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It is sometimes speculated that the sign problem that afflicts many quantum field theories might be

reduced or even eliminated by choosing an alternative domain of integration within a complexified

extension of the path integral (in the spirit of the stationary phase integration method). In this paper we

start to explore this possibility somewhat systematically. A first inspection reveals the presence of many

difficulties but—quite surprisingly—most of them have an interesting solution. In particular, it is possible

to regularize the lattice theory on a Lefschetz thimble, where the imaginary part of the action is constant

and disappears from all observables. This regularization can be justified in terms of symmetries and

perturbation theory. Moreover, it is possible to design a Monte Carlo algorithm that samples the

configurations in the thimble. This is done by simulating, effectively, a five-dimensional system. We

describe the algorithm in detail and analyze its expected cost and stability. Unfortunately, the measure

term also produces a phase which is not constant and it is currently very expensive to compute. This

residual sign problem is expected to be much milder, as the dominant part of the integral is not affected,

but we have still no convincing evidence of this. However, the main goal of this paper is to introduce a new

approach to the sign problem, that seems to offer much room for improvements. An appealing feature of

this approach is its generality. It is illustrated first in the simple case of a scalar field theory with chemical

potential, and then extended to the more challenging case of QCD at finite baryonic density.

DOI: 10.1103/PhysRevD.86.074506 PACS numbers: 11.15.Ha

I. INTRODUCTION

Formidable experimental efforts are presently being de-
voted to study strongly interacting nuclear matter in a high
density medium (see Ref. [1] for a recent and comprehen-
sive review). In fact, quantum chromodynamics (QCD) is
expected to display a very rich phase structure in that
regime [1,2]. But, unfortunately, lattice QCD calculations
are severely limited by the lack of a positive measure,
which is necessary for the direct applicability of importance
sampling Monte Carlo methods. As a consequence of this
sign problem, one expects [3] the cost of direct Monte Carlo
methods to scale like eV (where V is the four-dimensional
volume), which is clearly prohibitive.

In the past decade, much progress has been achieved in
devising techniques to alleviate the sign problem. The
present status has been reviewed in the recent lattice confer-
ences [3–5]. Thanks to the reweighting method [6], the
Taylor expansion method [7,8] and the imaginary chemical
potential method [9,10] it is now possible to perform quite
reliable calculations in the important region near the finite
temperature phase transition at small chemical potential.

In the high density region, other approaches based on the
complex Langevin equation [11–13], on worm algorithms

[14], on an effective 3d theory [15,16], on the histogram
method [17], on the factorization or density of state method
[18–21], on the generalized imaginary chemical potential
method [22], on the fugacity expansion [23], on dimen-
sional reduction [24] and the large Nc limit [25,26] have
been proposed and present promising aspects. However, no
method has yet demonstrated reliability in the high density
regime of QCD. In this context, the search for alternatives
is certainly very desirable.
The approach proposed in this paper draws its inspiration

from the simple idea of saddle-point integration along the
paths of steepest descent. This is a powerful and elementary
tool to treat oscillating, low-dimensional integrals, such as

I ¼
Z
R
dxgðxÞefðxÞ: g; f: HolðCÞ:

It is important to distinguish two independent conceptual
steps in the classic saddle-point integration method. The
first step consists in deforming the domain of integration R
into a path � � C that preserves the homology class of the
original integral. The path � typically goes through one
stationary point of f and then follows the direction of
steepest descent of the real part of the action. By holomor-
phicity of f, the imaginary part of f is constant along �,
which justifies the name of stationary phase method. The
second step consists in Taylor expanding f around the*scorzato@ectstar.eu
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stationary point, which typically provides a satisfactory
approximation of I .

This technique is very effective for computing low-
dimensional oscillating integrals. But, the approximation
in the second step is not satisfactory for our goal of a
nonperturbative formulation of a quantum field theory
(QFT), as it would amount to some form of perturbative
expansion. On the other hand, the deformation of the do-
main of integration, described in the first step, is potentially
very interesting, in relation to the sign problem of QCD. In
fact, the imaginary part of fðxÞ is constant along the path �,
and can be factorized out of the integral in the form of a
constant phase factor. Moreover, the real part of fðxÞ is
bounded from above by its value at the stationary point.

