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We calculate critical couplings and string tensions in SUð2Þ and SUð3Þ pure lattice gauge theory by a

simple and inexpensive technique of two-lattice matching of renormalization group block transformations.

The transformations are potential moving decimations generating plaquette actions with large number of

group characters and exhibit rapid approach to a unique renormalized trajectory. Fixing the critical

coupling �cðN�Þ at one value of temporal lattice length N� by Monte Carlo (MC) simulation, the critical

couplings for any other value of N� are then obtained by lattice matching of the block decimations. We

obtain �cðN�Þ values over the range N� ¼ 3–32 and find agreement with MC simulation results to within a

few percent in all cases. A similar procedure allows the calculation of string tensions with similarly good

agreement with MC data.
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I. INTRODUCTION

In this paper we apply the renormalization group
(RG) based technique of ‘‘lattice matching’’ via block
transformations in pure lattice gauge theories. Instead of
implementing block transformations by means of renor-
malization group Monte Carlo (MCRG) methods, how-
ever, we employ explicit RG recursion relations of the
‘‘potential moving’’ type. The block transformations (dec-
imations) implemented by these recursions are of course
approximate but can, in principle, be systematically im-
proved. They turn out to be surprisingly effective for
various purposes. Here we use lattice matching of these
decimations to obtain critical couplings and string tensions
for the gauge groups SUð2Þ and SUð3Þ.

Specifically, we start with one critical coupling obtained
by MC simulation at a certain temporal lattice size N�. We
then employ lattice matching of our decimations to com-
pute the critical couplings�cðN�Þ at other values ofN�. We
find that these values agree with the values obtained by MC
towithin at most a few percent. This procedure then affords
a rather inexpensive method for obtaining critical cou-
plings over a wide range of lattice sizes. In fact, since the
recursions are locally specified, there appear to be no
intrinsic lattice size limitations in the method.

A different method for inexpensive estimation of critical
couplings has recently been presented in Ref. [1]. In this
approach the strong coupling expansion of the SUðNÞ
theory is used to derive a three-dimensional ZðNÞ effective
Polyakov loop action. The easily ascertained critical values
of the effective action parameters can then be mapped back
to the critical couplings of the original SUðNÞ theory. It
would be interesting to consider combining a RG
decimation-based method such as the one presented here

with that of Ref. [1] to extend the range where the latter can
be applied.
Our lattice matching of decimations can also be applied,

by a closely analogous procedure, to the computation of
string tensions for various values of �. Again, the com-
puted values are in very good agreement with the MC data.
The paper is arranged as follows. Our RG transforma-

tions and the resulting decimation recursions are formu-
lated in Sec. II. The lattice matching method and its
application via our decimations to the computation of
critical couplings and string tensions are outlined in
Sec. III. Our numerical results are presented in Sec. IV.
Some concluding remarks are given in Sec. V.

II. RG DECIMATIONS

An RG block transformation with scale factor b maps a
system on a lattice of spacing a to a system on a lattice of
spacing ba. The flow in the space of interactions (cou-
plings) under successive block transformations defines the
RG flow of the system.
Given the definition of some exact block transformation,

its practical implementation, whether by analytical or nu-
merical methods, generally involves some approximation
or truncation. This is certainly the case if one aims at
obtaining the effective action after each step. The standard
method for implementation by numerical simulation is the
MCRG method. Alternatively, one may incorporate some
judicious approximations in the definition of the transfor-
mation at the outset so that it becomes explicitly comput-
able. Potential moving transformations are in this class.
Partition a hypercubic d-dimensional lattice of spacing a

into d-dimensional hypercubes of linear size ba (b an
integer). The potential moving procedure [2] in the case
of pure gauge theories consists of moving all plaquette
interactions in the interior of each such hypercube to its
(d� 1)-dimensional boundary. After the move their

*darktree@physics.ucla.edu
†tomboulis@physics.ucla.edu

PHYSICAL REVIEW D 86, 074507 (2012)

1550-7998=2012=86(7)=074507(6) 074507-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.86.074507


strength is renormalized by some adjustable factor to com-
pensate for the move. Next the plaquettes inside this
(d� 1)-dimensional boundary are moved to its (d� 2)-
dimensional boundary and similarly renormalized. This
process is continued till, after n moves, one reaches a
boundary of dimensionality ðd� nÞ ¼ 2; i.e., one ends
up with the system on a lattice of spacing ba whose
elementary plaquettes are tiled by at most b2 plaquettes
of the original lattice. Thus, in d ¼ 3 only one move
(n ¼ 1) is required, in d ¼ 4 two moves (n ¼ 2) are
required, and so on. The process, described in detail in
Ref. [2], is generally applicable to lattice systems, e.g., to
spin systems with bond interaction moves replacing pla-
quete interaction moves.

