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2Instituto de Fı́sica y Matemática, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3,

Ciudad Universitaria, Morelia, Michoacán 58040, Mexico
3Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

4Center for Nuclear Research, Department of Physics, Kent State University, Kent, Ohio 44242, USA
5European Center for Theoretical Studies in Nuclear Physics and Related Areas (ECT*) and Fondazione Bruno Kessler,

Villa Tambosi, Strada delle Tabarelle 286, I-32123 Villazzano (TN), Italy
6LISC, Via Sommarive 18, Povo (Trento), I-38123 Italy
(Received 5 August 2012; published 17 October 2012)

We compute the full nonperturbative ghost and gluon two-point Green functions by using gauge field

configurations with Nf ¼ 2 and Nf ¼ 2þ 1þ 1 twisted-mass quark flavors. We use simulations with

several different light quark masses, heavy quark masses close to that of the strange and charm quarks, and

the lightest pseudoscalar masses ranging from 270 to 510 [MeV]. Quark flavor effects on both the gluon

and the ghost propagators are then investigated in a wide range of momenta, bridging the deep infrared

and intermediate momenta domain of QCD interactions in the presence of dynamical quarks. The ghost-

gluon vertex is also indirectly probed through a consistency requirement among the lattice data for the

gluon and ghost propagators and the ghost propagator Schwinger-Dyson equation. The effective full QCD

coupling is finally constructed, and its dependence on the presence of dynamical fermions scrutinized.
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I. INTRODUCTION

During the past few years, lattice simulations have con-
siderably improved our understanding of the infrared (IR)
sector of non-Abelian Yang-Mills theories. In particular,
quenched Landau gauge simulations [1,2], performed on
lattices with large volumes, have unequivocally demon-
strated that the gluon propagator saturates in the (deep) IR
region. This is true for the space-time dimensions d ¼ 3 as
well as 4, irrespectively of the number of colors NC of the
gauge group SUðNCÞ under consideration. At the same
time, the ghost dressing function effectively acquires its
tree-level behavior, with the functional form of the propa-
gator being �1=q2.

Within the continuum formulation of the theory, these
lattice results are in agreement with the solutions of
the corresponding all-order Schwinger-Dyson equations
(SDEs) [3,4] and exact renormalization group (RG) equa-
tions [5]. Other approaches such as the so-called refined
Gribov-Zwanziger formalism [6] also converge to the
same conclusions. This has caused a paradigmatic shift
among practitioners: the gluon is now thought to acquire
a momentum-dependent mass mðq2Þ whose magnitude
can be large at IR momenta, but vanishes with increasing
spacelike momenta (i.e., q2 � �2

QCD), thereby maintain-

ing full accord with perturbative QCD. Gluon confinement
is then realized, as it is customarily done in the case of
quarks, through the violation of reflection positivity
(signaled by the presence of an inflection point of the
propagator scalar cofactor �ðq2Þ) instead of achieving an
area law for a Wilson loop or a linearly rising potential
(criteria which are irrelevant to the question of light-quark

confinement [7]), or satisfying ad hoc criteria involving
the ghost sector (which, as already pointed out above,
completely decouples in this regime).
The extension of these quenched lattice results to full

QCD, i.e., to a non-Abelian SUð3Þ theory with the inclu-
sion of dynamical quarks, has not been extensively pur-
sued, neither in the continuum nor on the lattice. In the
former case, an analysis of the effects on the gluon propa-
gator due to dynamical quarks has recently been reported in
Ref. [8] within the so-called pinch technique-background
fieldmethod (PT-BFM) truncation scheme [9] (for a similar
analysis in the context of the IR divergent ‘scaling’ solu-
tions see Ref. [10]). Earlier related endeavours on the
lattice can be traced back to Ref. [11] where an Oða2Þ
Symanzik-improved action with 2þ 1 staggered fermion
flavors was employed, and Ref. [12] where a tadpole-
improved gauge action with two dynamical overlap fermi-
ons was used instead. However, an independent affirmation
of these results by implementing different lattice actions1

as well as their extension for different numbers of flavors,
has been a pending issue since then.
This article provides a comprehensive quantitative study

of the aforementioned Green functions which incorporate
the effects stemming from the presence of dynamical
quarks. To this end, we compute the gluon and ghost
two-point Green functions from the gauge configurations
generated by the ETM collaboration [14,15] for the cases

1Some preliminary results obtained from simulations with
large lattice sizes (far from the continuum limit) and Nf ¼ 2
Wilson-Clover fermions have also been reported in Ref. [13].
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of (i) two light degenerate quarks (Nf ¼ 2) and (ii) two

light and two heavy2 (Nf ¼ 2þ 1þ 1) mass-twisted

lattice flavors [16]. Furthermore, we apply our lattice
results to carry out an indirect study of the ghost-gluon
form factor (as done for quenched lattice data in Ref. [17]),
by employing a hybrid approach where the solutions of the
ghost SDE are studied using the gluon propagator deter-
mined in our simulations as an input. Consequently, the
natural requirement to reproduce the lattice ghost dressing
function data from the corresponding SDE solution will pin
down the ghost-gluon vertex form factor, which will be
shown to deviate considerably from its tree-level value.
The constructed SDE solutions then allow us to extrapolate
the lattice ghost data down to the vanishing momentum
region and obtain reliable information on the saturation
point of both the ghost dressing function as well as of the
so-called Kugo-Ojima parameter [18]. Finally, the QCD
effective charge, defined in Ref. [19], is computed by
properly combining the gluon propagator and the ghost
dressing function with the lattice estimate of the coupling
in the so-called Taylor scheme (e.g., see Ref. [20]) at a
given (large enough) momentum.

The main results of this article can be summarized as
follows.