The extension of these ideas to the multidimensional
case is a classic topic in complex analysis [27,28]. In this
case, the integral to solve has the form

I ¼
Z
Rn

dx1 . . . dxngðxÞefðxÞ;

where the functions f and g are now holomorphic in
Cn ! C. Under suitable conditions on f and g, Picard-
Lefschetz/Morse theory [29,30] shows that one can asso-
ciate to each stationary point p� 2 Cn (� 2 �) of the
function f an integration domain J � of real dimension n
(an n cycle) immersed in Cn. Such n cycles (called
Lefschetz thimbles) generalize the idea of path of steepest
descent and, altogether, they provide a basis of the relevant
homology group, so that any n cycle C, along which we

might want to integrate gðxÞefðxÞ, can be expressed in terms
of the basis fJ �g�2�, with integer coefficients n� [27], i.e.,

C ¼ X
�2�

n�J �: (1)

In the case of QCD at finite baryonic density (QCD�),
the usual functional integral is well defined, on a finite
lattice, on the integration domain C ¼ SUð3ÞV�4. The latter
is an n cycle (where n ¼ 8� 4� V) immersed in
SLð3;CÞV�4, that belongs to a well defined homology
class, that can be also written in terms of the basis of
thimbles fJ �g introduced above, with well defined coef-
ficients n�. So, in principle, the original functional integral
could be expressed as the sum of integrals on the thimbles
J �, where the integrand has no sign problem (by a gen-
eralization of the stationary phase property, as we will see).
But, finding the stationary points p�, computing the coef-
ficients n� � 0 and performing simulations on each J � is
not feasible. However, we should also ask whether it is
necessary. In fact, although the QCD� partition function
already has a well defined regularization, on a finite lattice,
it might be worthwhile to consider an alternative one, if the
latter had some practical advantage. If we adopt this point
of view, then our guiding principle should be the necessity
of constructing a local QFT that reproduces the correct
symmetries (including the correct representations and

degrees of freedom) and the correct perturbative expan-
sion. By universality, we expect that these properties es-
sentially determine the scaling behavior in the continuum.
If so, it is not necessary that the new integration domain
belong exactly to the same homology class of the original
integral, and it is natural to define a lattice regularization of
a QFT as a functional integral over that single thimble J 0

which is associated to the perturbative stationary point.
Our first task is to show that this regularization has indeed
the correct symmetry representations and the correct per-
turbative expansion.
Recently, Witten [31] used Morse theory to extend the

definition of the three-dimensional Chern-Simon QFT to a
set of complex values of the parameters where the integral is
not manifestly convergent. In particular, Witten computed
analytically how the (unnormalized) Chern-Simon partition
function depends on the parameters of the action (in pres-
ence of a knot background). In order to compute such
dependence exactly, it was necessary to determine how
the coefficients n� of Eq. (1) depend on the parameters of
the action, and, to do that, the so-called Stokes phenomena
had to be taken into account [31]. This is not realistic in the
case of QCD�, neither analytically nor numerically.
However, Monte Carlo methods suggest a different ap-
proach. Although the knowledge of the parameter depen-
dence of the partition function is certainly the classic and
convenient way to compute the corresponding observables
analytically, it is not the only way. In particular, this is never
done in a Monte Carlo calculation, where, instead, one fixes
the normalization by computing a suitable set of observ-
ables. Consequently, a uniform normalization of the parti-
tion function for different values of the parameters is not
necessary: the normalization can (and often must) be per-
formed independently in each point of the parameter space.
From this point of view, it is more convenient and natural to
regularize the theory always on that thimble J 0 which has
the correct perturbative limit, as suggested above.
Once we have defined our regularization and proved its

properties, we turn to the question of how to simulate
numerically what we have proposed. This is far from
straightforward. In fact, although the Lefschetz thimble
J 0 is a smooth manifold [30], it is not clear how to compute
the tangent space of J 0 at a given gauge configuration A ¼
fAa

�ðxÞg 2 J 0, by using only information available in the
neighborhood of A. If we adopt the Langevin algorithm
to simulate the system, the problem is partially solved,
because—as we will see—the force term that appears in
the Langevin equation is tangent to J 0 by construction. But
this solves the problem only in part, because the Langevin
dynamics also requires a noise term, and this needs to be
projected on the tangent space of J 0. However, the tangent
space TAðJ 0Þ is easy to compute at the stationary point
A ¼ 0 and, for any other configuration A 2 J 0, we can use
the flow of steepest descent to parallel transport a tangent
vector� 2 T0ðJ 0Þ into a vector�0 2 TAðJ 0Þ. The concept
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of Lie derivative represents the natural tool to accomplish
the parallel transport along the flow of steepest descent. This
method presents challenging aspects, from the numerical
point of view, but we will show that the algorithm is
protected against the obvious sources of instabilities. This
procedure can also be seen as an original application of the
gradient flow, recently studied by Lüscher [32].

