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Using precise lattice QCD computations of the baryon spectrum, we present the first direct evidence for

the presence of contributions to the baryon masses which are nonanalytic in the light quark masses,

contributions which are often denoted chiral logarithms. It is demonstrated that the SUð3Þ flavor-singlet
mass combination suffers the most severe convergence issues. The flavor-octet baryon mass splittings,

which are corrected by chiral logarithms at next-to-leading order in SUð3Þ chiral perturbation theory, yield
baryon-pion axial coupling constants D, F, C and H consistent with QCD values, the first evidence of

chiral logarithms in the baryon spectrum. The Gell-Mann–Okubo relation, a flavor-27 baryon mass

splitting, which is dominated by chiral corrections from light quark masses, provides further evidence

for the presence of nonanalytic light quark mass dependence in the baryon spectrum; we simultaneously

find the Gell-Mann–Okubo relation to be inconsistent with the first few terms in a Taylor expansion in

ms �ml, which must be valid for small values of this SUð3Þ breaking parameter. Additional, more

definitive tests of SUð3Þ chiral perturbation theory will become possible with future, more precise, lattice

calculations.
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I. INTRODUCTION

Quantum chromodynamics (QCD) is one of the funda-
mental gauge theories of the standard model of particle
physics, encoding the interactions among quarks and
gluons. At high energies, the theory exhibits the property
of asymptotic freedom where the coupling between the
quarks and gluons runs to zero as the interactions are
probed with larger momentum transfer. Conversely, at
low energies, at a scale of �QCD � 1 GeV, the coupling

between the quarks and gluons becomes Oð1Þ, and the
theory is no longer amenable to a perturbative treatment;
the quark and gluon degrees of freedom are bound into the
observed hadronic degrees of freedom, the protons, neu-
trons, pions, etc., which leave only subtle clues about the
underlying fundamental theory of QCD.

These properties of QCD, as well as many others, are
now well established thanks to a variety of techniques that
have been developed to understand the rich phenomena
that emerge from the theory. One of the most important
tools is lattice QCD, a numerical solution to the theory,
performed on a discrete, Euclidean space-time lattice. With
algorithmic advances and ever growing computing power,
state-of-the-art lattice QCD calculations are performed at
several lattice spacings, with moderate physical space-time
volumes and with dynamical light quark masses at or near
their physical values [1–5]. Recently, the ground state
hadron spectrum, composed of up, down and strange
quarks, has been reproduced from lattice calculations
with a few percent uncertainty [6]. This serves as an
important benchmark in demonstrating the ability for these

numerical calculations to produce precise quantitative pre-
dictions for hadronic physics observables. Indeed, lattice
calculations are playing an important role in many areas of
both nuclear and high-energy physics [7].
In addition to this numerical solution to QCD, a variety

of analytic methods have been developed to understand the
low-energy regime of the theory. The most prominent
method is chiral perturbation theory (�PT) which exploits
an approximate global symmetry of QCD [8]. For the up,
down and strange quarks with masses less than �QCD, the

QCD Lagrangian is approximately invariant under global
chiral transformations of the quark fields such that the
theory has an approximate SUð3ÞL � SUð3ÞR chiral sym-
metry, which becomes exact in the limit the quarks are
massless. This approximate chiral symmetry is spontane-
ously broken to the SUð3ÞV subgroup by the QCD vacuum
giving rise to the pion-octet pseudoscalar pseudo-Nambu-
Goldstone bosons, the pions, kaons and eta. The realization
of this chiral symmetry, as well as its spontaneous and
explicit symmetry breaking, can be described by construct-
ing a chiral Lagrangian which contains this pion octet as
well as other SUð3ÞV hadron multiplets as explicit degrees
of freedom. In the chiral limit, the pion octet becomes
exact Nambu-Goldstone bosons which have only deriva-
tive couplings to themselves and other hadrons. This the-
ory, �PT, is nonrenormalizable and contains an infinite
number of operators whose forms are constrained by the
global symmetries of QCD, while the coefficients of these
operators, the low-energy constants (LECs), are uncon-
strained and must be determined by comparing with ex-
perimental data and/or the results of numerical lattice QCD
calculations. The quantitative relevance of these operators
is dictated by an expansion in the soft momentum of the*awalker-loud@lbl.gov
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pion octet and the light quark masses suppressed by the
chiral-symmetry breaking scale, ��; hadronic observables

can be computed at low energies to any fixed precision by
keeping operators to a given order in the chiral expansion,
thus requiring determination of only a finite number of the
LECs.

One of the principle applications of �PT has been to
determine the light quark mass dependence of various
hadronic observables, the simplest of which is the light
hadron spectrum. The motivation comes from the signifi-
cant numerical cost of performing lattice QCD calculations
at the physical values of the up and down quark masses.
�PT can be used to extrapolate the numerical lattice QCD
results to the physical values of the light quark masses, in
the process determining some of the LECs associated
with the quark mass dependent operators. This program
has been very successful when applied to the Nambu-
Goldstone meson spectrum and decay constants (see
Ref. [9] for a review), beginning with the first significant
comparison of lattice QCD results with �PT [10].

