
ization conditions imposed in Sec. IVA can be written in
the schematic form:

Pð27;1Þ�R
ð27;1Þð�Þ ¼ F and

Pj�
R
i ð�Þ ¼ Gij where i; j ¼ 7; 8: (69)

The �R are the Green functions of the operators renormal-
ized in one of the RI-SMOM schemes at the renormalization
scale � (the superscript R stands for renormalized), the
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P are the projectors as defined in Sec. IVA and the constant
F and constant 2� 2 matrix G correspond to the tree-level
values of the traces [with the normalization factor in
Eqs. (46) and (47) the constant F ¼ 1, but we leave the
value unspecified for this general discussion]. We now
modify the projectors to

P0
ð27;1Þ ¼

1

F
Pð27;1Þ and P0

j ¼ ðPG�1Þj for j ¼ 7; 8;

(70)

in terms of which the conditions (69) on the Green func-
tions read

P0
ð27;1Þ�

R
ð27;1Þð�Þ ¼ 1 and

P0
j�

R
i ð�Þ ¼ �ij where i; j ¼ 7; 8: (71)

We now introduce the 3� 3 matrix Mijð�Þ, where the

labels i; j ¼ 1; 2; 3 correspond to the three operators
(27,1), 7 and 8, respectively;

Mijð�Þ � P0
j�

R
i ð�Þ ¼

1 að�Þ bð�Þ
cð�Þ 1 0

dð�Þ 0 1

0
BB@

1
CCA: (72)

At 3 GeV, as explained above, we require the wrong-
chirality constants að3 GeVÞ, bð3 GeVÞ, cð3 GeVÞ and
dð3 GeVÞ to be small and indeed this is what we find.
For example, in our preferred ð6q; 6qÞ scheme on the 323

Iwasaki lattice in the chiral limit we obtain

M323ð3 GeVÞ ¼
1 �2ð2Þ � 10�5 2ð2Þ � 10�5

0ð2Þ � 10�5 1 0

�4ð2Þ � 10�5 0 1

0
BB@

1
CCA: (73)

FIG. 8 (color online). The running of the step-scaling function divided by the LO or NLO perturbative expression for the operator
Qð27;1Þ for the four RI-SMOM schemes considered in this paper. The ratio is set to 1 at � ¼ 3 GeV. The nonperturbative results have

been extrapolated to both the chiral and continuum limits.
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Had the wrong-chirality traces not been small, we would have expected similar infrared effects in the renormalization
conditions themselves and not been able to apply perturbation theory at this scale.

At the lower scale of �0 ¼ 1:136 GeV we expect the wrong-chirality traces to be larger and this is indeed the case,
although we find that they are actually still small. The key point here is that they are physical and therefore should be the
same for all lattices. We find

MIDSDRð1:136 GeVÞ ¼
1 �0:002ð2Þ �0:004ð2Þ

0:002ð2Þ 1 0

�0:002ð4Þ 0 1

0
BB@

1
CCA (74)

for the IDSDR lattices and

M243ð1:136 GeVÞ ¼
1 �0:001ð1Þ �0:007ð1Þ

0:001ð1Þ 1 0

�0:004ð2Þ 0 1

0
BB@

1
CCA (75)

and

M323ð1:136 GeVÞ ¼
1 0:000ð1Þ �0:006ð2Þ

0:003ð1Þ 1 0

�0:008ð3Þ 0 1

0
BB@

1
CCA (76)

for the two Iwasaki lattices. Within the errors, the results are indeed consistent with our expectations.

FIG. 9 (color online). The running of the step-scaling function divided by the LO or NLO perturbative expression for the 77 element
of the step-scaling function for the four RI-SMOM schemes considered in this paper. The ratio is set to 1 at � ¼ 3 GeV. The
nonperturbative results have been extrapolated to both the chiral and continuum limits.
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V. ESTIMATING THE ERROR DUE
TO LATTICE ARTIFACTS

We now begin a detailed examination of the systematic
uncertainties leading to the estimates in Table IX. In this
section we study the largest single contribution to the
systematic uncertainty, that due to the artifacts.