It should be noted here that this series of moves may
actually be implemented in a number of somewhat differ-
ent ways. Every time a move is performed a certain subset
of integrations over the bond variables becomes exactly
doable. One may elect to perform or not perform these
integrations before carrying out the next move. Performing
integrations before moves generally results into anisotropic
couplings for the resulting blocked lattice action
(cf. Ref. [2] for examples). Also, different renormalization
parameters may be chosen for each move. Even more
elaborate schemes can be devised introducing more
decimation parameters.

The simplest choice though is to first perform all moves
in sequence, as described above, and with common pla-
quette interaction renormalization � after each move. This
is the scheme we adopt here. It results in isotropic cou-
plings in all directions, and plaquettes on the blocked
lattice (of spacing ba) tiled by exactly b2 plaquettes of
the original lattice; and with each of these tiling plaquettes

renormalized by a total factor � ðd�2Þ. The integrations over
those bond variables belonging to the tiling plaquettes, and
interior to the blocked lattice plaquettes, can then be
performed and renormalized. This completes the block
step yielding the theory on the blocked lattice as given
by (5) below.

Explicitly, this procedure may be formulated as follows.
Let, as usual,Ub 2 G denote the bond variables, andUp ¼Q

b2@pUb their product around plaquette p. General ele-

ments of the gauge group G are denoted by U. Let
ApðUp; nÞ denote a plaquette action on lattice of spacing

bna and consider the character expansion

expð�ApðUp; nÞÞ ¼
X
j

djFjðnÞ�jðUpÞ: (1)

The sum is over all inequivalent irreducible representa-
tions labeled by j, with �j and dj denoting the character

and dimension, respectively, of the j-th representation.
From (1), using orthogonality of characters, one has

FjðnÞ ¼
Z

dU expð�ApðU; nÞÞ 1
dj

��
j ðUÞ; (2)

where dU denotes Haar measure on G. In this paper we
consider onlyG ¼ SUðNÞ, N ¼ 2, 3. The action itself is of
course completely specified by the set of FjðnÞ coefficients
and vice versa. It can be written in the general form

ApðUp;nÞ¼
X
j

1

dj
�jðnÞ 12lj ½�jðUpÞþ�jðU�1

p Þ� (3)

with lj ¼ 1 for self-conjugate and lj ¼ 2 for non-self-

conjugate representations. (For SUð2Þ, in particular,
lj¼1 for all j.) In general we need consider actions of

the form (3) with any (infinite) number of characters, i.e.,
couplings �j. It is useful to define an effective coupling

gðnÞ characterizing a given action of the form (3). With ftg
denoting the SUðNÞ generators and jm̂j ¼ 1, we let

�ðnÞ ¼ 2N

gðnÞ2
� 2N

d2Apðei�m̂�t; nÞ
d�2

���������¼0
: (4)

(4) is of course independent of the direction m̂. In the
perturbative regime this reduces to the usual definition
of gauge coupling. In the non-perturbative regime any
definition of a ‘‘coupling’’ is of course some scheme-
dependent choice. We adopt (4) to track the RG evolution
of (1) and (3); it provides, in particular, a good parametri-
zation of the renormalized trajectory (see below).
A lattice block step bna ! bnþ1a of the type described

above can now be succinctly formulated as a prescription
for obtaining the character expansion coefficients
Fjðnþ 1Þ in terms of the FjðnÞ:

Fjðnþ 1Þ ¼
�Z

dU

�X
i

diFiðnÞ�iðUÞ
�
� ðd�2Þ 1

dj
��
j ðUÞ

�
r2

:

(5)

The inner bracket factor results from the symmetric
potential moves described above. Subsequent boundary
integrations modify each resulting expansion coefficient
by a further amount controlled by the parameter r.
Specification of � and r completes the block step.
Our decimation transformation bna ! bnþ1a is defined

by (5) with

� ¼ b½1� cgðnÞ2� (6)

r ¼ b½1� cgðnÞ2� ; (7)

where c is an adjustable decimation parameter. For suffi-

ciently large effective coupling values the gðnÞ2 dependence
in (6) and (7) has to be suitably leveled off [3], since we
require � > 0, r > 0. This is, however, not explicitly in-
dicated here as this regime is well outside the range of
couplings encountered in our applications of the recursions
(5) below.
The form (6) and (7) may be motivated as follows.

