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We study the effect of cooling on the spatial distribution of the topological charge density in quenched

SU(2) lattice gauge theory with overlap fermions. We demonstrate that as the gauge field configurations

are cooled, the Hausdorff dimension of regions where the topological charge is localized gradually

changes from d ¼ 2–3 towards the total space dimension. Therefore, the cooling procedure destroys some

of the essential properties of the topological charge distribution.

DOI: 10.1103/PhysRevD.86.074511 PACS numbers: 12.38.Gc, 11.15.Ha, 11.30.Er, 11.30.Rd

I. INTRODUCTION

Topological charge density is an important characteristic
of the QCD vacuum, recently involved in phenomenologi-
cal studies of many new hypothetical effects [1–6].
However, the spatial structure of the topological density
distribution seems to be not well defined since the relevant
properties of the underlying vacuum structure depend on
the measuring procedure [7,8]. The classical instanton
approach [9] assumes that the nonperturbative physics is
governed by the scale of �QCD, which means that the

dimensionful quantities like volumes occupied by topo-
logical fermion modes should depend on �QCD but not on

the lattice spacing. On the contrary, the lattice measure-
ments demonstrate that these volumes do depend on the
spacing (i.e., on the measurement resolution) and shrink to
zero in the continuum limit [10–14].

It turns out that the continuum definition of the topo-
logical charge density

qðxÞ ¼ 1

32�2
����� TrðGa

��G
a
��Þ (1)

cannot be directly applied to the lattice gauge theory, since
the discretized version of (1) is no longer a full derivative.
There are two widely used methods to study the topology
of gauge fields on the lattice. First, one can apply a smear-
ing procedure, which makes the gauge fields smoother and
thus closer to the classical fields. Second, one can rely on
the lattice version of the Atyah-Singer theorem and define
the total topological charge of a gauge field configuration
as the number of zero modes of the overlap Dirac operator
[15] on this configuration. The corresponding local density
of topological charge can be defined, for example, as
follows [16–18]:

qðxÞ ¼ �Tr

�
�5

�
1� a

2
Dðx; xÞ

��
; (2)

where Dðx; xÞ is the zero-mass Neuberger operator and the
trace is taken over spinor and color indices. Another
attractive property of this definition is that it allows us to

measure a local imbalance in the number of left- and right-
handed quarks (chirality), which is important for lattice
studies of the local CP-violation in strong interactions
[19]. A typical result of the lattice simulation for this
quantity (without cooling) is shown in Fig. 1.
At the moment there are many investigations related to

the spatial structure of the topological charge distribution
[13,14,20–24], which use both of the alternative defini-
tions. The measurements which rely on the cooling proce-
dure mostly suggest an instanton-like picture of the QCD
vacuum [25], while the definition (2) typically shows that
the topological charge is localized at low-dimensional
objects (defects) [13,14,23,24] and has a very-long-range
structure of the distribution [24]. At the qualitative level it
is known that both definitions yield the topological charge
densities which are strongly correlated [20,26,27]. For an
alternative filtering method based on adjoint fermions see
Ref. [28].

FIG. 1 (color online). Isosurfaces of the topological charge
density qðxÞ ¼ � 10�4 for a fixed time slice, corresponding
to the 164 lattice in Table I. Colors represent positive (red) and
negative (blue) values, respectively. For the animation, see
Ref. [44].
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The aim of this paper is to fill the existing gap in the
literature and to demonstrate in what way the cooling
procedure affects the dimensionality of regions where the
topological charge density is localized. We use the defini-
tion (2) based on zero modes of overlap Dirac operator and
show that as the gauge field configurations are cooled the
dimension of these regions gradually tends to 4, which is
the total space dimension. The procedure makes the effec-
tive resolution of the measurement lower and thus provides
a result close to the instanton picture. We verify our result
using several measures of the localization [10,12,29].