Our calculations of the K ! �� amplitudes were per-
formed at a single, rather large, value of the lattice spacing,
a�1 ¼ 1:364ð9Þ GeV. As described earlier, this value of the
lattice spacing was obtained in our standard way using the

mass of the � baryon to set the scale and the masses of

the pion and kaon to determine the physical quark masses.

With the action which we are using, all other computed

physical quantities have errors of Oða2Þ, but without a

simulation at a second lattice spacing we cannot determine

these lattice artifacts directly. In this section we describe our

indirect estimates of the Oða2Þ effects.
We use two (related) methods to estimate the artifacts. In

the first of these we imagine using quantities other thanm�

to set the scale and observe the corresponding variation

which we ascribe to artifacts. The results are presented in

Table VIII. The difference between the largest and smallest
entry in the table is about 4%. Recalling that the K ! ��
matrix elements are of dimension 3, we would estimate the
corresponding uncertainty in the amplitudes to be
10%–15%. On the other hand, it could be argued that we
do not know the physical value of r0 very well and that we
should simply impose that we obtain the same value of r0
on the Iwasaki and IDSDR lattices. This then fixes the ratio
of lattice spacings on the two ensembles. Combining this

FIG. 10 (color online). The running of the step-scaling function divided by the LO or NLO perturbative expression for the 88
element of the step-scaling function for the four RI-SMOM schemes considered in this paper. The ratio is set to 1 at � ¼ 3 GeV. The
nonperturbative results have been extrapolated to both the chiral and continuum limits.

TABLE IX. Systematic error budget for ReA2 and ImA2.

ReA2 ImA2

Lattice artifacts 15% 15%

Finite-volume corrections 6.0% 6.5%

Partial quenching 3.5% 1.7%

Renormalization 1.8% 5.6%

Unphysical kinematics 0.4% 0.8%

Derivative of the phase shift 0.97% 0.97%

Wilson coefficients 6.6% 6.6%

Total 18% 19%
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ratio with the well-determined lattice spacing on the
Iwasaki ensembles from m� leads to the IDSDR value
a�1 ¼ 1:363ð22Þ GeV, closer to those obtained from m�

and the decay constants. Although this may suggest that
the 10%–15% estimate is conservative, because of the
indirect nature of these estimates, we prefer to be conser-
vative when quoting the uncertainties.

As a second approach we set the scale from
m� as usual and study the matrix element M�S¼2 ¼
h �K0jð �s��ð1 � �5ÞdÞð�s��ð1 � �5ÞdÞjK0i on the Iwasaki
and IDSDR lattices. This matrix element gives the domi-
nant contribution to the indirect CP-violation parameter 	
and is in the same representation of the chiral symmetry as
Qð27;1Þ. We perform global chiral and continuum fits using

the form

M�S¼2 ¼ c0ð1þ cI;IDSDRa a2Þ þ cl ~ml þ chð ~mh � ~mh0Þ
þ cx ~mx þ cyð ~my � ~mh0Þ; (77)

where ~ml and ~mx are the sea and valence light-quark
masses, ~mh and ~my the corresponding strange-quark

masses and ~mh0 is the physical bare strange-quark mass.

The coefficients ca depend on the action as indicated. By
performing the global fits, cIDSDRa can be determined and
the size of the lattice artifacts can be determined. Using all
our data we find that the artifacts are 12% in the SU(2)
chiral limit and 18% at the physical quark masses. If we
restrict the data to pions with masses less than 350 MeV,
we find artifacts of 10% in the chiral limit and 14% for
physical quark masses.

Based on these calculations we estimate the uncertainty
due to the lattice artifacts as being 15%, which we combine
with the remaining uncertainties in quadrature. This esti-
mate of the discretization error includes possible artifacts
in the conversion of the renormalization constants from the
IDSDR to the Iwasaki lattices. We stress that while lattice
artifacts are the dominant source of systematic uncertainty
in the present work, they will be reliably reduced when the
calculations are repeated at a second lattice spacing.