Whenever a plaquette move (shaded plaquettes) is per-
formed in one given direction (Fig. 1), a lattice spacing
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anisotropy by a factor b is created relative to the other
directions together with a renormalization of the unshaded
plaquettes. At weak coupling the effect of integrating out
the inner (shaded) plaquette bonds can be the obtained
analytically to one-loop following Ref. [4]. The result
amounts to a boundary (unshaded) plaquette renormaliza-
tion by a factor � of precisely the form (6) with some
computable c ¼ cðbÞ. We then apply this correction with
common c in all other directions so as to arrive at the
isotropic decimation rule (5). In principle, more involved
rules involving different cðbÞ in different directions, and
indeed different choices for � and r, are possible; such
more general decimation schemes, however, will not be
considered here [5].

In the following c, for given b, will be treated as a
decimation parameter tuned for optimization of the proce-
dure outlined in the next section. Such tuning turns out in
fact to be crucial. It is interesting to note, however, that it
gives values for c (Sec. IV) not far from the weak coupling
computed values [4].

It is convenient to work with normalized coefficients
fj ¼ Fj=F0 by factoring out the trivial representation co-

efficient in (1); the correspondingly normalized action
differs by a trivial shift of the constant (trivial character)
part in (3). Effective couplings (4) are also conveniently
computed directly in terms of the ffjg.

III. LATTICE MATCHING OF DECIMATIONS

Given a d-dimensional lattice system with action AðKÞ
defined by a set of couplings K ¼ fKig RG block trans-
formations by a scale factor b generate a flow in action
space

Kð0Þ ! Kð1Þ ! K2Þ ! � � � ! KðnÞ ! � � � ; (8)

where KðnÞ ¼ fKðnÞ
i g denotes the couplings after n blocking

steps from the initial point Kð0Þ � K. Since the physical
correlation length remains of course fixed, the (dimension-

less) lattice correlation length �ðnÞ at step n gets rescaled as

�ðnÞ ¼ �ð0Þ=bn.
The resulting RG flow is toward a fixed point along

irrelevant directions (couplings) and away from the fixed
point along relevant directions (couplings). Irrespective of

the starting point Kð0Þ then, the flow, after a sufficient
number of blocking steps, will approach the unique

Wilsonian renormalized trajectory (RT) emanating from
the fixed point along the relevant directions.
Consider two sets of couplings K and K0. If the two RG

flows starting from them end up at the same point on the RT
after the same number of blocking steps n, then, since at

the end point �ðnÞ ¼ �0ðnÞ, the correlation lengths �ð0Þ � �

and �0ð0Þ � �0 atK and K0, respectively, must be equal; and
since the physical correlation length is constant, K and K0
must also have the same lattice spacing a. By the same
token, if the flows from K and K0 reach the same point on
the RT after n and (n�m) steps, respectively, then the
lattice correlation lengths at K and K0 must be related as

�0 ¼ b�m�; (9)

and the lattice spacings a and a0 as

a0 ¼ bma: (10)

To identify such pairs of couplings we need to ascertain
that, after n and (n�m) RG steps respectively, the same
point is reached on the RT. This can be done in two ways.

One is to show that AðKðnÞÞ ¼ AðK0ðn�mÞÞ. This requires
that one obtain the blocked action at each step. Another
way is to show that the expectations of every operator,
measured after performing the corresponding number of
blocking steps from the initial two actions, agree. Either
way, blocking n times from a starting point K, and then
adjusting another starting point K0 so that after (n� 1), or,
more generally, (n�m) times, matching is achieved is
referred to as two-lattice matching [7].
If blockings are performed numerically by MCRG, the

second method appears easier to use. Obtaining the
blocked action can be difficult, whereas it is possible, at
least in principle, to generate a Boltzmann-weighted con-
figuration ensemble for the blocked action by instead
blocking the configurations of an ensemble generated
from the original action. These can then be used to measure
observables [8]. In practice, of course, due to lattice size
limitations, only a rather small number of block steps is
possible by MCRG, so getting close enough to the RT is
not guaranteed. In this connection, since the location of
the fixed point is block definition dependent, appropriate
fine-tuning of free parameters in the block transformation
definition can be crucial for achieving rapid approach in
few steps.
In this paper we employ two-lattice matching with RG

block transformations implemented by the recursions (5)
described above. They can be explicitly evaluated to any
desired accuracy on lattices of any size, so no inherent
limitations due to finite size arise. The blocked action
resulting after each RG step is explicitly obtained, so it
can used to ascertain approach to the RT and perform two-
lattice matching. The transformations contain one parame-
ter (cf. (6) and (7)), which, as already mentioned, is fixed
for optimization of the matching.