(i) The effect of the presence of dynamical quarks on
the gluon propagator � is twofold: a suppression of
both the swelling region at intermediate momenta
and the saturation value in the deep IR (which can be
interpreted as the gluon becoming more massive in
the presence of quarks). In addition, one observes
that the more light flavors there are, the bigger the
effect is, which is in accordance with what we would
naturally expect. Light virtual quarks can be copi-
ously produced, thus screening the interaction and
suppressing the very same mechanism which trig-
gers gluon mass generation. As the fermion mass
is increased (at a fixed flavor number) the effect
gets smaller, since the heavier the fermions, the
lesser is the statistical likelihood of their pair pro-
duction. At a sufficiently large value of their mass,
they essentially decouple and the gluon mass gen-
eration is practically insensitive to their presence.
With respect to this point it should be noticed that
our results turn out to be in agreement with the SDE
study reported in Ref. [8] confirming at the same
time the general trend reported in the earlier lattice
studies of Refs. [11–13].

(ii) On the other hand, the effect on the ghost dressing
function F is much milder and is diametrically op-
posed to the one encountered for the gluon case, i.e.,
it consists in a small increase of the saturation point.

This result is also in harmony with what one would
intuitively anticipate. In the SDE for the ghost, the
quark propagator does not enter directly, but only
through the gluon propagator or via higher loop
corrections to the gluon-ghost vertex. Therefore, it
is natural to expect the influence of dynamical
quarks to be less pronounced for the ghosts.

(iii) When the gluon propagator obtained is used as an
input in the ghost SDE, one finds that the require-
ment for the SDE solution to match the ghost
propagator lattice data naturally provides a strin-
gent check on the ghost-gluon vertex; specifically,
this exercise will show that this vertex differs sig-
nificantly from its tree-level value.

(iv) Finally, when all the results are used to form the
RG invariant combination ��F2 eventually lead-
ing to the QCD effective charge, we observe that,
although obviously modifying the ultraviolet (UV)
parameters controlling the running of the coupling
and its magnitude, the number of fermions flavors
does not affect the IR behavior of this quantity.

The paper is organized as follows: Sec. II provides the
reader with some of the technical details of the lattice setup
used for the computation of the relevant gluon and ghost
Green functions. Next, in Sec. III, we present the results of
the simulations, emphasizing the differences with respect
to the quenched results; volume artifacts are also addressed
in some detail. The ghost SDE is then solved in Sec. IV, and
the effective coupling evaluated in Sec. V. Finally, we
provide the conclusions in Sec. VI.

II. GENERALITIES

The following section is a reminder of how the ghost and
gluon propagators are computed from the lattice simula-
tions of gauge fields for light and heavy mass-twisted
lattice flavors. It should be noticed that these propagators
have been obtained (but not presented) earlier, as a by-
product of the computation of the running coupling in
the momentum (MOM) subtraction Taylor scheme [21].
These references, which the interested reader is referred to,
also contain relevant details concerning lattice actions,
setups and the treatment of artifacts.
In our simulations, the lattice fermion action for the

doublet of light degenerate quarks is given by [22]

Sl ¼ a4
X
x

��lðxÞðDW½U� þm0;l þ i�l�5�3Þ�lðxÞ; (2.1)

whereas, for the heavy doublet, we employ

Sh¼a4
X
x

��hðxÞðDW½U�þm0;hþ i���5�1þ���3Þ�hðxÞ;

(2.2)

where DW½U� stands for the standard massless Wilson
Dirac operator. In the gauge sector, the tree-level

2It should be also noticed that these 2þ 1þ 1 configurations
provide a realistic simulation of QCD below the bottom quark
mass threshold, mainly at the momentum scales which we
compute the Green functions for.
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Symanzik improved gauge action [23] is applied for
Nf ¼ 2 and the Iwasaki improved action [24] for

Nf ¼ 2þ 1þ 1. In addition to the plaquette term U1�1
x;�;�,

this formulation of the action also requires including rect-
angular (1� 2) Wilson loops U1�2

x;�;�. For instance, in the

tree-level Symanzik case, the action reads

Sg ¼ 	

3

X
x

8><
>:b0

X4
�;�¼1
1��<�

½1� ReTrðU1�1
x;�;�Þ�

þ b1
X4
�;�¼1
���

½1� ReTrðU1�2
x;�;�Þ�

9=
;; (2.3)

where	 � 6=g20, g0 is the bare lattice coupling and one sets
b1 ¼ �1=12 and b0 ¼ 1� 8b1 as dictated by the require-
ment of continuum limit normalization. Configurations of
the gauge fields generated by the above actions are next
gauge fixed to the (minimal) Landau gauge. This is done
through the minimization of the following functional
[of the SUð3Þ matrices U�ðxÞ]

FU½g� ¼ Re

(X
x

X
�

Tr

"
1� 1

N
gðxÞU�ðxÞgyðxþ�Þ

#)
;

(2.4)

with respect to the gauge group element g.
To get as close as possible to the global minimum, we

apply a combination of an over-relaxation algorithm and
Fourier acceleration, considering the gauge to be fixed
when the condition j@�A�j2 < 10�11 is fulfilled and the

spatial integral of A0 is constant in time to better than 10�6.
Evidently, this procedure cannot avoid the possibility that
lattice Gribov copies are present in the ensemble of gauge
fixed configurations. However, extensive literature in the
quenched case (see for example Ref. [2]) shows that such
copies do not seriously affect the qualitative and quantita-
tive behavior of the Green functions in question. Given also
the relative large physical volumes simulated, we will
proceed under the working assumption that this feature
survives unquenching, as was also verified in Ref. [13].

After the lattice configurations have been projected onto
the Landau gauge, one can start calculating the Green
functions of interest.