II. TECHNICAL DETAILS

We work in the quenched SU(2) lattice gauge theory
with the tadpole-improved Wilson-Symanzik action [30].
Lattices we used are listed in Table I. We also implement
the cooling procedure described in Ref. [21] with coeffi-
cient c ¼ 0:5 for the APE-smearing. For each lattice spac-
ing we consider thirteen different stages of the cooling
procedure: 0, 1, 2, 5–12, 20, and 50 iterations of the
algorithm. For valence quarks we use the Neuberger’s
overlap Dirac operator [15]. Its eigenvalues and eigenfunc-
tions are given by the following relation:

Dc � ¼ �c �: (3)

The quantities we measure in the present work are
functions of two basic ingredients: the ‘‘chiral condensate’’
computed on a mode with eigenvalue �,

	�ðxÞ ¼ c ��
� ðxÞc ��ðxÞ; (4)

and ‘‘chirality’’ computed on a mode with eigenvalue � [in
agreement with the definition (2)],

	5
�ðxÞ ¼

�
1� �

2

�
c ��

� ðxÞ�5
��c

�
� ðxÞ: (5)

Here we sum over spinor and (omitted) color indices. The
total values of both chiral condensate and chirality are
given by an infinite sum over all eigenvalues. Lattice
studies [31,32] suggest that the long-distance properties
of QCD can be treated with a finite cutoff of the fermionic
spectrum. We hereby restrict our consideration to the IR
part of the Dirac spectrum consisting of zero modes (�¼0)
and few low-lying modes (� � 0).

Inverse participation ratio (IPR) for an arbitrary
normalized distribution �ðxÞ is usually defined in the
following way:

IPR ¼
�
N
X
x

�2ðxÞ
��������
X
x

�ðxÞ ¼ 1

�
; (6)

where N is the total number of lattice sites x. From this
definition one can clearly see that IPR ¼ N if �ðxÞ is
localized on a single site and IPR ¼ 1 if �ðxÞ ¼ const,
i.e., the distribution is unlocalized. In general, IPR is equal
to the inverse fraction of sites occupied by the support of
�ðxÞ. Since this fraction of sites can be thought of as a
number of four-dimensional lattice hypercubes covering
the support, the Hausdorff dimension d of these regions
can be extracted from the asymptotic behavior of IPR at
small lattice spacings a

IPR ðaÞ ¼ c

ad
; (7)

where c is a constant. It is also useful to mention, that in
physical units IPR�1 is equal to the part of the total volume
occupied by the distribution.
In the following sections we will modify the standard

definition (6) to adapt it to our particular cases (i.e.,
unnormalized or non-normalizable distributions, etc.).
The final result will show an equivalence of the chosen
definitions.

A. Ordinary IPR for zero modes.

In this section we compute the inverse participation ratio
for the fermionic zero modes according to the one defined
in Ref. [12]:

IPR0 ¼ N

2
64
P

xð	0ðxÞÞ2
ðPx 	0ðxÞÞ2

3
75

�¼0

; (8)

where the brackets ½. . .��¼0 denote an averaging over all
zero modes and further averaging over all gauge field
configurations. Results are presented in Fig. 2.
The left-hand figure shows how the localization depends

on the lattice spacing a-the finer the lattice, the larger the
IPR. This fits very well to the idea of vanishing total
volume occupied by fermionic zero modes in the contin-
uum limit a ! 0 (see Ref. [7] for a review). Using the fit
(7) we recover the fractal (Hausdorff) dimension d of the
volume. Results for the fits with fixed numbers of cooling
steps are presented in the Table II. Here, to minimize
errors, we also prepared an alternative sample consisting
only of those configurations which do not lose all the
fermion zero modes during the cooling. We picked then
the values with better (and also sufficient) statistical
significance.

B. Chiral IPR for low-lying modes. First definition.

In this section we modify the IPR to measure localiza-
tion properties of the topological charge distribution. The

TABLE I. Lattice parameters used in the calculation: cou-
plings �, lattice spacings a, lattice sizes L3

s � Lt, physical
volume V, and number of gauge field configurations.

� a [fm] L3
s � Lt V [fm4] # conf

3.200 0.117 123 � 12 3.93 50� 13
3.295 0.100 143 � 14 3.90 50� 13
3.332 0.094 153 � 15 3.89 50� 13
3.365 0.088 163 � 16 3.88 50� 13
3.425 0.078 183 � 18 3.87 50� 13
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average chirality ½Px	
5
�ðxÞ�� is zero, therefore we have to

use either the absolute value j	5
�ðxÞj or the square ½	5

�ðxÞ�2.
Here, we stick to the definition from Ref. [29], which in our
terms has the following form:

IPR5
0 ¼ N

2
64
P

xð	5
0ðxÞÞ2

ðPx 	0ðxÞÞ2

3
75

�¼0

: (9)

Results are presented in Fig. 3. From the plots, we
conclude that the topological charge distribution behaves
similar to the zero modes, tending to occupy a vanishing
volume in the continuum limit. We can also compute the
chiral IPR for small but nonzero eigenvalues (in our case
we pick first 7 eigenvalues, � & 200 MeV),

IPR5
��0 ¼ N

2
64
P

xð	5
�ðxÞÞ2

ðPx 	�ðxÞÞ2

3
75

��0

: (10)

Chiral IPR for these modes is small (Fig. 4) and thus the
topological charge distribution at this part of the spectrum
is delocalized.