This is not the whole story. The relative orientation
between the canonical complex volume form and the real
volume form, characterizing the tangent space of the
thimble, contributes a phase to the integral. We can be
sure that such phase is approximatively constant only where
the quadratic approximation of the action is valid, but it is
not obvious over the whole thimble. One expects such phase
to change rather smoothly, and to affect only the subdomi-
nant part of the integral, but we have no clear evidence in
support of this expectation. Moreover, the only procedure
that we know to compute this phase scales very badly with
the problem size. This difficulty definitely reduces the at-
tractiveness of the algorithm that we describe in this paper.
But, we believe that the approach that we have started to
investigate deserves closer attention, since a better way to
deal with this residual phase does not look impossible.
Moreover, the experience of the pioneering works [33] in
lattice gauge theories suggests that very qualitative, but
important, information on the phase structure might be
gained already on tiny volumes. Unfortunately, the sign
problem currently prevents the simulation even of lattices
as small as 44, in the high density regime. Any progress even
on very small lattices might be very valuable.

The paper is divided in two parts. In the first one (Sec. II)
we describe our approach in the case of a scalar field theory.
In particular, we define the regularization in Sec. IIA, and
we analyze its symmetry properties and prove its perturba-
tive equivalence to the standard formulation in Sec. IIB. In
the same section we also introduce some basicMorse theory,
in order to better understand the meaning of our formulation
(Morse theory is not used as a justification, though). Finally,
we illustrate and analyze the algorithm in Sec. II C. In the
second part (Sec. III) we consider the extension to QCD�.
The definition of the functional integral needs to be adapted
to the presence of local gauge invariance. The extension of
the concept of Lefschetz thimbles to that case is standard
[31,34] and it is presented in Sec. IIIA. The analysis of the
symmetries and of the perturbative expansion is done in
Sec. III B, where we also compare our approach to the
standard one at � ¼ 0. Section III C comments on the
new aspect of the algorithm in the case of QCD�. Finally,
Sec. IV contains our conclusions.

II. SCALAR FIELD THEORY WITH
CHEMICAL POTENTIAL

In this section, we consider the lattice discretization
of a scalar QFT with chemical potential and quartic
self-interaction in d Euclidean dimensions. This theory

represents a relativistic Bose gas at finite chemical poten-
tial and has a sign problem [35], which can be successfully
treated both via complex Langevin simulations [35], and
with a reformulation of the path integral over current
densities [36]. In this paper, we use it only as a simple
framework to describe the fundamental features of our
approach.

A. Definition of the path integral

In this section, we consider the model defined by the
following lattice action:

S½�� ¼ X
x

�
ð2dþm2Þ��

x�x þ �ð��
x�xÞ2

� Xd�1

�¼0

ð��
xe

����;0�xþ�̂ þ��
xþ�̂e

���;0�xÞ
�
; (2)

where �x is a complex scalar field, living on the sites x 2
½0; L� 1�d, and ��

x is its complex conjugate. The mass m,
the coupling � and the chemical potential� are all real and
positive. A generic observable is computed as

hOi ¼ 1

Z

Z
C

Y
x

d�xe
�S½��O½��;

Z ¼
Z
C

Y
x

d�xe
�S½��;

(3)

where the vector space C ¼ CV ’ R2V is the domain of

integration for the complex variables �x ¼ �1;xþi�2;xffiffi
2

p ,

where the �a;x (a ¼ 1, 2) are real. Due to the presence

of�, the action S is not real, the real part of the Boltzmann
weight <ðe�SÞ is not positive, and the system has a sign
problem. Expressed in the real variables f�a;xg, the action
(2) reads