FIG. 1. Decimation with b ¼ 2 along one direction (arrows)
by moving shaded plaquettes to the position of the unshaded
plaquettes and renormalizing the strength of the latter.
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In the following the starting action (n ¼ 0) will always be
taken to be the fundamental representation Wilson action.
Other choices such as mixed actions containing several
representations can be treated in exactly the same way.
The flow under successive decimations reaches a unique
RT irrespective of such a choice, though of course the
number of steps needed to reach it depends on the initial
point in action space. The important feature characterizing
these decimations is that, regardless of the choice of the
initial plaquette action, a single step suffices to generate an
action of the form (3) generally containing the full (infinite)
set of representations. Flow in such an infinite-dimensional
interaction space makes it possible to avoid getting stuck at
(finite-dimensional) lattice artifact boundaries.

With the fundamental representation Wilson action as
the starting point we find that the approach to the unique
RT is very rapid; it generally takes only two steps to get to
it. This is illustrated in Fig. 2.

A good way to parametrize points along the RT is by the
effective coupling (4) of the action corresponding to each
RT point. If, starting from some Wilson action coupling �,

after n steps the point �ðnÞð�Þ lies on the RT, subsequent

RG steps generate a sequence of points �ðnþ1Þ, �ðnþ2Þ; . . .
hopping along the RT. With scale factor b ¼ 2, and for all

large and intermediate values of �ðnÞ, the effective beta
function is varying slowly enough for a linear interpolation
to provide an excellent approximation to the RT points

lying between pairs of neighboring points �ðnÞ, �ðnþ1Þ. So
we write

�ðnþhÞ ¼ �ðnÞ þ hð�ðnþ1Þ � �ðnÞÞ; 0< h< 1: (11)

This may be viewed as performing n steps followed by a

step with fractional scale factor to reach a point �ðnþhÞ

lying between point �ðnÞ and �ðnþ1Þ on the RT. [The block
transformation rules (5)–(7) can indeed be formally ex-
tended to non-integer scale factor, but we need not make
actual use of this here.] Equation (11) asserts that the
location of this intermediate point is accurately given by
linear interpolation.
Though explicitly computable to any accuracy, our dec-

imations are of course approximate. They become exact in
the strict � ! 1 limit. Computation of the step scaling
function (beta function) from the decimations in the weak
coupling scaling region reproduces the perturbation theory
prediction to within 2–3%. The next question to be probed
by further computation then is how close an approximation
these decimations give to the exact RT in the transition to
the non-perturbative regime. MCRG construction of
blocked actions [9] shows that one-plaquette terms with a
large number of characters are the most relevant action
terms for long-scale dynamics. This is precisely the type of
action resulting from our decimations.
In the following two-lattice matching of our RG deci-

mations is used to obtain critical couplings and string
tensions for the SUð2Þ and SUð3Þ gauge theories.

A. Critical couplings

Consider the (3þ 1)-dimensional lattice theory at
physical temperature T. Since T ¼ 1=aN� for lattice of
time extent N� and spacing a, lattice of extent N0

�, spacing
a0 is related by

a0 ¼ N�

N0
�

a: (12)

If after blocking the two lattices n and n0 times, respec-
tively, the two flows reach the same point on the RT
trajectory, (10) and (12) imply

n� n0 ¼ logb

�
N�

N0
�

�
: (13)

If, in particular, T ¼ Tc, one has

�ðnÞð�cðN�ÞÞ ¼ �ðn0Þð�cðN0
�ÞÞ: (14)

Equations (13) and (14) afford a straightforward way of
obtaining critical couplings by matching once one such
coupling is known. Assuming �cðN�Þ known, it is conve-
nient to simply choose

n ¼ logbN� n0 ¼ logbN
0
�; (15)

so that (13) is satisfied. n, n0 must be large enough to be on
the RT, but this is not a problem since one can always
simply add a common integer to the right-hand side of both
equations in (15). Also, note that the so-chosen n or/and n0
may turn out to be noninteger. In such a case, one performs
½n� and ½n� þ 1 steps, where ½n� is the nearest integer to the
chosen n from below, and uses (11)—and similarly for n0.
With n, n0 and �cðN�Þ given, (14) is then solved for