VI. ESTIMATING THE ERROR DUE
TO PARTIAL QUENCHING

The calculations described in this paper were designed to
have almost physical kinematics, i.e. the kaon and pions
have masses which are close to their physical values. This is
achieved however, by the sea and valence quark masses
being different; the sea-quark masses are msea

l ¼ 0:001 and

msea
h ¼ 0:045 and the valence masses are mvalence

l ¼ 0:0001
andmvalence

h ¼ 0:049. Although we do not expect the depen-
dence on the sea quark to be very significant, in this section
we report on some studies to check this. We start by describ-
ing an investigation of the sea-quark-mass dependence per-
formed with the 323 Iwasaki lattices and in Sec. VIB we
report on the results obtained by reweighting msea

l from

0.001 to the valence value of 0.0001. Note that as the bare

mass decreases from 0.001 to 0.0001, ml þmres decreases
by a relatively smaller ratio, from 0.0028 to 0.0019.

A. Sea-quark-mass dependence on the
323 Iwasaki lattices

K!�� correlation functions were also computed on the
323�64, Ls¼16 Iwasaki lattices [a�1 ¼ 2:285ð29Þ GeV]
with three different light sea-quark masses msea

l ¼
0:004; 0:006; 0:008 [55,56]. For each of the sea-quark
masses, the correlation functions were calculated using
several valence masses: mvalence¼0:002;0:004;0:006;
0:008;0:025;0:03. Periodic boundary conditions were
used, so the pions have zero momentum, resulting in a
decay which does not conserve energy. For each of the
three sea-quark masses, a chiral extrapolation was per-
formed over the valence masses to determine the K!��
amplitudes corresponding to physical kaon and pion
masses (for the strange quark in the kaon this was an
interpolation). The results are summarized in Table X.
From the table we see that any dependence on the light

sea-quark mass is small, and generally within the statistical
uncertainties. As an estimate of the uncertainty we take the
standard deviation of the results obtained with the different
sea light-quark masses; 3.5% for ReðA2Þ and 1.7% for
ImðA2Þ. Although the kinematics are different from those
for the physical decay on the IDSDR lattice, we take this to
be an estimate of the error due to partial quenching. The
range of sea-quark masses on the Iwasaki lattice and the
long length of the extrapolation suggest that this may be a
conservative estimate. We do not attempt to estimate the
error due to the partial quenching of the strange quark, but
note that the deviation from unitarity in the strange-quark
mass is relatively small (msea

h ¼ 0:045 compared to

mvalence
s ¼ 0:049).

B. Reweighting the light sea quarks

The technique of reweighting allows us to change the
sea-quark masses a posteriori, i.e. after the generation of
the configurations [57], albeit at a loss of statistical preci-
sion. It is commonly used to correct for any difference
between the simulated and physical strange-quark masses,
see for example [17]. Here we reweight the light-quark
mass in order to investigate the effects of its partial
quenching.

TABLE X. The amplitude A2, computed on the Iwasaki en-
sembles, after extrapolation to physical kaon and pion masses.
The two pions in the final state are at rest (up to finite-volume
effects) and energy is not conserved in these amplitudes (see
text).

ml ¼ 0:004 ml ¼ 0:006 ml ¼ 0:008

ReðA2Þ � 108 GeV 0.697(44) 0.748(41) 0.719(38)

ImðA2Þ � 1013 GeV �14:73ð37Þ �14:99ð35Þ �15:23ð34Þ
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The reweighting is performed in 30 increments from the
simulated mass msea

l ¼ 0:001 down to a value of msea
l ¼

0:0001 which corresponds to the valence light-quark mass
and the results are shown in Fig. 11. The rightmost point in
Fig. 11(a) shows the result for ReA2 before reweighting,
while the remaining points show the results after reweight-
ing to the mass indicated on the x axis, ending withmsea

l ¼
0:0001 for the leftmost point. Similarly Fig. 11(b) shows
the effects of reweighting on ImA2. The final results after
reweighting are shown in Table XI where they are com-
pared with the results before reweighting. In this table, for
illustration of the effects of reweighting, we only quote the
statistical error from the correlation functions themselves;
we do not include the statistical errors from the determi-
nation of the lattice spacing or renormalization or any of
the systematic errors.