To begin with, we consider the gluon propagator. The
gauge field is defined as

A�ðxþ �̂=2Þ ¼ U�ðxÞ �Uy
�ðxÞ

2iag0
� 1

3
Tr

U�ðxÞ �Uy
�ðxÞ

2iag0
;

(2.5)

with �̂ indicating the unit lattice vector in the � direction.
The two-point gluon Green function is then computed
in momentum space through the following Monte Carlo
average

�ab
��ðqÞ ¼ hAa

�ðqÞAb
�ð�qÞi ¼ �ab

�
��� �

q�q�

q2

�
�ðq2Þ;

(2.6)

with

Aa
�ðqÞ ¼ 1

2
Tr
X
x

A�ðxþ �̂=2Þ exp½iq � ðxþ �̂=2Þ�
a:

(2.7)

In the formula above 
a are the Gell-Mann matrices and
the trace is evaluated in color space.
The Landau gauge ghost propagator can also be com-

puted in terms of Monte Carlo averages of the inverse of
the Faddeev-Popov operator, i.e.,

Fabðq2Þ ¼ 1

V

*X
x;y

exp½iq � ðx� yÞ�ðM�1Þabxy
+

¼ �ab Fðq2Þ
q2

; (2.8)

with M written as a lattice divergence

MðUÞ ¼ � 1

N
r � ~DðUÞ; (2.9)

and the operator ~D acting on an arbitrary element of the Lie
algebra � according to

~DðUÞ�ðxÞ ¼ 1

2
½U�ðxÞ�ðxþ�Þ � �ðxÞU�ðxÞ

þ �ðxþ�ÞUy
� �Uy

�ðxÞ�ðxÞ�: (2.10)

More details on the lattice procedure for the inversion of
the Faddeev-Popov operator can be found in Ref. [25].
Next, if we indicate with � the regularization cutoff

(e.g., � � a�1ð	Þ if one specializes to lattice regulariza-
tion), one can obtain the renormalized gluon propagator
and ghost dressing function as

�Rðq2; �2Þ ¼ lim
�!1

Z�1
3 ð�2;�2Þ�ðq2;�2Þ;

FRðq2; �2Þ ¼ lim
�!1

~Z�1
3 ð�2;�2ÞFðq2;�2Þ;

(2.11)

where one imposes the standard MOM renormalization
conditions

�Rð�2; �2Þ ¼ 1=�2; FRð�2; �2Þ ¼ 1: (2.12)

When unnecessary, we will refrain from explicitly indicat-
ing the renormalization point dependence of the various
renormalized quantities.
We conclude this section by commenting briefly on the

crucial role played by the so-called Hð4Þ-extrapolation
procedure [26], which have been used to correct the data
for discretization artifacts (otherwise plaguing the reliable
determination of � and F) due to the breaking of the Oð4Þ
rotational invariance down to the Hð4Þ isometry group.
Specifically, let us observe that the gluon and ghost
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dressing functions (q2� and F) are dimensionless correla-
tion functions, and therefore general dimensional analysis
shows that they must depend on the (dimensionless) lattice
momentum aq�, where

q� ¼ 2�n�

N�a
; n� ¼ 0; 1; . . . ; N�; (2.13)

N� being the number of lattice sites in the � direction

(in our case, Nx ¼ Ny ¼ Nz ¼ Nt=2). However, if one

considers a dimensionless correlator Q evaluated on the
lattice, since Oð4Þ is broken down to Hð4Þ, one has

Qlatt

�
a2q2;a2

q½4�

q2
;���

�

¼Qlattða2q2Þþ @Qlatt

@
�
a2 q

½4�
q2

�
�����������a2q

½4�
q2

¼0

a2
q½4�

q2
þ��� ; (2.14)

where q½4� ¼ P
�q

4
� is the first Hð4Þ invariant (and

the only one relevant in the ensuing analysis). The
Hð4Þ-extrapolation procedure is thought to account prop-
erly for the breaking ofOð4Þ down toHð4Þ and thus recover
the continuum limit Oð4Þ invariant result by means of the
following prescription: one first averages over any combi-
nation of momenta being invariant under Hð4Þ (a so-called
Hð4Þ orbit). Next, one extrapolates the results towards the
continuum limit (where the effect of a2q½4� must vanish) by
applying Eq. (2.14) to all the orbits sharing the same value
of q2. The only assumption employed is that the slope
coefficient in Eq. (2.14) depends smoothly on a2q2.

III. SIMULATION RESULTS

In this section we describe the outcome of our lattice
simulations. The parameters used are reported in Table I.
The physical scale, i.e., the lattice size at any bare coupling
	, has been fixed by the ETM collaboration through chiral
fits to lattice pseudoscalar masses and decay constants. At
the physical point, these are required to take on the values
of f� andm� provided by experiments. The bare untwisted
mass is tuned to its critical value by setting the so-called
untwisted partially conserved axial current mass to zero, so

that the twisted-mass fermions are at maximal twist. The
renormalized running masses for light and heavy quarks
are obtained from the bare twisted mass as

�u;dðq0Þ ¼ a�l

að	ÞZPðq0Þ ;

�c=sðq0Þ ¼ 1

að	ÞZPðq0Þ
�
a�� 	 ZSðq0Þ

ZPðq0Þ a��

�
;

(3.1)

where q0 is the renormalization scale. The determination
of the nonperturbative renormalization constants, in
particular ZP and ZS, is the subject of an exhaustive
computation program within the framework of the ETM
collaboration (see for instance Ref. [27] for the Nf ¼ 2

case and Refs. [28,29] which contain some preliminary
results for the Nf ¼ 2þ 1þ 1 case). The degenerate light

quark masses we used for the simulations (Table I), range
from 20 to 50 [MeV], while the strange quark is roughly set

to 95 [MeV] and the heavy charm to 1.51 [GeV] (in MS at
q0 ¼ 2 ½GeV�). The lightest pseudoscalar masses for the
simulations of Table I range approximately from 270 to
510 [MeV]. The biggest volume simulated corresponds to
an asymmetrical box of roughly 33 � 6 ½fm4�.
As previously mentioned, the MOM prescription (2.11)

is to be applied if one wants to obtain the renormalized
gluon and ghost propagators, which are the object of
interest in the present work. Though they play a marginal
role for our purposes, these constants have been computed
at the subtraction point � ¼ 4:3 GeV and, for the sake of
completeness, collected in Table II.