The comparison with the light baryon spectrum has been
wrought with more significant difficulties and the overall
convergence, and usefulness, of the SUð3Þ baryon �PT is
in question. These challenges are not unexpected: first,
there is a dense spectrum of low lying excited states,
introducing new scales in the theory; second, while the
expansion parameters of �PT in the Nambu-Goldstone
meson sector are given by �m �m2

K;�;�=�
2
�, the small

expansion parameter when the baryon fields are included
becomes ��mK;�;�=�� [11]. For the physical kaon, � ’
1=2, and from general expectations of asymptotic series,
one does not expect this theory to have a controlled per-
turbative expansion. A few recent comparisons of SUð3Þ
baryon �PT to numerical lattice QCD results have led to
the conclusion the three flavor chiral expansion is failing to
provide a controlled, convergent expansion [12–14]. The
issues of convergence are not limited to the three flavor
expansion [15] and recent analysis indicates the range
of expansion of the two flavor theory, considering only an
expansion about the limit of vanishing up and down quark
masses, extends only to mmax

� ’ 300–350 MeV [12,16].
These challenges have led to a number of efforts to

reorganize the expansion for baryon �PT. The initial ap-
proach is known as heavy baryon �PT (HB�PT) which
treats the baryons as nearly static fields allowing for an
expansion in inverse powers of the baryon mass [17,18],
modeled after the heavy quark effective theory [19]. This
led to significant phenomenological successes which are
partly reviewed in Refs. [20,21]. Early on, it was recog-
nized that the convergence of the theory would be problem-
atic because of the large contributions from kaon and eta
loops in various observables. A new regularization scheme
was proposed: the introduction of a (chiral-symmetry vio-
lating) long-range regulator, e.g., a dipole regulator, to
soften the contribution from the kaon and eta loops [22].

When applied to chiral extrapolations of lattice QCD re-
sults, this led to some successes in simultaneously describ-
ing both the numerical results and physical observables
[23,24]. An additional reorganization of the chiral expan-
sion, equivalent to a resummation of the leading kinetic
corrections to the baryon propagators, was constructed and
has become known as infrared regularized baryon �PT
[25], with several offshoots to deal with renormalization
of higher loop corrections [26,27]. Lattice QCD calcula-
tions in the last few years have also made feasible the use
of the SUð2Þ expansion for hyperons [28,29]. In this work,
we further examine a new application of an old idea:
combining the large Nc expansion [30,31] with the SUð3Þ
chiral expansion [32–36]. This approach has a few formal
advantages over the other methods. In the large Nc limit,
there is an extra symmetry, the contracted spin-flavor
symmetry [32,33], allowing for an unambiguous field-
theoretic method to include the low lying decuplet baryon
resonances in the theory; in the large Nc limit, the spin-1=2
and -3=2 baryons become degenerate and infinitely heavy.
Further, while the large Nc and SUð3Þ chiral expansions on
their own may not provide well converged effective theo-
ries, the combined expansions may prove sufficient for a
controlled perturbative expansion. This approach was first
explored in Ref. [37] where it was demonstrated that the
predictions from the combined large Nc and SUð3Þ expan-
sions on the baryon spectrum are well met for a range of
light quark masses.
Having a controlled expansion is necessary but not

sufficient to claim success. The principle prediction
from �PT is the contributions to hadronic observables
which are nonanalytic in the light quark masses. The
masses of the Nambu-Goldstone boson is given to leading
order by the Gell-Mann–Oakes–Renner relation [38],
m2

i;j¼BðmiþmjÞ, with a meson composed of a quark-

antiquark pair of (anti)flavors i and j, and mi the mass of
a quark with flavor i. Therefore, in �PT, the nonanalytic
light quark mass dependence arises from pion-octet loops,
which often contribute lnðm2

K;�;�Þ terms to hadronic ob-

servables, and are commonly referred to as chiral logs.
These contributions cannot arise from a finite number of
local counterterms but only from the long-range contribu-
tions from the light pion-octet degrees of freedom, the pion
cloud. Isolating this predicted light quark mass dependence
in lattice QCD results has been a major challenge for many
years. The definitive identification of these contributions is
hailed as a signal that the up and down (and strange) quarks
are sufficiently light that the lattice results can be described
accurately by �PT. This task has proved to be very chal-
lenging, as often these nonanalytic light quark mass con-
tributions are subleading, or masked by other systematics.
In this work, we present for the first time, direct evidence

of nonanalytic light quark mass dependence in the baryon
spectrum. As will be discussed in this article, this work is
not the definitive work on the subject, as there are many
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systematics which must be resolved, but this is an impor-
tant first step in the quest for chiral logs.

II. THE HEAVY BARYON CHIRAL LAGRANGIAN
AND THE LARGE Nc EXPANSION

A. Heavy baryon chiral Lagrangian
in the 1=Nc expansion

The three flavor heavy baryon chiral Lagrangian at
leading order (LO) in the momentum expansion and to
first order in the chiral-symmetry breaking quark mass
matrix Mq � diagðmu;md;msÞ is given by [17,18]

L¼Tr �Bvðiv �DÞBv� �T�
v ðiv �DÞTv��1

4
�0Tr �BvBv

þ5

4
�0

�T�
v Tv�þ2DTrð �BvS

�
v fA�;BvgÞ

þ2FTrð �BvS
�
v ½A�;Bv�ÞþCð �T�

vA�Bvþ �BvA�T
�
v Þ

þ2H �T�
v S�vA�Tv�þ2�BTrð �BvBvÞTrMþ

�2�T
�T�
v Tv�TrMþþ2bDTrð �BvfMþ;BvgÞ

þ2bFTrð �Bv½Mþ;Bv�Þþ2bT �T�
vMþTv�; (1)

where the spin-1=2 octet baryon fields Bv and spin-3=2
decuplet baryon fields T

�
v are two-component velocity-

dependent baryon fields which are related to the usual
four-component relativistic Dirac spin baryon fields B
and T� by

BvðxÞ ¼ 1þ v

2
eiM0v�xBðxÞ;

T
�
v ðxÞ ¼ 1þ v

2
eiM0v�xT�ðxÞ:

(2)

The mass M0 is the flavor-singlet mass of the baryon octet
and decuplet baryons in the SUð3Þ chiral limit mq ! 0.