S½f�a;xg�¼
X
x

��
dþm2

2

�X
a

�2
a;xþ�

4

�X
a

�2
a;x

�
2

�X
a

Xd�1

�¼1

�a;x�a;xþ�̂þ
X
a;b

isinh�"ab�a;x�b;xþ0̂

�cosh��a;b�a;x�b;xþ0̂

�
: (4)

In order to introduce our approach, we first need to
complexify the action (2). This is done by promoting to
complex variables both the real part (�1;x) and the imagi-

nary part (�2;x) of the field�x that enter in the formulation

(4) (exactly as it is done in the case of the complex
Langevin equation [35]):

�a;x ! �ðRÞ
a;x þ i�ðIÞ

a;x ða ¼ 1; 2Þ:
Inspection of Eq. (4) shows that the action S½�� is hol-
omorphic in the (now complex) variables �a;x, that pa-

rametrize the vector space Cn, n ¼ 2V.
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The equations of steepest descent (SD) for the real part
of the action [SR½�� ¼ <ðS½��Þ] are our second ingre-
dient. They read

d

d	
�ðRÞ

a;xð	Þ ¼ ��SR½�ð	Þ�
��ðRÞ

a;x

; 8 a; x;

d

d	
�ðIÞ

a;xð	Þ ¼ ��SR½�ð	Þ�
��ðIÞ

a;x

; 8 a; x:

(5)

Note that these are not the complex Langevin equations
(at zero noise), which read

d

d	
�a;x ¼ � �S

��a;x

,
8><>:

d
d	�

ðRÞ
a;x ¼ � �SR

��ðRÞ
a;x

;

d
d	�

ðIÞ
a;x ¼ þ �SR

��ðIÞ
a;x

:
(6)

Instead, the equations of SD can be reformulated, using
complex variables, as

d

d	
�a;xð	Þ ¼ ��S½�ð	Þ�

� ��a;x

; 8 a; x;

d

d	
��a;xð	Þ ¼ ��S½�ð	Þ�

��a;x

; 8 a; x:

(7)

For brevity, we also define the multi-index j ¼ ðR=I; a; xÞ,
which can be used to express the SD equations more

concisely as _�j ¼ �@jSR, and the multi-index k¼ða;xÞ,
in which the SD equations become _�k ¼ � �@k �S.

Finally, our approach (that will be justified only in
Sec. II B) consists in computing the observables as

hOi0 ¼ 1

Z0

Z
J 0

Y
a;x

d�a;xe
�S½��O½��;

Z0 ¼
Z
J 0

Y
a;x

d�a;xe
�S½��;

(8)

where the set J 0 is an integration n cycle defined as the
union of all those curves that are solutions of the SD
equations (5), or equivalently (7), and that end at the point
� ¼ 0, in the limit 	 ! þ1.

In the context of Lefschetz-Picard/Morse theory
[28–30], the point� ¼ 0 is called a critical point, because,
by definition, it is a nondegenerate stationary point for the
function S½��, in the sense that

�S½��
��a;xj�¼0

¼ 0; 8 a; x; and

det

�
�2S½��

��a;x��b;y

�
j�¼0

� 0: (9)

The n cycle J 0 is the Lefschetz thimble mentioned in the
title. One can prove [30] (Prop. 2.24) that J 0 is a smooth
manifold. Moreover, J 0 has real dimension n ¼ 2V, as it
should in order to be an acceptable replacement of C. This
can be seen as follows. The function S½�� is holomorphic
at � ¼ 0, which is also a nondegenerate stationary point,

because of condition (9). By Morse lemma (see e.g.,
Ref. [28], Prop. 3.2, for holomorphic functions), there are

holomorphic local coordinates �̂ð�Þ, where, in a neighbor-
hood of � ¼ 0, S½�̂� takes the form

S½�̂� ¼ X
k¼ða;xÞ

�̂2
k þ c

¼X
k

½ð�̂ðRÞ
k Þ2 � ð�̂ðIÞ

k Þ2 þ i2ð�̂ðRÞ
k �̂ðIÞ

k Þ� þ c:

The Hessian HR of the real part of S½�� can be seen as a
matrix HR 2 HomðR2n;R2nÞ (i.e., in the basis of the var-

iables �̂ðRÞ
k and �̂ðIÞ

k ), with precisely n positive and n
negative eigenvalues. This implies that there are precisely
n directions in which the SD flow comes from � ¼ 0 at
	 ¼ �1 (the unstable thimble) and n directions in which
the SD flow leads to � ¼ 0 at 	 ¼ þ1, which defines our
stable thimble J 0. Hence, the thimble J 0 has real dimen-
sion n, precisely as the original integration cycle C.
The fact that the imaginary part of the action, SI ¼