A. Gluon sector

The results obtained for the gluon propagator and
dressing function for the cases of two light quarks and
two light plus two heavy quarks are plotted3 in Fig. 1. As
far as the gluon propagator is concerned (top panel) one
can clearly see the IR flattening typical of the massive
solutions. However, when compared to the quenched case
(shown for reference by the diamond-shaped gray data
points), the propagator shows a less pronounced swelling
at intermediate momenta and a lower freezing out value.

TABLE I. Lattice setup parameters for the ensembles we used
in this paper: crit is the critical value for the standard hopping
parameter for the bare untwisted mass; �l stands for the twisted
mass for the two degenerated light quarks, while �� and ��

define the heavy quarks twisted masses; and the last column
indicates the number of gauge field configurations we used.

	 crit a�l a�� a�� ðL=aÞ3 � T=a Configurations

3.90 0.161 856 0.004 243 � 64 50

4.20 0.154 073 0.002 483 � 96 50

1.95 0.161 240 0.0035 0.135 0.170 483 � 96 40

1.90 0.163 270 0.0040 0.150 0.190 323 � 64 50

TABLE II. MOM renormalization constants for ghost and
gluon propagators computed at the subtraction point � ¼
4:3 GeV for the lattice parameters corresponding to the four
ensembles described in Table I and used in this work.

	 [Nf]

1.90

[2þ 1þ 1]
1.95

[2þ 1þ 1]
3.90

[2]

4.05

[2]

Z3ðq0¼4:3GeVÞ 0.693(2) 0.709(2) 1.295(1) 1.341(3)
~Z3ðq0¼4:3GeVÞ 1.345(6) 1.38(2) 1.36(1) 1.37(1)

3If not stated otherwise we will be setting the renormalization
point to be � ¼ 4:3 GeV
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To check the dependence of this latter effect on the
lattice volume, we plot in Fig. 2 the value of �Rð0Þ as a
function of the inverse of the volume. Though we do not
have enough simulations on large volume lattices to
attempt any continuum extrapolation, it is evident that
residual volume effects are expected to be small when the
appropriate simulations (i.e., 	 ¼ 4:20 for Nf ¼ 2 and

both 	 ¼ 1:95 and 	 ¼ 1:90 for Nf ¼ 2þ 1þ 1) are

considered. Furthermore, apart from the zero-momentum
gluon propagator, the results for our two simulations in both
cases appear clearly superimposed in the plots of Fig. 1,
indicating that volume effects are indeed under control.

In addition, the quenched simulation can be viewed as
an unquenched counterpart in the limit of infinitely mas-
sive fermions, and the Nf ¼ 2 results as the limit of the

Nf ¼ 2þ 1þ 1 case in the infinite mass limit of the heavy

sector. Thus, one can unambiguously conclude that the
presence of dynamical fermions suppresses the IR satura-
tion point, and renders the gluon heavier. Also notice
that the suppression tends to subside as the dynamical
fermion mass increases. The decoupling of heavy fermions
has been explicitly shown in the continuum through the
SDE analysis of Ref. [8], where it was found that the
gluon propagator results for Nf ¼ 2þ 1 approach those

for Nf ¼ 2 as the mass of the heavy flavor is increased

(see Fig. 17 of Ref. [8]).
Finally, the concave shape of the propagator ensures the

violation of reflection positivity, thus implying that the
unquenched gluon is also a confined excitation.
The behavior of the dressing function (bottom panel) is

similar. In this case, the greater the number of dynamical
quarks, the less pronounced the peak at the intermediate
momenta. Analogously, the heavier the quark, the less
the effect it entails on the overall shape of the dressing
function. These results are in agreement with the SDE
study of Ref. [8], as well as with the lattice findings of
Refs. [11–13].

B. Ghost sector

The results for the ghost dressing function are plotted in
the top panel of Fig. 3. In analogy with the quenched case,
the data do not support a powerlike singular behavior in the
(deep) IR region, rather one finds the characteristic freez-
ing out feature of the massive solutions [4,30]. As one
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FIG. 1 (color online). The unquenched gluon propagator (top
panel) and dressing function (bottom panel) for Nf ¼ 2 (two

light quarks) and Nf ¼ 2þ 1þ 1 (two light and two heavy

quarks). For the sake of comparison, in this and the following
figures we plot the quenched data (Nf ¼ 0) for various lattice

volumes taken from Ref. [2]. The upper rhombus corresponds to
Nf ¼ 0, the intermediate up (	 ¼ 3:90) and down (	 ¼ 4:20)

triangles to Nf ¼ 2 and bottom circles (	 ¼ 1:95) and squares

(	 ¼ 1:90) to Nf ¼ 2þ 1þ 1.
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FIG. 2 (color online). The volume dependence of the IR satu-
ration point of the gluon propagator�Rð0Þ in our simulations. For
the Nf ¼ 2 case, we include an extra point corresponding to a

simulation on a 243 � 48 lattice, at	 ¼ 4:05 ( ¼ 0:157010 and
a�l ¼ 0:006). Notice that this last point has not been exploited as
it clearly corresponds to a very small physical volume. The upper
rhombus corresponds to Nf ¼ 0, the intermediate up (	 ¼ 3:90)

and down (	 ¼ 4:20) triangles to Nf ¼ 2 and bottom circles

(	 ¼ 1:95) and squares (	 ¼ 1:90) to Nf ¼ 2þ 1þ 1.
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would expect on the basis of a naive perturbative analysis
(there is no tree-level coupling between ghosts and fermi-
ons) the effect of dynamical quarks on the ghost sector is
much milder as compared to the gluon sector.