Specifically,

M0 ¼ 5

4
hM8i � 1

4
hM10i; (3)

where hM8i and hM10i are the average flavor-singlet masses
of the spin-1=2 flavor-octet baryons and the spin-3=2
flavor-decuplet baryons, respectively, in the chiral limit.
In the largeNc expansion,M0 isOðNcÞ for baryons withNc

quarks. The leading heavy baryon chiral Lagrangian also
contains the flavor-singlet hyperfine mass splitting

�0 ¼ hM10i � hM8i; (4)

which is proportional to the total spin-squared J2v of each
baryon multiplet. The mass parameter�0 isOð1=NcÞ in the
1=Nc expansion. The SUð3Þ flavor representations of the
QCD baryons are the flavor-octet

B ¼

1ffiffi
2

p �0 þ 1ffiffi
6

p � �þ p

�� � 1ffiffi
2

p �0 þ 1ffiffi
6

p � n

�� �0 � 2ffiffi
6

p �

0
BBBB@

1
CCCCA; (5)

and the completely symmetric rank-3 flavor-decuplet Tijk,

normalized such that Tuuu ¼ �þþ. The heavy baryon chi-
ral Lagrangian also contains four independent baryon-pion
couplings, the axial couplings D, F, C and H . The cou-
plings D and F describe the usual baryon-octet pion cou-
plings; C describes pion couplings between octet and
decuplet baryons; and H describes the pion coupling of
the decuplet baryons. The pion-octet fields

���aTa

¼

1ffiffi
2

p �0þ 1ffiffi
6

p � �þ Kþ

�� � 1ffiffi
2

p �0þ 1ffiffi
6

p � K0

K� �K0 � 2ffiffi
6

p �

0
BBBB@

1
CCCCA; (6)

appear in the heavy baryon chiral Lagrangian in the nonlinear

representation �2 ¼ � ¼ e2i�=f, where f� 130 MeV is
the pion decay constant in the chiral limit. The vector and
axial vector pion combinations

A� ¼ i

2
ð�@��y � �y@��Þ;

V� ¼ 1

2
ð�@��y þ �y@��Þ;

(7)

appear in the baryon-pion couplings and through the baryon
covariant derivativeD� ¼ @� þ iV�. In the heavy baryon

chiral Lagrangian, S
�
v is the spin operator which acts on the

spinor portion of the baryon field.
Additional dependence on the pion field enters through

the quark mass matrix spurion

Mþ ¼ 1

2
ð�Mq

y�þ �yMq�
yÞ: (8)

In this work, we compare with lattice computations
performed with degenerate u and d quark masses mu ¼
md ¼ ml, so the quark mass matrix reduces to

M q ¼ 1

3
ð2ml þmsÞ1þ 2ffiffiffi

3
p ðml �msÞT8: (9)

There are two flavor-singlet contributions to the baryon
masses with one insertion of the quark mass matrix coming
from the terms proportional to �B and �T . There are also
three flavor-octet contributions to the baryon masses with a
single insertion of the quark mass matrix, proportional to
bD, bF and bT (called bC previously [39]).
The 1=Nc expansion [30] for baryons [31] leads to the

emergence of a spin-flavor symmetry [32,33,35] for large
Nc baryons. In Ref. [40], the heavy baryon Lagrangian was
formulated in the 1=Nc expansion. Relations among the
coefficients in the heavy baryon chiral Lagrangian occur at
leading and subleading orders in the 1=Nc expansion,
which reduces the number of independent chiral coeffi-
cients in the heavy baryon chiral Lagrangian at leading and
subleading orders in 1=Nc. In addition, there exists a planar
flavor symmetry [40] at leading order in 1=Nc, which
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relates flavor-singlet to flavor-octet parameters at this or-
der, further reducing the number of independent chiral
coefficients in the heavy baryon chiral Lagrangian. In
particular, planar QCD flavor symmetry relates the
flavor-singlet quark mass parameters �B and �T to the
flavor-octet quark mass parameters bD, bF and bT at lead-
ing orders in 1=Nc. The flavor-octet and flavor-singlet
quark mass parameters are given in terms of the coeffi-
cients bn of the spin-0 flavor-octet 1=Nc expansion,

1 where
the subscript n refers to the fact that the corresponding
operator OðnÞ is an n-body quark operator which is accom-

panied by an explicit factor of N1�n
c . To first subleading

order in the 1=Nc expansion, the mass matrix parameters of
the heavy baryon chiral Lagrangian for QCD with Nc ¼ 3
are given by

bD ¼ 1

4
b2; bF ¼ 1

2
b1 þ 1

6
b2; bT ¼� 3

2
b1 � 5

4
b2;

�B ¼ 1

2
b1 þ 1

12
b2; �T ¼ 1

2
b1 þ 5

12
b2: (10)

The axial couplings D, F, C and H also have an expansion
in terms of spin-1 flavor-octet coefficients an of the 1=Nc

expansion. To first subleading order in 1=Nc, the pion-
baryon couplings of the heavy baryon chiral Lagrangian
for QCD with Nc ¼ 3 are related to the 1=Nc coefficients
by [40,41]2