Examining the figures, it can be seen that, as expected,
the statistical errors on ReA2 and ImA2 grow. Table XI
shows that the real part of A2 remains unchanged whereas
the central value of the imaginary part decreases by 5.7%
which is more than the 1.7% estimated in Sec. VIAwhich
we take to be our main estimate of the error due to partial
quenching. An alternative approach would be to eliminate
the systematic error due to partial quenching by using the
reweighted values for our final results. In doing this the
systematic errors on ReA2 and ImA2 are unchanged at 18%
and 19%, respectively. Using the reweighted values, we

would obtain the following results for the complex
amplitude A2:

ReA2 ¼ 1:367ð70Þstatð246Þsyst10�8 GeV;

ImA2 ¼ �6:91ð51Þstatð131Þsyst10�13 GeV:
(78)

The results of Eq. (78) should be compared with Eq. (25),
and it is clear that the differences due to reweighting are
well within the total error.

VII. ERROR BUDGET

The sources of systematic error in the calculation of
ReA2 and ImA2 include those from lattice artifacts, finite-
volume effects, partial quenching, the uncertainty in the
nonperturbative renormalization, the unphysical kinemat-
ics used in the calculation, the determination of the deriva-
tive of the phase shift and the Wilson coefficients.
Although some of these uncertainties have been estimated
in previous sections (NPR in Sec. IV, lattice artifacts in
Sec. V and partial quenching in Sec. VI), here we summa-
rize the conclusions of Secs. IV, V, and VI and briefly
discuss the remaining sources of uncertainty before finally
combining them all into a total systematic error. The results
can be found in Table IX.

A. Lattice artifacts

The estimate of the systematic error due to lattice arti-
facts is described in Sec. V and was estimated to be 15%.
Comparing this with the other errors in Table IX, we see
that lattice artifacts are the dominant source of systematic
error. They would be very significantly reduced by repeat-
ing the calculation at a second value of the lattice spacing.

B. Finite-volume corrections

In order to estimate the systematic error due to the
finite volume of the lattice, we use SU(3) finite-volume
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1.3
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0.0001 (rw) 0.0005 0.001 (sim)
−7.5
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−6.5

−6
x 10

−13

m
l
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FIG. 11 (color online). Reweighting A2 from msea
l ¼ 0:001 to msea

l ¼ 0:0001. (a) Reweighting ReA2, (b) reweighting ImA2.

TABLE XI. A2 before and after reweighting. The quoted errors
correspond to the statistical fluctuations in the correlation func-
tions only. The statistical uncertainties in the determination of
the lattice spacing and nonperturbative renormalization have
been omitted here.

ml ¼ 0:001 ml ¼ 0:0001 (reweighted)

ReA2 1:381ð38Þ � 10�8 GeV 1:367ð65Þ � 10�8 GeV
ImA2 �6:54ð15Þ � 10�13 GeV �6:91ð23Þ � 10�13 GeV
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chiral perturbation theory, in which the loop integrals in
Feynman diagrams are replaced by discrete sums over the
allowed momenta. Expressions for the �I ¼ 3=2 K ! ��
matrix elements, Mð27;1Þ ¼ h�þ��jQð27;1ÞjK0i and

Mð8;8Þ¼h�þ��jQð8;8ÞjK0i, are known to next-to-leading

order in SU(3) chiral perturbation theory. Since in chiral
perturbation theory to leading order there is a single �I ¼
3=2 operator constructed from the Goldstone boson fields
which transforms as the (8,8) representation, the estimates
derived below are the same forQð8;8Þ andQð8;8Þmix

. There is

also a single operator at lowest order which transforms as
the (27,1) representation. We will be considering the lead-
ing order terms ( labeled by ‘‘LO’’) and leading (one-loop)
logarithmic terms ( labeled by ‘‘log’’). The LO expressions

are well known and can be found in [58,59]. ForMlog
ð27;1Þ we

use Eq. (C5) in [58], [where we have added logarithmic
terms from ðm2

K �m2
�Þ1-loop by hand as necessitated by

Eq. (25) and corrected a factor of 1=f2], and forMlog
ð8;8Þ we

use Eq. (E3) in [59].
We denote the finite-volume corrections to the logarith-

mic terms inMð27;1Þ andMð8;8Þ by�M
log
ð27;1Þ and �M

log
ð8;8Þ,

respectively. We estimate the relative size of these correc-
tions by using the pion and kaon masses in our lattice
calculation finding