The ghost dressing function F can provide valuable
information with respect to the so-called Kugo-Ojima
function [18]. This is due to a powerful identity dictated
by the underlying Becchi-Rouet-Stora-Tyutin symmetry
present in the continuum formulation of the theory, which
leads to the relation [31,32]

F�1ðq2Þ ¼ 1þGðq2Þ þ Lðq2Þ; (3.2)

where Gðq2Þ and Lðq2Þ are the form factors of a particular
Green function ���ðqÞ that plays a special role in the

aforementioned PT-BFM truncation scheme [33], with

���ðqÞ ¼ ���Gðq2Þ þ
q�q�

q2
Lðq2Þ: (3.3)

The important point here is that Gðq2Þ coincides (in the
Landau gauge) with the Kugo-Ojima function [31,32]. In
addition, a detailed analysis of the Lðq2Þ form factor in the
quenched approximation reveals that it is numerically sub-
dominant in the whole range of momenta when compared
to Gðq2Þ [32], and, furthermore, Lð0Þ ¼ 0. Since quark
effects on ���ðqÞ are suppressed, either due to their indi-

rect presence in the full gluon and ghost propagators, or in
higher order corrections to the ghost-gluon kernel (the first
one happening at the three-loop level in the kernel skeleton
expansion, and therefore at four loops in ���), one natu-

rally expects the same results to survive in the unquenched
case, thus leaving us with the approximate relation

Gðq2Þ 
 F�1ðq2Þ � 1: (3.4)

In the bottom panel of Fig. 3 we plot the function
�Gðq2Þ and observe that its value at origin is practically
unchanged when varying the number of flavors. Clearly the
behavior is not dissimilar from the one revealed in
quenched simulation, and the (extrapolated) IR saturation
value looks once again far from the critical value 1 pre-
dicted by the scaling type solutions of the SDE and the
related Kugo-Ojima confinement criterion. We will return
to this issue in the next section.

IV. GHOST SDE ANALYSIS

In this section we carry out a hybrid analysis combining
our lattice simulation results with SDE techniques, in a
spirit analogous to what has been reported in Ref. [30]. The
aim is to study the ghost sector in greater detail and, in
particular, gain access to the ghost-gluon vertex form
factor(s). As a welcome byproduct, we will obtain a reli-
able extrapolation of the ghost lattice data to the deep IR.
Specifically, let us start by considering the ghost SDE,

which can be recast in the following bare form

1

Fðq2Þ ¼ 1þ g20Nc

Z d4k

ð2�Þ4
Fðk2Þ�ððk� qÞ2Þ

k2ðk� qÞ2

�
�ðq � kÞ2

q2
� k2

�
H1ðk; qÞ; (4.1)

whereH1ðk; qÞ is nonlongitudinal form factor of the ghost-
gluon vertex, parameterized as

~�abc
� ð�k; q; k� qÞ ¼ ig0f

abck�0 ~��0�ð�k; q; k� qÞ
¼ ig0f

abc½k�H1ðk; qÞ
þ ðk� qÞ�H2ðk; qÞ�; (4.2)

with k and q being the outgoing and incoming ghost
momenta, respectively, and g0 the bare coupling constant.
As explained in depth in Refs. [30,34,35], one can first
renormalize the ghost and gluon propagators in Eq. (4.1),
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FIG. 3 (color online). The unquenched ghost dressing function
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light and two heavy quarks). The quenched (Nf ¼ 0) data shown

in this and the following figures are again taken from Ref. [2].
The upper rhombus corresponds to Nf ¼ 0, the intermediate up

(	 ¼ 3:90) and down (	 ¼ 4:20) triangles toNf ¼ 2 and bottom

circles (	 ¼ 1:95) and squares (	 ¼ 1:90) to Nf ¼ 2þ 1þ 1.
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by using Eq. (2.12), and then apply a subtraction procedure
to deal with the UV singularity of the ghost self-energy
integral to obtain

1

FRðq2Þ ¼ 1þ ~Z2
3Z3

g20
4�

Z
k3dkKðk; qÞHbare

1 ðk; qÞFRðk2Þ;
(4.3)

where

Kðk;qÞ¼� 1

�2

Z �

0
sin4�d�

�
�Rððk�qÞ2Þ
ðk�qÞ2 ��Rððk�pÞ2Þ

ðk�pÞ2
�
:

(4.4)

The renormalization point, �2, is implicitly present as an
argument for all the renormalized quantities. In obtaining
Eq. (4.3), the subtraction procedure is applied for Eq. (4.1)
evaluated at the two momenta k and p, both being parallel
and such that p2 ¼ �2. H1 in Eq. (4.3) is a bare but finite
[36] quantity which needs no renormalization while, in
front of the integral, the renormalization constants and
the bare coupling especially appear in the right combina-
tion to cancel the cutoff dependence and give the MOM
Taylor scheme coupling (see, e.g., Ref. [20]),

�Tð�2Þ ¼ g20
4�

~Z2
3ð�2ÞZ3ð�2Þ: (4.5)

This coupling �Tð�2Þ for Nf ¼ 0, 2 and 2þ 1þ 1 can be

determined from lattice data (see, e.g., Refs. [20,21]). In
order to solve the ghost SDE in isolation (i.e., without
coupling it to the much more complicated gluon SDE),
one can use the just determined lattice gluon propagator
�R as an input for the equation, thus fully determining the
kernel (4.4). Now the only unknown term present in the
equation is the ghost form factor H1; clearly the solutions
to the ghost SDE will describe the lattice data with a better
or worse agreement depending on our ability to model this
form factor [17,37].