D ¼ 1

2
a1; F ¼ 1

3
a1 þ 1

6
a2;

C ¼ �a1; H ¼ � 3

2
a1 � 3

2
a2:

(11)

B. Mass relations R1, R3 and R4

In Ref. [37], it was argued that a better approach to
exploring the baryon spectrum was to utilize our knowl-
edge of both large Nc as well as SUð3Þ symmetry which is
known to work well for the experimental spectrum [43];
instead of considering the individual baryon masses di-
rectly, one should explore the light quark mass dependence
of various linear combinations of the baryon masses,
chosen to have definite scaling in terms of 1=Nc and
SUð3Þ symmetry breaking.3 The various linear combina-
tions were determined in Ref. [43]. In Ref. [37], it was
demonstrated that the predicted scaling with both 1=Nc and
(ms �ml) was clearly visible in the lattice data. The first
few mass combinations had statistically meaningful values
over the range of quark masses, but there were not enough

statistics to resolve all of them. In this work, we focus our
attention on three of these mass relations, R1, R3 and R4.

4

These mass relations are given by

Ri ¼
P

j cijMjP
j jcijj

; (12)

where

M1 ¼
X
j

c1jMj

¼ 25ð2MN þM� þ 3M� þ 2M�Þ
� 4ð4M� þ 3M�� þ 2M�� þM�Þ;

M3 ¼
X
j

c3jMj

¼ 5ð6MN þM� � 3M� � 4M�Þ
� 2ð2M� �M�� �M�Þ;

M4 ¼
X
j

c4jMj ¼ ðMN þM� � 3M� þM�Þ;

(13)

and for example R4 ¼ M4=6.
These relations are designed to isolate various operators

in the combined 1=Nc and SUð3Þ breaking expansions. At
OðmqÞ, only relations R1–R4 are nonvanishing. For this

reason, the relations R5–R8 are particularly interesting to
use with light quark mass extrapolations, as the leading

contribution begins with the chiral loops at Oðm3=2
q Þ.

However, even more precise results of the baryon spectrum
than exist are needed for these relations. Using the largeNc

expansions through second nontrivial order, and working
through next-to-leading order (NLO) in the chiral expan-
sion, the relation R1 is given by

3

2
R1ðml;msÞ ¼ M0 � 3

4

�
b1 þ 5

18
b2

�
ð2ml þmsÞ

� 35a21 � 5a22
96

3F 0
� þ 4F 0

K þF 0
�

ð4�fÞ2

� a21
96

�
50

3F �
� þ 4F �

K þF �
�

ð4�fÞ2

� 4
3F��

� þ 4F��
K þF��

�

ð4�fÞ2
�
: (14)

The nonanalytic functionF �
	 ¼ F ðm	;�; �Þ is defined as

F ðm;�;�Þ ¼ ð�2 �m2 þ i�Þ3=2 ln
�
�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2 þ i�

p

��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2 þ i�

p
�

� 3

2
�m2 ln

�
m2

�2

�
��3 ln

�
4�2

m2

�
; (15)

1Here, we adopt a simplified notation for the operator coef-
ficients compared to Ref. [40].

2The 1=Nc operator analysis has recently been extended to the
two-body axial current operators [42], such as Trð �BA �ABÞ.

3Reference [44] utilized the large Nc relations between opera-
tors in baryon �PT to study the baryon spectrum, but not the
linear combinations constructed to have definite scaling in
ms �ml and 1=Nc.

4The relation R2 gives at leading order the hyperfine splitting
�0. For the current lattice data set, this quantity provides no
further information over the use of R1.
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which has the limits and properties

F ð0;�; �Þ ¼ 0

F ðm; 0; �Þ ¼ �m3

F ðm;��; �Þ ¼
8<
:
�F ðm;�; �Þ þ 2i�ð�2 �m2Þ3=2; m < j�j
�F ðm;�; �Þ þ 2�ðm2 � �2Þ3=2; m > j�j:

(16)

For the baryon spectrum, the leading nonanalytic light quark mass dependence is encoded in this function. As such, it is of
particular interest to find evidence of this behavior in the spectrum.

The mass relations R3 and R4 vanish in both the SUð3Þ chiral and vector limits, making them more sensitive to the NLO
nonanalytic light quark mass dependence. At NLO in the chiral expansion, and to the first two nontrivial orders in the large
Nc expansion, these relations are given by

R3ðml;msÞ¼20

39
b1ðms�mlÞ�20a21�5a22

117

3F 0
��2F 0

K�F 0
�

ð4�fÞ2

� a21
117

�
35

3F �
��2F �

K�F �
�

ð4�fÞ2 �3F��
� �2F��

K �F��
�

ð4�fÞ2
�
; (17)

R4ðml;msÞ ¼ � 5

18
b2ðms �mlÞ þ a21 þ 4a1a2 þ a22

36

3F 0
� � 2F 0

K �F 0
�

ð4�fÞ2

� 2a21
9

3F �
� � 2F �

K �F �
�

ð4�fÞ2 : (18)

In addition to these three mass relations, the Gell-Mann–Okubo (GMO) relation is also important to examine:

�GMO ¼ 3

4
M� þ 1

4
M� � 1

2
MN � 1

2
M�: (19)

Since the quark mass operator contains pieces which transform as both an 8 as well as a 1 under SUð3Þ transformations
[Eq. (9)], there are nonvanishing contributions to the GMO relation at subleading orders in the chiral expansion. However,
mass operators which transform as an 8make vanishing contributions to Eq. (19). The leading mass operator which makes
a nonzero contribution to the GMO relation transforms as a flavor-27. These corrections can arise either from chiral loops
or from a mass operator containing two or more quark mass insertions. This makes the GMO relation particularly
interesting to explore with lattice QCD calculations; the leading contribution to this mass relation comes from chiral loop
effects which are nonanalytic in the light quark masses. Experimentally, the GMO relation is found to be

�phy
GMO ¼ 6:45 MeV: (20)

Each baryon mass in the relation receives nonanalytic mass corrections which scale as 
MB / Ncm
3=2
s . These large

corrections may lead to the expectation that the GMO relation receives large contributions from the loop corrections.
However, one can show these Ncm

3=2
s terms are proportional to 1 under SUð3Þ transformations. Additionally, the m3=2

s

contributions transform as an 8while them3=2
s =Nc corrections transform as a flavor-27. This provides an extra 1=N2

c on top
of the chiral suppression, explaining the relatively small value of the GMO relation [40].

At next-to-leading order in the chiral and large Nc expansions, the Gell-Mann–Okubo relation is

�NLO
GMO ¼ a21

36ð4�fÞ2 ½F
0
� � 4F 0

K þ 3F 0
� þ 2F �

� � 8F �
K þ 6F �

�� þ 4a1a2 þ a22
36ð4�fÞ2 ½F 0

� � 4F 0
K þ 3F 0

��: (21)

In this article, we will also be interested in the next-to-next-to-leading order (NNLO) formula. This can be determined
from Refs. [45,46]. Retaining the subleading Nc relations for the quark mass operators [Eq. (10)] but only the leading
relations for the axial couplings (a2 ! 0), the NNLO contributions to the GMO formula are
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�NNLO
GMO ¼ 1

48

ðbM3 þ bM4 Þðms �mlÞ2
4�f

þ 23a21
384M0

�
m4

� � 4m4
K þ 3m4

�

ð4�fÞ2
�

þ
�

bA3
96�f

þ 13a21
192M0

��
m4

� lnðm2
�=�

2Þ � 4m4
K lnðm2

K=�
2Þ þ 3m4

� lnðm2
�=�

2Þ
ð4�fÞ2

�

þ a21
ð4�fÞ2

�
b1

�
2ml þms

12
ðJ �

� � 4J �
K þ 3J �

� þm2
� � 4m2

K þ 3m2
�Þ
�

þ b2

��9ms þ 16ml

24
ðJ �

� � 4J �
K þ 3J �

�Þ þ 3

2
ðms �mlÞðJ �

� � J �
KÞ �

ms �ml

6
ðm2

� �m2
kÞ

� 2

3
ðms �mlÞ

�
m2

K ln

�
m2

K

�2

�
�m2

� ln

�
m2

�

�2

��
þ 16ml þ 5ms

72
ðm2

� � 4m2
K þ 3m2

�Þ
��
; (22)

where the function J �
	 ¼ J ðm	;�; �Þ encodes additional

nonanalytic dependence on the light quark masses

J ðm;�;�Þ ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2 þ i�

p
ln

�
�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2 þ i�

p

��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2 þ i�

p
�

þm2 ln

�
m2

�2

�
� 2�2 ln

�
4�2

m2

�
; (23)

and has the limits and properties

J ð0;�;�Þ¼0;

J ðm;0;�Þ¼m2 ln

�
m2

�2

�
;

J ðm;��;�Þ¼
�J ðm;�;�Þþ4i��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�m2

p
; m< j�j

J ðm;�;�Þ�4��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2��2

p
; m> j�j:

(24)

III. EVIDENCE FOR NONANALYTIC LIGHT
QUARK MASS DEPENDENCE IN BARYON

SPECTRUM

A. Details of the lattice results

For this work, the numerical results of Ref. [12] are
utilized, which are not the most recent but are still the
most statistically precise data set available. The lattice
calculation was performed with a mixed action composed
of domain-wall fermion [47–51] propagators generated on
the nf ¼ 2þ 1 asqtad-improved [52,53], rooted, stag-

gered sea quark configurations generated by the MILC
Collaboration [54]. This particular mixed-action setup
has been used quite extensively by the LHP [12,55–59]
and NPLQCD [14,60–74] Collaborations as well as some
independent works [75–79]. The mixed-action effective
field theory, which encodes the discretization effects spe-
cific to this particular mixed action, has also been thor-
oughly developed [80–93]. However, the baryon spectrum
results used in this work exist at only a single lattice
spacing. There is also reason to believe the discretization
systematics are small [12,88,91] and, to the order we are
working in the mixed-action effective field theory, they are

subleading. For these reasons, the continuum �PT extrapo-
lation formula, presented in the previous section, is used.
The latest scale setting by the MILC Collaboration [2],

as detailed in Ref. [74], is used; numerical results of
Ref. [12] are first converted into r1 units,5 and then the

MILC determination of r1ðmphy
l ; m

phy
s Þ is used to convert to

physical units. Finally, extrapolations are performed as
functions of the quark masses. The quark masses are not
renormalization scheme or scale independent. However, at
a fixed lattice spacing, the quark mass renormalization can
be absorbed into the quantity B, where at leading order the
Nambu-Goldstone boson masses are given by m2

i;j ¼
Bðmi þmjÞ. Lattice quark masses are then defined in

physical units by

r
phy
1 mlatt

q � r1
a
ðamq þ amresÞ; (25)

where mres is the residual chiral-symmetry breaking
present with the domain-wall lattice action at finite fifth
dimensional extent [94]. These numerical values are col-
lected in Table I.
To extrapolate the lattice results to the physical point,