=ðSÞ ¼ 1
2 ðS� �SÞ is constant along the trajectories of SD

is a straightforward consequence of Eq. (7):

d

d	
SR=I ¼ 1

2

d

d	
ðS� �SÞ

¼ 1

2

X
k¼ða;xÞ

ð�@kS � �@k �S� �@k �S � @kSÞ

¼
� � k@Sk2
0

:

Since S is continuous and well defined at� ¼ 0, it follows
that SI is constant along the whole thimble J 0. This means
that eiSI is an inessential constant phase, that can be
factorized out of the functional integrals in Eq. (8).
Moreover, SR½� ¼ 0� is the absolute minimum of SR along
the whole thimble, and therefore the only nontrivial part of
the action is bounded from below.
However, the fact that eiSI is constant does not mean that

the integral is real and positive. In fact, the measureQ
a;xd�a;x stands for the complex canonical volume form

in Cn, that needs to be evaluated on a basis of the tangent
space T�ðJ 0Þ of J 0 in �. Since T�ðJ 0Þ is a real

n-dimensional vector space � Cn, its basis is not neces-
sarily aligned with the canonical basis ofCn. This misalign-
ment produces a phase, which is univocally determined by
T�ðJ 0Þ. In Sec. II C we will describe a (rather expensive)

procedure to calculate it numerically.
Now that we have defined precisely what we want to

compute, we need to address two obvious issues: the first
one is how to justify the study of Eq. (8). In fact, the
integral Z in Eq. (3) does not coincide with Z0, defined
in Eq. (8). Nevertheless, we will argue in Sec. II B that the
system in (8) is physically at least as interesting as the
original formulation. The second issue is to find an algo-
rithm to compute Eq. (8). In fact, it is far from obvious how
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to perform an importance sampling of the field configura-
tions in J 0. An algorithm is proposed and analyzed in
Sec. II C.

B. Justification of the approach

The main justification to study the system defined by
Eq. (8) is the fact that the latter defines a local1 QFT with
exactly the same symmetries, the same number of degrees
of freedom—belonging to the same representations of the
symmetry groups—and the same local interactions as the
original theory. Moreover, at� ¼ 0 the cycleJ 0 coincides
with C. Furthermore, the perturbative expansions of the two
systems coincide at every �. Since universality is not a
theorem, we certainly cannot prove that Z0 and Z are
physically equivalent. But given the above properties, it
would be extremely interesting if they did not, as it would
show that those properties are not sufficient to characterize
a QFT uniquely.

In the following Sec. II B 1 we analyze the symmetries
of the new formulation. In Sec. II B 2 we show the pertur-
bative equivalence of the two approaches. Then, in
Sec. II B 3, we introduce some rudimentary Morse theory.
This will not enable us to determine the exact relation
between the integral Z over C and Z0 over J 0, but at least
it represents a convenient framework to gain insight into
the relations that one might expect between the two
formulations.

1. Global phase symmetry

The only symmetry of the action in Eq. (2) that could be
nontrivially affected by the substitution of the integration
cycle C with J 0 is the Uð1Þ symmetry associated to a
global phase rotation: �x ! ei
�x. This symmetry holds
for any �. In the complexified system, such symmetry
translates into a SOð2;CÞ symmetry associated to the
rotations of the new (complex) variables ð�1;x; �2;xÞ:

�1;x

�2;x

 !
! e
�2

�1;x

�2;x

 !
: (10)

These transformations leave the point� ¼ 0 invariant, and
hence do not produce zero eigenvalues in the correspond-
ing Hessian matrix, which is consistent with the observa-
tions made above.

When considering the path integral defined over J 0, we
need to ask whether the physical Uð1Þ symmetry is pre-
served. In the complexified action (2), the original Uð1Þ
symmetry group is mapped into the real subgroup SOð2;RÞ
of the whole SOð2;CÞ, which corresponds to real values of

�2. The action (2), which is invariant under SOð2;CÞ, is
obviously invariant also under its subgroup SOð2;RÞ, but it
is not obvious whether any of these symmetries is defined

in J 0, i.e., whether the configuration ~� ¼ e
�2�̂ belongs

to J 0, whenever �̂ does.