Through the analysis of the quenched lattice data, it was
shown in Ref. [30] that the solutions of Eq. (4.3) grossly
underestimate (by a factor of at least 2) the lattice data if one
uses the tree-level value H1 ¼ 1 for the ghost-gluon form
factor. A constant does indeed do a better job [30] but does
not allow for a precise description of the deep IR behavior of
the function [17]. This implies that a good description of the
(quenched) ghost dressing lattice data calls for a ghost-gluon
form factor with a nontrivial kinematical structure. Using
the knowledge derived from the operator product expansion
(OPE) analysis of Ref. [17], coupled with the current lattice
data on the (Landau gauge) ghost-gluon vertex [38], one can
parameterize this form factor as4

H1ðk; 0Þ ¼ H0
1

�
1þ NCg

2hA2i
4ðN2

C � 1Þ
k2

k4 þm4
IR

�

þ ð1�H0
1Þ
�

w4

w4 þ k4

�
: (4.6)

Estimates for the gluon condensate5 g2hA2i, and the IRmass
scale mIR, can be obtained from lattice data and OPE
analysis [37]; the constants H0

1 and w (introduced in order

to guarantee that H1ð0; 0Þ ¼ 1, as suggested by current
lattice data [38]) can be adjusted so that the solutions
Eq. (4.3) match the corresponding lattice data as closely as
possible.
The solutions of the ghost SDE (4.3) following the

procedure just illustrated are presented in Fig. 4. In the
top panel of the figure one can clearly see that, similarly to
the quenched case, a tree-level value for H1 does not give
solutions which can describe the lattice data. However,
once the kinematically nontrivial expression, Eq. (4.6)
(bottom panel of the same figure), is included in the
equation, one obtains an excellent agreement with the
data. Therefore, effectively, the curves for H1ðq; 0Þ repre-
sent a genuine prediction of our analysis; it would therefore
be extremely interesting to confirm or refute this prediction
through direct lattice calculations of the ghost-gluon three-
point function. It should be noticed that, when obtaining
the dressing function from the ghost SDE, the subtraction
point has been fixed at � ¼ 3:61 GeV (the same happens
in Fig. 4). This is merely aimed to allow for a direct
comparison with the quenched analysis of Refs. [30,39].
Of course, once the dressing function renormalized at a
given � is obtained, it can be renormalized at any other
point �0 through the simple rescaling

FRðq2; �02Þ ¼ FRðq2; �2Þ
FRð�02; �2Þ ; (4.7)

where the second argument of F specifies the renormaliza-
tion point. Equation (4.7) is applied to obtain the SDE
ghost dressing prediction for �0 ¼ 4:3 GeV in Fig. 5 and
in the following section. To be sure, it can be straightfor-
wardly proven that FRðq2; �02Þ, given by Eq. (4.7), is a
solution of the ghost SDE in Eq. (4.3) when g20ð�2Þ is

replaced by6

g20ð�02Þ ¼ g20ð�2ÞF2
Rð�02; �2Þ�02�ð�02; �2Þ; (4.8)

which gives the perturbative renormalization flow of the
Taylor coupling, as can be inferred from Eq. (4.5).

4Equation (4.3) requires to be solved with the full vertex
H1ðk; qÞ, which is modeled in Ref. [17]; however, it can be
shown thatH1ðk; qÞ ’ H1ðk; 0Þ is a good approximation to obtain
the ghost dressing in the IR momentum region [39].

5The very notion of condensate have been recently questioned
in Refs. [40,41]. In particular, according to the new perspective
suggested there, our gluon condensate g2hA2i should be under-
stood as a mass-scale parameter related to the local operator A2

in the OPE expansion of the gluon Green functions.
6Observe that the unity appearing on the rhs of Eq. (4.3) has

also to be replaced by 1=FRð�2; �02Þ.
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The good agreement between the SDE solutions and the
lattice data allows for an extrapolation of the latter towards
the deep IR region, where one observes a very small
increment of the saturation point (monotonic with Nf). In

particular, the extrapolated zero-momentum values for the
ghost dressing function, renormalized at� ¼ 4:3 GeV, are
given by 2.86, 2.91, and 2.98 for Nf ¼ 0, 2 and 2þ 1þ 1,

respectively. This SDE-driven extrapolation is particularly
useful when scrutinizing the Kugo-Ojima function of
Fig. 5, which clearly shows that the saturation point of

this function is practically insensitive to the inclusion
of dynamical fermions.

V. EFFECTIVE COUPLING

The results obtained for the gluon and ghost two-point
functions allow us to extract the running of the full QCD
effective charge for a wide range of physical momenta, and
in particular in the deep IR region which is evidently
inaccessible to perturbation theory.
To begin with, let us recall that the QCD effective charge

is defined, among practitioners, in primarily two different
ways: the first one (to be denoted by �PT) is obtained
within the framework of the pinch technique [9,42] and
represents the most direct generalization of the familiar
QED effective charge concept to a non-Abelian setting;
the second one (to be denoted by �gh) corresponds to the

nonperturbative generalization of the strong coupling in
the Taylor scheme mentioned before [21].
The construction of either effective charges proceeds

through the identification of a suitable RG invariant com-
bination. Before identifying this quantity, however, let us
observe that though the effective couplings �PT and �gh

have a rather distinct theoretical origin and status, it turns
out that in the Landau gauge, they are related through the
equation [19]

�ghðq2Þ ¼
�
1þ Lðq2Þ

1þGðq2Þ
��2

�PTðq2Þ: (5.1)