�Mlog
ð27;1Þ

MLO
ð27;1Þ

¼ 0:0597 and
�Mlog

ð8;8Þ
MLO

ð8;8Þ
¼ 0:0649 (79)

if we normalize to the leading order expressions of the
matrix elements, and

�Mlog
ð27;1Þ

jMLO
ð27;1Þ þMlog

ð27;1Þj
¼ 0:0352 and

�Mlog
ð8;8Þ

jMLO
ð8;8Þ þMlog

ð8;8Þj
¼ 0:0438

(80)

if we normalize to the leading order plus leading logarith-
mic expressions. More details can be found in [56].

Evidently the leading logarithmic terms make signifi-
cant corrections to the leading order terms. To have con-
fidence that the chiral perturbation theory is converging we
should check the size of the next-to-leading-order terms,
but as these have unknown coefficients we are unable to
make a numerical estimate. We therefore make a conser-
vative estimate by taking the larger relative finite-volume
correction of Eq. (79) and conclude that the (27,1) operator
carries a 6.0% finite-volume correction and that the (8,8)
operator carries a 6.5% finite-volume correction. Since
ReA2 is dominated by the (27,1) operator and ImA2 is
dominated by the ð8; 8Þmix operator, these are the percent-
age errors due to finite-volume effects we assign to ReA2

and ImA2, respectively.

C. Partial quenching

The effects of partial quenching have been discussed in
detail in section VI. Here we simply remind the reader that
we neglect any systematic error due to partial quenching of
the heavy-quark and attribute a 3.5% error to ReA2 and a
1.7% error to ImA2 due to the partial quenching in the
light-quark sector of this calculation.

D. Uncertainties due to the renormalization

We consider two sources of systematic error from the
calculation of the renormalization constants. The first is
designed to take into account lattice artifacts of higher
order than Oða2Þ in the continuum extrapolation of the
step-scaling function using the Iwasaki lattices, as de-
scribed in Sec. IVB, and corresponds to the second error
in Eq. (67). This systematic error is estimated in the same
way that the statistical NPR error on A2 is calculated, i.e.
Eq. (22) is used, but in this case �Z denotes the systematic
errors on the Z factors. The resulting error is displayed in
Table XII and is labeled NPR-sys. We find this to be a 1.1%
effect for ReA2 and a 5.0% effect for ImA2 (see the second
row of the table).
The second source of systematic error in the renormal-

ization constants is due to the truncation error in the

perturbative matching to the MS scheme and to Oða2Þ
scaling errors since we only have one lattice spacing and
the Z factors in the different schemes need not approach
the continuum limit along the same scaling trajectory.

Following conversion to the MS scheme, the four inter-
mediate NPR schemes described in Sec. IVA should give
equivalent answers. We estimate the resulting systematic
error by considering the spread in results when A2 is
calculated in the RI-SMOMð��; ��Þ scheme and in the

RI-SMOMð6q; 6qÞ scheme.
The results for A2 in the RI-SMOMð��; ��Þ and

RI-SMOMð6q; 6qÞ schemes are presented in Table XII. We
observe a 1.4% spread for ReA2 and a 2.5% spread for
ImA2. Combining the two sources of error in quadrature,
we find a 1.8% error for ReA2 and a 5.6% error for ImA2.

E. Uncertainties due to the unphysical kinematics

When choosing the parameters of the simulation, includ-
ing the quark masses, the coupling constant and even the
volume, we aim to obtain physical kaon and pion masses
and E�� ¼ mK. Once the simulation has been performed,
we naturally find that this is not quite the case (see Table I)

TABLE XII. ReA2 and ImA2 calculated in the two different
schemes.

ReA2 � 108 GeV ImA2 � 1013 GeV

RI-SMOMð6q; 6qÞ 1:381ð46Þstatð15ÞðNPR-sysÞ �6:54ð46Þstatð33ÞðNPR-sysÞ
RI-SMOMð��; ��Þ 1:362ð44Þstatð03ÞðNPR-sysÞ �6:35ð34Þstatð42ÞðNPR-sysÞ
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and we now attempt to estimate the systematic error that
these nonphysical kinematics contribute to our calculation.