By definition, �̂ 2 J 0 if there exists a curve �̂ð	Þ that
solves the SD equations (5) and (7), with �̂ð0Þ ¼ �̂ and

�̂ðþ1Þ ¼ 0. If so, we can define the curve ~�ð	Þ ¼
e
�2�̂ð	Þ, which obviously starts at ~�ð0Þ ¼ ~� and ends at
~�ðþ1Þ ¼ 0, and it also solves the SD equations (7); in fact

d

d	
~�ð	Þ ¼ e
�2

d

d	
�̂ð	Þ ¼ �e
�2

�SR½�̂ð	Þ�
� ��

¼ �e
�2
�SR½�̂ð	Þ�

� ��
¼ ��SR½ ~�ð	Þ�

� ��
:

In the third step we have used the reality of 
�2, for
rotations in SOð2;R), while in the last step we have used
the covariance of the gradient of S under the transformation

(10). By uniqueness of the solution, we conclude that ~� 2
J 0 whenever �̂ does. Hence, the formulation based on J 0

has the same symmetries as the original formulation.

2. Perturbative analysis

We consider now the perturbative expansion of the
system defined by Eq. (8). In a nutshell, the reason why
the perturbative expansions of Eq. (8) and (3) coincide is
the fact that Gaussian integrals (times polynomial P) in the
complex plane Z

�
dze�z2PðzÞ

are independent on the path �, as long as � joins the region
at infinity where j argzj<�=4 with the other region at
infinity where j argzj> 3�=4.2

In more detail, when expanding in powers of � the
expression (8), we have to take into account the fact that
J 0 ¼ J 0ð�;�Þ depends itself on �. Hence, at perturbative
order p, we have to consider expressions like

dp

d�p

�Z
J 0ð�;�Þ

d�e�S½�;�;��O�;�½��
�
j�¼0

; (11)

for a generic observable O. This expression generates
terms like

1One might worry that the definition of the integration cycle
introduces a subtle nonlocal interaction, since the allowed values
for the field �k at one space-time point k depend on the values of
the field at the other points. But the thimble J 0 is just one
representative of a homology class. As long as the complemen-
tary of the set of critical points is open, it is certainly possible to
deform J 0 (without changing its homology class) into a new
cycle that—in the neighborhood of any given configuration
�̂ 2 J 0—has the form 	n

k¼1Vk, where �k 2 Vk � Ck 8 k,
thus removing the suspicion of nonlocality.

2In more homological terms, such paths define the only non-
trivial element of the relative homology class H1ðC;CT ;ZÞ, for a
sufficiently large T. The set CT is the set of all z 2 C such that
<ðz2Þ> T. For a definition of relative homology, see, e.g.,
Ref. [37].
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Z
J 0ð0;�Þ

d�
dp

d�p
j�¼0

ðe�S½�;�;��O�;�½��Þ (12)

and genuinely new terms like

d

d�

�Z
J 0ð�;�Þ

d�e�S½�;�¼0;��O�¼0;�½��P½�;��
�
; (13)

where P is some polynomial in �, whose coefficients
depend on �. The terms like Eq. (12) are Gaussian inte-
grals (times polynomial) defined over an integration cycle
J 0ð0; �Þ, which is defined as the path of SD for the free
part of the action at finite �. Since for Gaussian integrals
the nontrivial element of the homology class is unique, the
integral (12) coincides with the integral of the same func-
tion along C, assuming that the latter converges, which is
true as long as standard perturbation theory is well defined.

Consider now the terms like the one in Eq. (13). There,
the only dependence on � appears in the integration cycle.
Hence, Eq. (13) measures the variation of the integral
under infinitesimal variation of the integration cycle
around J 0ð0; �Þ. But the cycle J 0ð0; �Þ corresponds to

the path of steepest descent for the integrand e�S½�;0;��
times polynomials. In particular, the cycle J 0ð0; �Þ lies in
the interior of the region of convergence, and the integral
that is differentiated in (13) cannot change for infinitesimal
variations, which means that contributions like (13) always
vanish. We have proved that the perturbative expansions of
Eq. (8) and (3) coincide.