Evidently, in the approximation Lðq2Þ 
 0, used through-
out this paper, the two definitions coincide, and one has
�PTðq2Þ � �ghðq2Þ � ��ðq2Þ. This implies also that one can

choose as the RG invariant combination
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FIG. 5 (color online). Extrapolation of the (approximate)
Kugo-Ojima function in the deep IR. The ghost dressing function
F employed in this plot is generated by solving the ghost SDE.
The upper rhombus corresponds to Nf ¼ 0, the intermediate up

(	 ¼ 3:90) and down (	 ¼ 4:20) triangles toNf ¼ 2 and bottom

circles (	 ¼ 1:95) and squares (	 ¼ 1:90) to Nf ¼ 2þ 1þ 1.
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FIG. 4 (color online). Top panel: The ghost dressing function
obtained from the solution of the ghost SDE (4.3) with the lattice
gluon propagator as an input and �T ¼ 0:25, 0.32, 0.37, respec-
tively, for Nf ¼ 0, 2, and 2þ 1þ 1 at � ¼ 3:61 ½GeV�. Dashed
lines correspond to solutions for the tree-level H1ðq; 0Þ ¼ 1,
while continuous lines to the inclusion of the full form factor
(4.6). The latter is also shown in the bottom panel. The values of
the parameters used to integrate the ghost SDE are: g2hA2i ¼
7 GeV2, mIR ¼ 1:3 GeV and w ¼ 0:65 GeV (the same IR
ones for the three cases). Moreover, H0

1 ¼ 1:26, 1.20, 1.18

for Nf ¼ 0, 2 and 2þ 1þ 1, respectively upper curve corre-

spond to Nf ¼ 0, intermediate to Nf ¼ 2 and bottom one to

Nf ¼ 2þ 1þ 1.
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rðq2Þ ¼ �Tð�2Þ�Rðq2; �2ÞF2
Rðq2; �2Þ; (5.2)

which can be readily obtained from the data presented so far
[�T is given in Eq. (4.5)]. The quantity rðq2Þ defined above
is constructed in Fig. 6 for different number of flavors Nf;

notice that for calculating the freezing out point rð0Þ the
value of FRð0Þ has been extrapolated from the SDE results
for the ghost dressing obtained in the previous section.

A most salient feature of this plot is the absence (within
the errors) of any flavor dependence in the IR region, more
precisely starting from q2 & 1 GeV2. Indeed, one observes
that the flavor effects which control the behavior of the UV
parameters of the theory (e.g., the 	-function coefficients,
�QCD and hA2i), combine in such a way that, when the RG

invariant combination rðq2Þ is formed, no net flavor de-
pendence survives in the IR.

Since, modulo an overall dimensionful factor to render it
dimensionless, rðq2Þ coincides with the effective coupling,
the origin of this independence can be understood by
recalling the reason for the Nf dependence of the running

coupling in the UV (it should also be noticed that the
invariant combination rðq2Þ is related with the UV cou-
pling defined through the ghost-gluon vertex in Taylor
scheme by nothing but a factor q2). In this case the bigger
the physical momenta q2, the more channels open up for
the production of quark-antiquark virtual pairs (so that
every time a channels opens, the coupling receives a kick
and goes up). However, as soon as q2 drops below a certain
threshold, no energy will be available to produce any
virtual pairs (not even gluons when q20 < 4m2

0) so that

the residual running of the coupling below this value is

completely dominated by the IR mass scale introduced
when defining the effective charge.
Coming to this specific point, it turns out that [19] one

can construct from rðq2Þ the dimensionless effective cou-
pling ��ðq2Þ by pulling out the inverse propagator factor
q2 þm2ðq2Þ, i.e.,

��ðq2Þ ¼ ½q2 þm2ðq2Þ�rðq2Þ; (5.3)

which leads to an IR saturating coupling. Notice that this
definition is valid for both massive and the (already ruled
out) scaling solutions (in which case one would have
to set m2ðq2Þ ¼ 0); since in the latter case �ð0Þ ! 0 and
Fð0Þ ! 1, the effective coupling does not distinguish
between the two solutions.7

As a last step, we need to specify the q2 running of the
dynamical mass m2ðq2Þ. We will consider here the simpli-
fied setting of Refs. [19,43] under which the mass obeys a
power law running

m2ðq2Þ ¼ m4
0

q2 þm2
0

; m0 � mð0Þ; (5.4)

and for m0 one considers the representative values
m0 ¼ 500–600 MeV, consistent with a variety of
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FIG. 6 (color online). The RG invariant quantity rðq2Þ defined
in Eq. (5.2) for the different values of flavors Nf. Errors for the

Nf ¼ 0 case are underestimated, since we have used the ghost

dressing function obtained from the SDE for constructing the
effective charge. Notice the absence of any flavor dependence
below the 1 GeV region. The upper rhombus corresponds to
Nf ¼ 0, the intermediate up (	 ¼ 3:90) and down (	 ¼ 4:20)

triangles to Nf ¼ 2 and bottom circles (	 ¼ 1:95) and squares

(	 ¼ 1:90) to Nf ¼ 2þ 1þ 1.
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FIG. 7 (color online). The effective charge ��ðq2Þ defined in
Eq. (5.3) for two different values of the IR gluon mass:
m0 ¼ 500 MeV (solid symbols) and m0 ¼ 600 MeV (open
symbols). The gray band in the background (meant to guide
the eye) has been obtained from a continuum extrapolation of the
Nf ¼ 2þ 1þ 1 data. The upper rhombus corresponds to

Nf ¼ 0, the intermediate up (	 ¼ 3:90) and down (	 ¼ 4:20)

triangles to Nf ¼ 2 and bottom circles (	 ¼ 1:95) and squares

(	 ¼ 1:90) to Nf ¼ 2þ 1þ 1.

7As explained in detail in Ref. [19], in the presence of an IR
saturating propagator, one should not insist in pulling out in front
of the effective coupling a simple q2 factor. Otherwise, one
would end up with a completely unphysical coupling, namely
the one that vanishes in the IR, where QCD is supposed to be a
strongly coupled theory.