NLO �PT [95] is used to determine the values of mlatt
q

which reproduce

m
phy
� � 138 MeV; m

phy
K � 496 MeV: (26)

It is interesting to note that, despite ignoring the issues of
quark mass renormalization, this yields the values

mlatt
l;phy ¼ 3:0ð2Þ MeV; mlatt

s;phy ¼ 99ð5Þ MeV; (27)

which are remarkably similar to the proper lattice deter-
mination of the light and strange quark masses [9]. The
NLO �PT formula provides a controlled and convergent
description of bothm� andmK over the full range of quark
masses used (see Fig. 1).

5The length scale r1 is determined with the heavy quark
potential, defined such that r21Fðr1Þ ¼ �1.
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B. Large Nc and consistency of hyperon axial charges

One of the major failings in the application of SUð3Þ
heavy baryon �PT is a lack of consistency between the
determination of the axial coupling constants, D, F, C and
H when determined from the baryon spectrum [12,13]
versus a direct calculation of the hyperon axial charges
[75]. The direct lattice determination6 yields values con-
sistent with the phenomenological values [96], while the
indirect determination from the baryon spectrum yields
values consistent with zero. The small values of the axial
couplings returned indicate the numerical results do not
support evidence for the leading nonanalytic light quark
mass dependence predicted in the spectrum. This problem
is not unique to the SUð3Þ heavy baryon �PT extrapola-
tions, with large contributions from kaon and eta loops, but
also observed in the SUð2Þ extrapolation of the nucleon
mass. As demonstrated in Refs. [12,16], for m� *
300 MeV, there are large cancellations between the LO,
NLO and NNLO contributions to the nucleon mass; in
order to accommodate the large negative mass contribution
occurring at NLO, the leading nonanalytic light quark mass
dependence, there must be a compensating large but posi-
tive contribution from the LO and NNLO terms, signaling
a breakdown of the perturbative expansion for these heav-
ier pion masses. A similar and more severe situation occurs
for the SUð3Þ chiral expansion. As we shall demonstrate in
the next sections, it may be we are simply asking the wrong
questions of heavy baryon �PT.

1. Mass relation R1

The mass relation R1 is a flavor-singlet mass combina-
tion designed to isolate the M0 contribution plus higher
order chiral corrections. Starting with the lightest quark
mass and including successively heavier values of mq,

there are four possible ranges of light quark masses which
can be used to perform the chiral extrapolation analysis.

Both LO and NLO analyses are performed over all these
ranges of light quark masses. In the NLO analysis, the
subleading in Nc axial coefficient is set to zero, a2 ¼ 0.
Several choices of the parameter f are taken to explore
systematics from higher orders in the chiral expansion:

ðiÞ f ¼ f�ðmqÞ;
ðiiÞ f2 ¼ fKðmqÞf�ðmqÞ;
ðiiiÞ f ¼ fKðmqÞ;

(28)

where f�ðKÞðmqÞ is the value of the pion (kaon) decay

constant calculated at the quark mass mq. From the LO

analysis, the following LECs are obtained:

M0½LO� ¼ 903ð20Þ MeV;�
b1 þ 5

18
b2

�
½LO� ¼ �2:73ð11Þ:

(29)

Extrapolating to the physical values of the light and strange
quark masses gives

3

2
R1½LO� ¼ 1124ð18Þ MeV; (30)

which is to be compared with 3
2R

phy
1 ¼ 1093 MeV.

Performing the NLO analysis, the LECs are determined
to be

M0½NLO� ¼ 899ð40Þ MeV;�
b1 þ 5

18
b2

�
½NLO� ¼ �3:26ð70Þ;

a1½NLO� ¼ 0:24ð30Þ;
(31)

with a determination

3

2
R1½NLO� ¼ 1107ð50Þ MeV: (32)

In Fig. 2, representative fits of R1 from LO and NLO are
displayed. One may take comfort in the consistent values
of the LECs M0 and b1 þ 5

18 b2 between the LO and NLO

TABLE I. The numerical lattice data from Ref. [12], converted to physical units. The uncertainties are the statistical and systematic
uncertainties from Ref. [12] combined in quadrature. The strange quark mass is fixed to the largest amq value in all calculations:

amsea
s ¼ 0:050, amval

s ¼ 0:081.

� 6.76 6.76 6.79 6.81 6.83 6.85

amsea
l 0.007 0.010 0.020 0.030 0.040 0.050

amval
l 0.0081 0.0138 0.0313 0.0478 0.0644 0.081

amres
l 0.00160(3) 0.00157(1) 0.00123(1) 0.00101(1) 0.00083(2) 0.00073(3)

mlatt
q [MeV] 16.8 26.6 58.0 88.8 121 155

m� [MeV] 320(2) 389(2) 557(1) 685(2) 805(4) 905(2)

mK [MeV] 640(2) 659(2) 726(1) 787(2) 852(4) 905(2)
3
2R1 [MeV] 1285(6) 1315(6) 1454(6) 1556(12) 1698(13) 1769(9)