3. Some insight from Morse theory

It is usually very difficult to make any analytic statement
about a QFT beyond symmetries, locality and perturbation
theory. These are actually the properties that usually justify
a legitimate regularization of a QFT. Nevertheless, it is
interesting to investigate further the relation between the
path integral defined over C and the one over J 0. In fact,
Morse theory [30,31] can be used to gain much insight into
this question, although we won’t be able to establish any
exact relation. In this section, we summarize some general
results from Morse theory (see, in particular, Sec. 3.2 of
Ref. [31]), with a special attention to the cases of interest
for us.

Let SðxÞ be a complex function of n real variables
ðx1; . . . ; xnÞ, that we analytically continue to complex val-
ues xk ! zk. Assume that SðzÞ has only finitely many
critical points, and it is generic enough that they are all
nondegenerate3 (i.e., it is a Morse function). As already
mentioned, these are points where the gradient of S van-
ishes, but the determinant of the Hessian is nonzero. For
each critical point z ¼ ��, � 2 �, the Hessian H� of
SR ¼ <ðSÞ at �� can be seen as a bilinear real form in

the 2n variables ðuk; vkÞ, where zk ¼ uk þ ivk. Hence H�

has precisely n positive and n negative eigenvalues.
To each critical point �� we attach a stable Lefschetz

thimble J �, defined as the union of all flows that satisfy
Eq. (5) and tend to�� when 	 ! þ1. For each �, we also
introduce an unstable Lefschetz thimbleK�, defined as the
union of all flows that satisfy Eq. (5) and go to �� when
	 ! �1. Because of the holomorphicity of S in ��, all
such thimbles have real dimension n. Moreover, for a ge-
neric choice of the parameters in S, all J � and K� extend
to infinity without crossing other critical points. When this is
the case, the J � provide a basis of the relative homology
groupHþ

n :¼ HnðCn; ðCnÞT ;ZÞ, while theK� generate the
relative homology groupH�

n :¼ HnðCn; ðCnÞ�T ;ZÞ.4 There
is a duality [27] between the group Hþ

n and the group H�
n

that is realized by the bilinear form

h; i: Hþ
n 	H�

n ! Z; (14)

which associates to each pair of cycles C0 2 Hþ
n and C00 2

H�
n the (oriented) intersection number of the two cycles. In

fact, in the generic case, two half-dimensional manifolds
intersect in a zero-dimensional set. In particular, the basis
J � and K� are dual to each other, because their intersec-
tion is either zero or amounts to the single point ��, and
hence hJ �;K�i ¼ ��;�. These observations lead to a gen-

eral formula that enables us to express a generic integration
cycle C 2 Hþ

n in the basis fJ �g:
C ¼ X

�

n�J �; (15)

where n� ¼ hC;K�i. This formula implies that, in order to
reproduce exactly the original integral over C, we should
consider not only the cycle J 0, but also the contribution
(with sign) from all the critical points of S½�� in Cn.
However, the argument of Witten [31] suggests that most
of these other critical points might give either an exponen-
tially suppressed contribution or no contribution at all.
The argument goes as follows. Let smin¼min�2CSRð�;�Þ

be the global minimum value of the real part of the action
in the original manifold. The full set of critical points � is
the union of the three disjoint subsets:

�0 ¼ f� 2 �j�� 2 Cg
�
 ¼ f� 2 �j�� =2 C&SRð��Þ 
 sming
�> ¼ f� 2 �j�� =2 C&SRð��Þ> sming:

The critical points in �� 2 �
 do not contribute to
Eq. (15), because in �� the value of SR is already lower
or equal to its absolute minimum in C, and SR can only
decrease further in the unstable thimble K�. Therefore,
K� can never intersect C and n� ¼ 0. The critical points
�� 2 �> may or may not contribute, but their contribution

3Later we will consider sets of degenerate critical points,
which typically appear in presence of symmetries.

4The space XT (resp. X�T) is defined as the set of those points
of X such that SR > T (resp. SR<�T).
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is exponentially suppressed by a factor e�SRð��Þþsmin
, with

respect to the thimble associated to the absolute minimum
of SR in C. One expects, generically, this suppression to be
further enhanced toward the infinite volume limit, but we
cannot exclude that, for example, a large number of critical
points might form and accumulate near the absolute mini-
mum in C.