In addition to the results from the current simulation, we
have a large collection of K ! �� amplitudes calculated
on quenched lattices with a variety of light and strange-
quark masses and pion momenta. We use the observed
dependence of the amplitudes with the parameters to esti-
mate our uncertainty due to the unphysical kinematics. On
the quenched lattices we have a total of 60 values for the
K ! �� amplitudes, obtained with all combinations of
aml ¼ 0:0023; 0:0047; 0:0071, ams ¼ 0:046; 0:062; 0:078;
0:094; 0:110 and with n ¼ 0, 1, 2 and 3, where n is the
number of spatial directions in which antiperiodic bound-
ary conditions are imposed. n parametrizes the pion mo-
menta as briefly explained in Sec. II C.

The procedure for estimating the systematic error due to
nonphysical kinematics uses these quenched amplitudes,
extrapolating the results in aml and interpolating them in
ams and n, first to physical kinematics, and then to the
kinematics simulated on the IDSDR lattices. This proce-
dure is described in detail in [56], and is very similar to the
extrapolation procedure described in Sec. VIAwhen com-
puting the error due to partial quenching. The difference
here is that we can now interpolate to the correct pion
momenta. This is achieved by fitting the two-pion energy
as a function of n, and interpolating to find nphys, the value
of n which corresponds to the desired two-pion energy.
This in turn allows the decay amplitude to be interpolated
and evaluated at nphys.

For the extrapolation to physical kinematics we find
from the quenched lattices:

ReA2 ¼ 2:25� 10�8 GeV;

ImA2 ¼ �13:45� 10�13 GeV;
(81)

while the extrapolation to m�, mK and E�� simulated in
this article gives

ReA2 ¼ 2:26� 10�8 GeV;

ImA2 ¼ �13:56� 10�13 GeV:
(82)

We take the percentage differences between the two ex-
trapolations as a measure of the systematic error due to
simulating at nonphysical kinematics, and find 0.4% for
ReA2 and 0.8% for ImA2.

F. Uncertainty in the derivative of the phase shift

The derivative of the s-wave phase shift @�=�k appear-
ing in the Lellouch-Lüscher factor was found by evaluating
the derivative of the phenomenological curve at the mo-
mentum simulated in our lattice calculation. This was dis-
cussed in Sec. III and illustrated in Fig. 6. Alternatively we
could have made a crude estimate of the derivative by
taking the slope of the straight line between the phase shift
at 17.63 and 196.8 MeV. (cf. the results of Table II). We
estimate the systematic error to be 0.97%, which we find by

calculating the percentage difference between the final
results as obtained by the two different approaches. Since
the derivative of the phase shift only contributes a small
fraction to the Lellouch-Lüscher factor (see Table III) it is
not surprising that the corresponding error is negligible. We
note also that the derivative of the phase shift can be
calculated directly using the method proposed in [60].

G. Uncertainties in the evaluation
of the Wilson coefficients

The Wilson coefficients, which are calculated in pertur-
bation theory and hence are not part of our lattice compu-
tations, are a necessary ingredient in the determination of
the amplitude A2. The values presented in Table V were
calculated at NLO following the procedure outlined in [33].
In this section we estimate the systematic error due to the
truncation of perturbation theory. To this end we calculate
the Wilson coefficients to LO, following the procedure in
[33] and measure the effect this has on the final results for
ReA2 and ImA2. The LO contribution to the Wilson coef-
ficients is defined according to the following procedure:
(i) A value is chosen for the � parameter of four-flavor

QCD. In Ref. [33] a range of values from 215 to
435 MeV was used. In this paper we use the value of
328 MeV, which is close to the value corresponding
to �sðMZÞ ¼ 0:1184 [38].

(ii) In setting the initial conditions for the Wilson co-
efficients at the scale of the W mass, corrections of
Oð�Þ and Oð�sÞ are only included when they de-
pend on the top-quark mass. This also applies when
calculating the coefficients zi at the scale of the
charm mass [Eq. (VII.17) in [33] ].