0.0

0.2

0.4

0.6f 1
2

0.1

0.2

0.3
0.4

f1

0.05

0.10

0.15

f 3
2

FIG. 2 (color online). RG flow and rapid approach to a unique
renormalized trajectory starting from the SUð2Þ fundamental
representation Wilson action with � ¼ 4 [green (light) dots]
and � ¼ 2:5 [red (dark) dots]. The first three non-trivial expan-
sion coefficients in (1) (normalized) are shown.
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�cðN0
�Þ, i.e., the starting point of the flow on the N0

� lattice
is adjusted to satisfy (14).

B. String tensions

The string tension �̂ð�Þ ¼ a2� is another quantity that
can be obtained at different couplings by the same method.
Consider two RG flows with starting point the Wilson
action at couplings �0 and �1 and ending up at the same
point on the RT after n0 and n1 steps, respectively. Then

�ðn0Þð�0Þ ¼ �ðn1Þð�1Þ (16)

and

a1
ffiffiffiffi
�

p ¼ bðn0�n1Þa0
ffiffiffiffi
�

p
(17)

by (10).
Suppose we know �̂ð�0Þ. Choose n0 large enough to be

on the RT. Then n1 is fixed so that (16) is satisfied. In
practice this is done by performing n and nþ 1 decimation
RG steps with initial coupling �1, where n is determined
so that

ð�ðn0Þð�0Þ��ðnþ1Þð�1ÞÞð�ðn0Þð�0Þ��ðnÞð�1ÞÞ�0: (18)

Then, by (11), n1 satisfying (16) is given by n1 ¼ nþ h
with

h ¼ �ðn0Þð�0Þ � �ðnÞð�1Þ
�ðnþ1Þð�1Þ � �ðnÞð�1Þ

: (19)

ffiffiffiffî
�

p ð�1Þ ¼ a1
ffiffiffiffi
�

p
is then obtained directly from (17).

IV. RESULTS FOR CRITICAL COUPLINGS
AND STRING TENSIONS

For SUð2Þ we typically use 50 group characters in the
expansions (1). This implies for, say, � ¼ 5 omitted higher
character coefficients fj ¼ Fj=F0, and accompanying

bounds on the series remainder, of the order of 10�45.
For SUð3Þ we truncate (1) at characters j � ðp; qÞ with
p � 20, q � 20; this implies remainders at � ¼ 10 of less

than 10�12. Iteration under (5) results in decreasing expan-
sion coefficients. Errors due to truncation in the character
expansions (1) are thus totally negligible.
The scale factor is always taken to be b ¼ 2. The only

adjustable parameter in the decimation recursions (5)–(7)
is c which is tuned for optimized matching. We set
c ¼ 0:10 in the case of SUð2Þ and c ¼ 0:24 in the case
of SUð3Þ. With no other parameters present, straightfor-
ward numerical evaluation of the recursion relations can
then be implemented.
We take one value of �cðN�Þ from MC data, which

serves to fix the scale. We then apply the procedure of
Sec. III A to obtain critical coupling values for other latti-
ces. Results for SUð2Þ are shown in Table I. Two sets of
computed�c values are shown in Table I (columns 1 and 2)
corresponding to two different choices of the MC data
point (underlined entries). The table also shows compari-
son with the values obtained by MC simulation [10–12,1],
in each case (column 3). The agreement is remarkably
good—typically of the order of 1–2%.
Results for critical couplings in the SUð3Þ gauge theory

are displayed in Table II. Agreement with MC simulation
data [10,1], is again very good, typically within a few
percent.

TABLE I. Critical couplings �cðN�Þ for SUð2Þ computed from
lattice matching of decimations. Column 1 and 2 show the values
obtained for two different choices (underlined entries) of the one
data point taken from MC data (see text). Column 3 shows the
values from MC simulations for comparison.

N� �c �c �c (MC)

3 2.1875 2.1957 2.1768(30)

4 2.2909 2:2991 2.2991(02)

5 2.3600 2.3683 2.3726(45)

6 2.4175 2.4258 2.4265(30)

8 2.5097 2.5180 2.5104(02)

12 2:6355 2.6440 2.6355(10)

16 2.7275 2.7361 2.7310(20)

32 2.9487 2.9574

TABLE II. Critical couplings �cðN�Þ for SUð3Þ computed
from lattice matching of decimations and comparison with MC
simulation data. Same format as in Table I.