C. Chiral IPR for zero modes. Second definition.

Finally, we consider a second definition of the chiral IPR
according to Ref. [10]:

IPR5
0 ¼ N

2
64

P
x j	5

0ðxÞj2
ðPx j	5

0ðxÞjÞ2

3
75

�¼0

; (11)

where, as before, 	5
0ðxÞ denotes the chirality on a zero

mode (2). Results are presented in Fig. 5. As can be seen
from Figs. 2, 3, and 5, the IPR for the zero modes and for
the topological charge density on these modes are the same
up to negligible deviations. Results of the fitting procedure
coincide for these three cases and are shown in Table II.
The coincidence is not accidental, because for the zero
modes ½D;�5� ¼ 0 and �5jc 0i ¼ �jc 0i. This means that
on a given mode, 	0ðxÞ and 	5

0ðxÞ are equal to each other up
to a sign.

III. FRACTAL DIMENSION. RESULTS
AND CONCLUSIONS.

To conclude, we demonstrate that the topological charge
is localized on low-dimensional fractal structures, whose
fractal (Hausdorff) dimension depends on the number of

cooling steps. The obtained dimension is about d ¼ 2–3
for a few (n<6) steps of the cooling, while it grows to
d¼4with further iterations (see Fig. 6). For a long cooling
(n * 20) the result becomes insignificant, because the
procedure leads to a delocalization of the distributions as
can be seen in Figs. 2–5 (otherwise IPR remains consistent
with a constant within error bars). We suppose that it can be

caused by the annihilation of the instanton/anti-instanton
pairs. Indeed, comparing the mean action evolution (Fig. 7)
with the one from e.g., Ref. [33] we see that the annihila-
tion phase in our case could start already from n� 20. In
Ref. [21], where the same cooling algorithm is used, the
annihilation takes place even at a smaller number of steps.

TABLE II. Fractal dimension of the fermionic zero modes and,
equivalently, of the topological charge distribution.

Number of cooling steps

Fractal

dimension

Standard

error P-value

0 2:84� 0:44 15% 0.008

1 2:66� 0:66 25% 0.027

2 2:49� 0:46 18% 0.013

5 2:17� 0:49 23% 0.021

6 2:75� 0:66 24% 0.025

7 3:17� 0:51 16% 0.009

9 3:71� 0:34 9% 0.001

12 3:88� 0:23 6% 4� 10�4
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FIG. 2 (color online). Ordinary IPR for zero modes (8).
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FIG. 4 (color online). Chiral IPR for the lowest nonzero modes. First definition, Eq. (10).
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FIG. 5 (color online). Chiral IPR for zero modes. Second definition, Eq. (11).
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FIG. 3 (color online). Chiral IPR for zero modes. First definition, Eq. (9).
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The main conclusions of our paper are the following:
(1) Fermionic zero modes and chirality are localized on

structures with fractal dimension d ¼ 2–3, which is

an argument in favor of the vortex/domain-wall

nature of the localization [34,35].
(2) A long sequence of iterations of the cooling proce-

dure provides a result close to the instanton picture,
i.e., destroys the low-dimensional structure of the
QCD vacuum.

Finally, let us briefly mention a possible phenomeno-

logical consequence of our study. One of the most prom-

ising effects appearing due to the nontrivial topology of the

QCD vacuum is the so-called ‘‘chiral magnetic effect’’

(CME) [1], which states the generation of an electric

current in parallel to an external magnetic field.

Topological charge density in this case can be understood

as an imbalance in the number of left- and right-handed

light quarks induced by a nontrivial gluonic background.

This effect is expected to explain charge asymmetries

observed at RHIC [19,36]. Some evidences of the CME

on the lattice as well as numerical estimates for the values

of the local topological charge were also obtained in

Refs. [37–41]. At the current level of analytic studies,

CME is considered as an effect on the background of

spatially homogeneous axial fields [42], while the lattice

simulations predict an irregular structure of the would-be

axial field (see Fig. 1). This spatial inhomogeneity can

be treated within a chiral superfluid model [6], where

the chirality is carried by an effective axion-like field.

Knowledge of the nature of the topological charge local-

ization can help us to translate lattice Euclidean properties

of the chirality to the language of an effective Minkowski

field theory [43].
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