QUARK FLAVOR EFFECTS ON GLUON AND GHOST . . . PHYSICAL REVIEW D 86, 074512 (2012)

074512-9



phenomenological studies. The resulting effective charge
is plotted in Fig. 7.

We hasten to emphasize that this is only a toy model,
and one should take into account that in reality m0

differs for different Nf, as clearly seen in the top panel

of Fig. 1. However, inserting directly in Eq. (5.4) the
saturation value m0 ¼ ��1

R ð0; �2Þ obtained from our
simulations for different number of flavors Nf, breaks

the RG invariance in zero of Eq. (5.3).8 We are evidently
in need of better tools for extracting reliable (RG
invariant) information about the saturation point of the
coupling (and probably more data as well in the low
momentum region); this issue clearly deserves a separate
study.

VI. CONCLUSIONS

In this paper, we have carried out a systematic and
comprehensive analysis of the gluon and ghost two-point
functions in (Landau gauge) full lattice QCD.

The configurations used include two light and two light
plus two heavy twisted mass fermions with masses be-
tween 20–50 [MeV] for the light quarks, 95 [MeV] for
the strange quark and 1.51 [GeV] for the charm quark (in

MS scheme at a renormalization scale of 2 [GeV]). The
mass of the lightest pseudoscalar turns out to be between
the range of 270 and 510 [MeV]. As this value does not lie
too far from the physical pion mass, it increases our con-
fidence in the flavor physics effects reported in this article.
Moreover, simulations on lattices with up to 483 � 96
points, with 	 ¼ 3:90 and 4.20 for Nf ¼ 2 and 	 ¼ 1:90

and 1.95 for Nf ¼ 2þ 1þ 1, allow us to reach momenta

down to q ’ 300 ½MeV�, keeping the volume effects under
control.

Our analysis demonstrates that in the intermediate and
low momentum region, the gluon propagator lessens with
the increase in the number of dynamical quarks, whereas,
the ghost dressing function is enhanced, albeit only
slightly. In addition, the heavier a species of fermions,
the smaller in extent is its effect on the suppression of
the gluon propagator. With a heavier enough mass, which
prevents its virtual pair production, the fermion fails to
screen the interaction and gets decoupled from the gluon
dynamics altogether.

When all the pieces of data are put together to construct
the effective QCD running coupling, ��ðq2Þ, we observe the
behavior anticipated from the massive decoupling solu-
tions, namely, a monotonic approach to an IR fixed point.
Furthermore, we find that below q ’ 1 ½GeV�, this quantity
is not directly affected by the variation in the number of
dynamical fermion flavors. However, considering that an
IR gluon mass is introduced while defining the effective

running coupling, there is indirect dependence on Nf via

this mass scale.
Making the most of the lattice results for the gluon and

ghost propagators, we present a self-consistent analysis of
the ghost 2-point function and extract the unquenched
ghost-gluon form factor H1. This is a genuine prediction
of the SDE study presented in Sec. IV, which should be
confirmed (or refuted) through direct lattice studies of the
ghost-gluon vertex.
Evidently, while the whole analysis in the present

paper has been performed in the Landau gauge, the
gluon and ghost propagators are gauge dependent quan-
tities and one might wonder how the results reported will
change when considering other gauges.9 To begin with,
the IR saturation point of the gluon propagator and the
ghost dressing function obtained for the different number
of flavors Nf are particular to the Landau gauge, and

one should not expect that the same points would emerge
had one carried out the simulation in a different gauge
(e.g., the Feynman gauge). However, the fact that the
PT-BFM framework carries over practically unmodified
to both R� and background field covariant gauges, gives

good reasons to expect that the IR finiteness found in the
quenched as well as in the unquenched (Landau gauge)
cases, will persist in this class of gauges.10 In this respect,
very preliminary results on lattice calculations performed
within an R� gauge with � � 0 have appeared in the

literature [45], while recently, a gauge fixing functional
has been derived in Refs. [46,47], which, upon a suitable
minimization procedure, gives the background Landau
gauge condition; it will be therefore extremely interesting
to compare the Landau gauge results, with Green’s func-
tions obtained from (large volume) lattice configurations
gauge fixed using these new implementations.11 A quali-
tatively different picture may finally appear in the context
of noncovariant gauge fixing schemes, such as the
Coulomb gauge or the maximal Abelian gauge [48]; for
instance, in the former gauge, only scaling solutions (for
which �ð0Þ ¼ 0) have been reported from both SDE and
lattice analysis [49].

8One could in principle choose different phenomenological
values of m0 for different values of Nf but the result would not
be that different from what is seen in Fig. 7.

9Notice that, away from the Landau gauge, the whole notion of
a Kugo-Ojima function and the corresponding confinement
criterion becomes meaningless.
10In particular, the PT-BFM analysis of Ref. [44] predicts a
finite ghost propagator in the Feynman gauge, while a prediction
for the gluon propagator in the background Landau gauge can be
found in Ref. [32]. From a lattice perspective, in both cases the
concave gluon propagator shape points towards a violation of the
reflection positivity thus preventing the gluon from being con-
sidered a free state.
11In the BFM case, one obstacle that need to be overcome
before full lattice simulations can be realized is to devise a lattice
algorithm which would allow to treat the background field as an
external yet unspecified source, so that it could be set to zero at
the end of the calculation.
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We conclude by observing that, though the data pre-
sented have been obtained for an arbitrary gauge copy
selected through a gauge fixing algorithm using a combi-
nation of over-relaxation and Fourier acceleration, we do
not expect that the presence of Gribov copies to alter the
conclusions in any significant way, given also that their
effect is expected to weaken significantly for physical
volumes as large as the ones considered here.
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