R3 [MeV] �113ð3Þ �100ð2Þ �64ð1Þ �41ð1Þ �19ð1Þ 0

R4 [MeV] �39ð2Þ �33ð1Þ �19ð1Þ �11ð1Þ �4:4ð0:6Þ 0

�GMO [MeV] 5.6(2.3) 1.8(1.2) 0.18(48) 0.13(35) 0.13(0.09) 0

6In Ref. [75], gA, g�� and g�� were computed which were
used to infer the values of D and F.
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analyses. However, this is not surprising given the small
value of a1 determined in the NLO analysis. This small
value is consistent with no contributions from the NLO
terms and inconsistent with the known phenomenological
determination of the axial coupling. This is not surprising
given the convergence issues observed in the SUð2Þ ex-
trapolation of the nucleon mass [12,16]. One is left to
conclude that the SUð3Þ heavy baryon �PT does not pro-
vide a controlled, convergent expansion for the mass com-
bination R1 for the range of quark masses used in this work
and a value of a1 consistent with phenomenology or direct
lattice calculations of the baryon axial charges.

2. Mass relations R3 and R4

The relations R3 and R4 both receive leading contribu-
tions from flavor-octet mass operators, vanishing in both
the SUð3Þ vector as well as SUð3Þ chiral limits. From these
symmetries, the relations R3 and R4 are more sensitive to
the nonanalytic light quark mass dependence occurring at
NLO in the chiral expansion. As with the analysis of R1,

three choices of the parameter f are taken to estimate
higher order effects [Eq. (28)]. The LO expressions for
R3 and R4, Eqs. (17) and (18) with ai ¼ 0, do not describe
the numerical results well; it is clear higher order contri-
butions are necessary for extrapolations of this data. At
NLO, the analysis of R3 and R4 becomes correlated. The
full covariance matrix is constructed as described in
Ref. [37]. The numerical results of Ref. [12] are insuffi-
cient to constrain both the leading and subleading axial
coefficients, and so the analysis is restricted to the set of
LECs

� ¼ ðb1; b2; a1Þ; (33)

with a2 ¼ 0. From the NLO analysis, the LECs are deter-
mined to be

b1½NLO� ¼ �6:6ð5Þ;
b2½NLO� ¼ 4:3ð4Þ;
a1½NLO� ¼ 1:4ð1Þ:

(34)

FIG. 2 (color online). Representative fits to R1 from LO (left) and NLO (right) HB�PT analysis. The blue star is the physical value,
not used in the analysis. The upper error band results from a fit to the lightest four numerical data and the lower band is the result
extrapolated to the physical value of the strange quark mass mlatt

s ! mlatt
s;phy [Eq. (27)].

FIG. 1 (color online). The results of SUð3Þ �PT analysis of the pion and kaon masses. The left plot displays the fit result with the
data and the right plot shows the size of the NLO contributions compared to LO. This particular fit is performed to just the lightest
three values of the light quark mass, and it is clear from the plot that the fits including all six points yield consistent results.
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Using the leading large Nc relations with a2 ¼ 0 in
Eq. (11), this corresponds to

D ¼ 0:70ð5Þ; F ¼ 0:47ð3Þ;
C ¼ �1:4ð1Þ; H ¼ �2:1ð2Þ:

(35)

The significance of this is prominent; the large value of the
axial coupling is strong evidence for the presence of the
nonanalytic light quark mass dependence in these mass
relations. Further, this is the first time an analysis of the
baryon spectrum has returned values of the axial couplings
consistent with phenomenology.7

However, caution is in order. Examining the resulting
contributions to R3 and R4 from LO and NLO separately,
one observes a delicate cancellation between the different
contributions (see Fig. 3). Further studies are needed with
more numerical data sufficient to also constrain the pa-
rameter a2 as well as the NNLO contributions.

C. Gell-Mann–Okubo relation

The leading contribution to the Gell-Mann–Okubo re-
lation is from a flavor-27, which in HB�PT comes from
the leading nonanalytic light quark mass dependence
[Eq. (21)]. For this reason, it is a particularly interesting
mass relation to study, as has been done in Refs. [12,62].
In this work, the analysis is taken further. First, it is
demonstrated that the numerical results are inconsistent
with a Taylor expansion about the SUð3Þ vector limit.
Second, a NNLO analysis is performed for the first time

and it is demonstrated, at this order, HB�PT naturally
accommodates the strong light quark mass dependence
observed, and is dominated by the nonanalytic
contributions.
In Fig. 4, four plots are displayed. In each plot, the (red)

star is the physical value, which is not used in the analysis.
The (blue) circles are numerical data points included in the
analysis and the (gray) squares are not included. The filled
(blue) band is the one-sigma confidence interval. The first
plot (upper left) is the result of a NLO analysis of the GMO
formula, allowing the axial coupling to be determined from
the data, resulting in a small, but nonzero, value for a1. For
comparison, the upper right plot displays the predicted
NLO results for the GMO relation for a1 ¼ 1:4ð1Þ. This
highlights tension between the NLO analysis/prediction
and the numerical data.
Close to the SUð3Þ vector limit, the GMO relation can be

described by a Taylor expansion in ms �ml,

�V
GMO ¼ d2ðms �mlÞ2 þ d3ðms �mlÞ3 þ � � � : (36)