N� �c �c �c (MC)

4 5.6501 5.6329 5.6925(002)

6 5:8941 5.8773 5.8941(005)

8 6.0773 6.0595 6.0010(250), 6.0625(18)

10 6.2018 6.1837 6.1600(70)

12 6.3084 6.2900 6.2680(120), 6.3385(55)

14 6.4015 6:3830 6.3830(100)

16 6.4845 6.4658 6.4500(500)

32 6.9024 6.8829

TABLE III. String tensions a
ffiffiffiffi
�

p
for SUð2Þ computed from

lattice matching of decimations. Column 1 and 2 show the values
obtained for two different choices (underlined entries) of the one
data point taken from MC data (see text). Column 3 shows the
values from MC simulations for comparison.

� a
ffiffiffiffi
�

p
a

ffiffiffiffi
�

p
a

ffiffiffiffi
�

p
(MC)

2.2 0.5019 0.5161 0.4690(100)

2.3 0.3654 0.3756 0.3690(30)

2.4 0.2619 0.2696 0.2660(20)

2.5 0.1903 0.1957 0.1905(08)

2.5115 0:1836 0.1888 0.1836(13)

2.6 0.1373 0.1415 0.1360(40)

2.7 0.1002 0.1031 0.1015(10)

2.74 0.0884 0:0911 0.0911(08)

2.85 0.0622 0.0641 0.0630(30)
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String tensions in SUð2Þ obtained by the method of
Sec. III B are displayed in the same format in Table III.
Again, two sets of values are shown (columns 1 and 2)
corresponding to two different choices (underlined entries)
of the MC data point used as initial input. The correspond-
ing results in the case of SUð3Þ are shown in Table IV.
Good agreement with MC data [12–14] is again obtained in
all cases.

V. CONCLUSIONS

The RG decimation recursion relations given in Sec. II
were used in conjunction with two-lattice matching to
compute critical couplings and string tensions in SUð2Þ
and SUð3Þ pure lattice gauge theories. The decimations
contain only one adjustable parameter that was fixed, in the
case of each group, to an optimized value given in Sec. IV.
Using one initial value obtained by MC simulation, critical
couplings and string tensions were then obtained for a

variety of other lattices by lattice matching of our decima-
tions. The results were found to be in very good agreement
with those obtained by MC simulation. We note once more
that tuning of the decimation parameter to the appropriate
value is crucial for obtaining such good results. The
method evidently provides a cheap way of quickly obtain-
ing accurate predictions for these quantities for a wide
range of lattice sizes.
Critical couplings and string tensions are quantities

pertaining to long-distance nonperturbative dynamics.
The actions evolving under the decimations are plaquette
actions with a large (infinite) number of representations.
As mentioned above, MCRG constructions of blocked
actions [9] indicate that these are the action terms most
relevant for long distance dynamics. This may be one
reason underlying the method’s apparent efficacy.
There are two directions in which this work could be

further pursued. One is to consider more general block
transformations. The decimations employed here may in-
deed be viewed as special cases of more elaborate blocking
schemes. These will, in general, involve additional deci-
mation parameters, and potentially the inclusion of other
than only plaquette terms, but are likely necessary for
computation of observables over different length scales.
The other direction is the inclusion of fermions. Block
transformations involving fermions present a generally
much harder problem. Use of relatively simple block
schemes in a somewhat different context, however, have
given some early encouraging results [15].
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TABLE IV. String tensions a
ffiffiffiffi
�

p
for SUð3Þ computed from

lattice matching of decimations. Same format as in Table III.

� a
ffiffiffiffi
�

p
a

ffiffiffiffi
�

p
a

ffiffiffiffi
�

p
(MC)

5.54 0.5580 0.5878 0.5727(52)

5.6 0.5070 0:5295 0.5295(09), 0.5064(28)

5.7 0.4205 0.4264 0.4099(12), 0.3879(39)

5.8 0.3486 0.3508 0.3302(15)

5.9 0.2919 0.2931 0.2702(19)

6.0 0.2465 0.2433 0.2269(62), 0.2209(23)

6.2 0.1698 0.1671 0.1619(19), 0.1604(11)

6.4 0:1214 0.1180 0.1214(12), 0.1218(28)

6.5 0.1010 0.0983 0.1068(09)

6.8 0.0616 0.0599 0.0738(20)
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