(iii) In the QCD running to lower energies the one-loop
expressions for the anomalous dimension matrix
and � function are used. In the presence of elec-
tromagnetic interactions, the LO anomalous di-

mension matrix also includes the term �
4��

ð0Þ
e .

(iv) At leading order the Wilson coefficients are con-
tinuous when crossing quark-mass thresholds.

Table XIII shows how the decay amplitude varies when
the LO Wilson coefficients are used instead of the NLO
Wilson coefficients. The error in A2 due to the truncation in
the perturbative calculation of the Wilson coefficients is
very conservatively estimated by taking the difference
between the NLO result and the LO result, and calculating
this as a percentage of the LO result. We find the error to be
7.1% for ReA2 and 8.1% for ImA2.

TABLE XIII. ReðA2Þ and ImðA2Þ as calculated with LO
Wilson coefficients and NLO Wilson coefficients. The errors
quoted here represent the total statistical uncertainty.

LO NLO

ReA2 1:289ð42Þ � 10�8 GeV 1:381ð46Þ � 10�8 GeV
ImA2 �6:11ð36Þ � 10�13 GeV �6:54ð46Þ � 10�13 GeV
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VIII. SUMMARYAND CONCLUSIONS

In Ref. [6] and the present paper we have presented the
results of the first ab initio calculation of the complexK !
ð��ÞI¼2 decay amplitude A2 and our results can be found
in Eq. (1). It is very encouraging that our result for ReA2

agrees with the known experimental value and we are also
able to determine ImA2 for the first time. The calculation
was made possible by the major theoretical advances and
technical progress which has been achieved over many
years as described in the text above. Much of the important
particle physics phenomenology, including the description
of the weak interactions of the quarks in terms of matrix
elements of specified four-quark operators multiplied by
Wilson coefficients, has been understood since the 1970s,
even before the methods of lattice QCD had been invented.
However, it was only after major advances in lattice tech-
niques that this calculation has become possible. The good
control of chiral symmetry provided by the 5-dimensional
domain wall formulation, the ability to translate from
lattice to continuum normalization of operators using non-
perturbative methods and the finite-volume techniques
capable of creating the proper, interacting �� final state
with the correct energy are all essential ingredients in the
calculation presented here. In addition, improvements in
computational algorithms, and teraflops-scale computing
resources, enable us to perform the simulations with nearly
physical u and d quark masses.

The error on our result is dominated by lattice artifacts
due to the fact that the calculation was performed at a
single, rather course, lattice spacing a�1 ’ 1:4 GeV. The
most important extension of the calculation of A2 is there-
fore to repeat it at different values of �, or at least at a
second lattice spacing, so that the discretization errors can
be essentially eliminated by extrapolating to zero lattice
spacing. In addition, since the methods to compute A2 are
now well in hand, more refined calculations using a larger
lattice volume and physical light-quark masses (for the sea
quarks as well as the valence ones) should be possible.
These enhancements to the calculation reported here are
well within reach of the next generation of high perform-
ance computers and should reduce the errors on the result
for A2 by nearly an order of magnitude.

Much more challenging but of even greater interest is
the application of these methods to the calculation of the

complex I ¼ 0 amplitude A0. The calculation of both A0

and A2 from first principles will allow a direct comparison
of "0=" with the experimental result, giving new sensitivity
to the search for physics beyond the Standard Model. The
computational framework presented here will also support
the calculation of A0. However, serious obstacles must be
overcome. Much larger Monte Carlo samples will be re-
quired to remove the large statistical fluctuations remain-
ing after the contribution of the vacuum state has been
removed. The device of applying antiperiodic boundary
conditions to a single quark field used in this paper cannot
be used in the case of the I ¼ 0 �� state. More sophisti-
cated boundary conditions mixing quarks and antiquarks
and an isospin rotation, the so called G-parity boundary
conditions, must be used instead for both the valence and
the sea quarks. Exploratory studies [7] suggest that obtain-
ing adequate Monte Carlo statistics will be practical with
the next generation of high performance computers and
efforts are presently underway to develop the necessary
boundary conditions. We anticipate that a complete calcu-
lation of CP violation in K ! �� decay within the
Standard Model will be achieved before the fiftieth anni-
versary of its original discovery.
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