The leading term proportional to ðms �mlÞmust vanish as
it transforms as a flavor-8. The ðms �mlÞ2 contribution is
equivalent to a NNLO contribution from HB�PT and the
ðms �mlÞ3 contribution is equivalent to a NNNNLO
HB�PT contribution. The lower left plot displays a fit
to the numerical data to these first two nonvanishing
contributions in the Taylor expansion, which do not give
rise to the observed steep rise asmlatt

l ! 0. Inclusion of the
ðms �mlÞ4 term provides a fit which agrees with the data
and the physical value but with a severely nonconverging
expansion for mlatt

l < 100 MeV.
Finally, the NNLO analysis is displayed, using

Eqs. (21) and (22) with a2 ¼ 0, and taking a1 from the
determination from R3 and R4 (bottom right). Only the
NNLO analysis is consistent with the values of the numeri-
cal data over the full range of light quark masses, in
particular, the steep rise observed as mlatt

l ! 0, as well as

FIG. 3 (color online). The LO and NLO contributions to R3 (left) and R4 (right). A (blue) star is used to denote the physical
values, not included in the analysis. The particular fit displayed is a combined analysis of R3 and R4 to the data at the lightest three
values of mlatt

l .

7Finding values of the axial couplings consistent with phe-
nomenology has not just been a challenge for lattice QCD, but
also observed in large Nc �PT analysis of the experimentally
measured baryon magnetic moments [97,98]. It is also interest-
ing to note that while the SUð3Þ chiral expansion for the baryon
spectrum is not convergent, it was found that the volume
dependence of the octet baryon masses is consistent with
SUð3Þ HB�PT. Analysis of the volume dependence yielded a
large value of g�N�ðCÞ with gA fixed to its physical value [99].
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the value of the axial coupling a1 determined from phe-
nomenology. However, as in the case of R3 and R4, the
convergence is not great. The NNLO contributions are
smaller than the NLO contributions over the full range of
quark masses but are as large as 90% in magnitude com-
pared with the NLO contributions: see Fig. 5. Despite this
issue, the success of the NNLO analysis is further evidence
for the presence of nonanalytic light quark mass depen-
dence in the baryon spectrum.

VI. CONCLUSIONS

In this article, we have presented the first substantial
evidence for nonanalytic light quark mass contributions to
the baryon spectrum. This was achieved by comparing the
predictions from heavy baryon �PT, combined with the
large Nc expansion to relatively high statistics lattice com-
putations of the octet and decuplet spectrum. The numeri-
cal results available [12] allowed for a detailed comparison
of the mass relations R1, R3 and R4 [43] as well as the Gell-
Mann–Okubo relation. It was demonstrated that the mass
relation R1 does not support large values of the axial
couplings, signaling a failed convergence of SUð3Þ heavy
baryon �PT for this quantity. An analysis of mass relations
R3 and R4 provided, for the first time, values of the axial
couplings which are consistent with the phenomenological
determination, signaling significant contributions from
nonanalytic light quark mass dependence in R3 and R4.
At leading order in the large Nc expansion, it was found

D ¼ 0:70ð5Þ; F ¼ 0:47ð3Þ;
C ¼ �1:4ð1Þ; H ¼ �2:1ð2Þ:

It was further demonstrated that the Gell-Mann–Okubo
relation is inconsistent with the first two nonvanishing
terms in a Taylor expansion about the SUð3Þ vector limit,
and that the steep rise in the numerical data, observed as
mlatt

l ! 0, can only be described by the NNLO heavy

FIG. 5 (color online). The ratio of NNLO to NLO contribu-
tions to the GMO relation from the NNLO analysis.

FIG. 4 (color online). GMO mass splitting plotted as a function of mlatt
l . The star is the Particle Data Group point, not included in the

analysis. The various fits are described in the text. In a given plot, the (blue) circles denote results included in the analysis while the
(gray) boxes are excluded.
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baryon �PT formula which is dominated by chiral loop
contributions. Taken together, these observations indicate
the first significant evidence for the presence of nonana-
lytic light quark mass dependence in the baryon spectrum.

This is not the definitive work however. There are sev-
eral known systematics which were not addressed in the
present article, and require future, more precise lattice
results:

(i) the numerical data used [12] exist at only a single
lattice spacing,

(ii) a continuum �PT analysis was performed,
(iii) there may be contamination from finite volume

effects [99],
(iv) the convergence issues need further examination,
(v) more precise numerical results are needed to explore

mass relations R5–R8 which are more sensitive to
nonanalytic light quark mass dependence,

(vi) results with smaller values of the light quark mass
are desirable,

(vii) the strange quark mass used in this work is known
to be �25% to large [100].

We regard the most severe of these systematics the
convergence issues observed in R3, R4 and the GMO
relation. While this work is very promising, the analysis
needs to be carried out to at least one higher order in both
the chiral and large Nc expansions. A further order in the
large Nc expansion is needed to determine the subleading
axial coupling a2, allowing for a more detailed comparison
with the phenomenologically determined axial couplings,
D, F, H and C. Taking the analysis to one higher order in

the chiral expansion is crucial to test whether the observed
convergence improves or not, and also to test whether
the large values of the axial couplings will persist.
Unfortunately, exploring these systematics, as well as all
mentioned above, is beyond the scope of this work, as it
requires a larger set of statistically precise numerical lattice
QCD results, which do not yet exist. There are currently
some lattice calculations underway which may be able to
explore these mass relations in more detail. In particular,
the new strategy presented in Refs. [101,102], where the
sum of the quark masses is held fixed, mu þmd þms ¼
�m, for a range of light and strange quark masses, proves
very promising for comparing with predictions from �PT.
Further, the strategy is not limited to the spectrum, with
similar relations having been recently determined for the
baryon magnetic moments [103].
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