Finally, the critical points �� 2 �0 necessarily contrib-
ute with n� ¼ 1, because the thimble K� intersects C
precisely once in ��, but their contribution is suppressed,
if they are not global minima (for the same argument used
for points in �>). Actually, in the case of the action (2),
there are no further stationary points in C, besides � ¼ 0,
but there must be many in QCD (see Sec. III B 3). This
argument is not conclusive, since we cannot exclude, for
example, an accumulation of critical points near the global
minimum in C. However, it shows that assuming a regu-
larization defined only on the thimble associated with the
global minimum in C is not in contradiction with anything
we know from Morse theory.

It is also interesting to consider more closely the case of
a QFT with chemical potential �. In particular, it is inter-
esting to see what happens when we start from a real theory
and switch on �. Consider first the case of � ¼ 0. In this
case, the action S½�� is real, and the condition of statio-
narity @S½�� ¼ 0 imposes n equations with n unknowns.
Hence, we expect, in general, a discrete set of solutions.
These stationary points can be minima (local or global),
maxima or saddle points. Notice that at � ¼ 0, the flow of
SD preserves C. If the system has just one minimum �0,
and no saddle points, the manifold C coincides with the
thimbleJ �0

. The saddle points that might be in C represent
stable limits only for a set of zero measure in C; all the
other points will eventually flow to �0. Hence, even in the
presence of saddle points, the closure ofJ �0

still coincides

with C. On the other hand, if S½�� has further (local)
minima in C (besides �0) the situation changes. Each of
these minima represent the stable limit for a measurable
subset of C. The contribution of these subsets to the integral
is exponentially suppressed, for the same reason explained
above, but it might be important, if they are many. In
summary, at � ¼ 0, we can write

C ¼ X
�j��is local minimum for S

J � modulo a set of zeromeasure:

This shows that, even those critical points�� where n��0
may actually give a vanishing contribution to the integral.

When we switch on � � 0, the action S½�� becomes
complex, and the condition @S½�� ¼ 0 in C becomes a
system of 2n equations with n unknowns. As a result, all
the generic stationary points in C are shifted outside C,
unless some symmetry protects them. Does this mean that
all the minima that contributed at � ¼ 0 suddenly become
irrelevant as soon as � is switched on? If not, do all the
stationary points in the nearby of C suddenly become

equally important? Morse theory enables us to verify that
the transition is actually smooth.
In order to illustrate the mechanism of this transition,

assume that the following ansatz is valid for small values
of �:

S½�;�� ¼ S0½�� þ i�S1½��;
where S0½�� and S1½�� are real functions of the variables
� ¼ f�kgk¼ða;xÞ, when the � are real, and holomorphic for

complex values of �.

An expansion to first order in � shows that, if �̂ is a

critical point at� ¼ 0, the new critical point ~� ¼ �̂þ ��
is shifted by

��k ¼ �i�ð@lS1½�̂�Þð@2S0½�̂�Þ�1
l;k :

In the variables � ¼ �ðRÞ þ i�ðIÞ this reads

��ðRÞ
k ¼ 0 ��ðIÞ

k ¼ ��ð@lS1½�̂�Þð@2S0½�̂�Þ�1
l;k :

In order to compute the contribution of J ~� to Eq. (15),

we need to compute the index n ~�. For this we need to

check whether the unstable thimble K ~�, associated to ~�,

intersects the original real manifold C, which is defined by

�ðIÞ ¼ 0. In the neighborhood of ~�, the unstable thimble

K ~� ¼
8<:� ¼ �ðRÞ

þ i�ðIÞj ð�ðRÞÞk ¼ ð ~�ðRÞÞk þ ðe�@2S0½�̂�tÞk;lXl

ð�ðIÞÞk ¼ ð ~�ðIÞÞk þ ðeþ@2S0½�̂�tÞk;lYl

0@ 1A;
X; Y 2 Rn such that lim

t!�1� ¼ ~�

9=;;
which is valid only for t, kxk, kyk up toOð�Þ. Now we can
appreciate the different fate of the local minima in C from

the saddle points. If �̂ is a minimum at � ¼ 0, the eigen-

values of @2S0½�̂� are positive andK ~� is characterized by

X ¼ 0. Hence, there is always a choice of Y that cancels

the shift ��ðIÞ andK ~� intersects C. If instead �̂ is a saddle

point at � ¼ 0, the possible Y are restricted to the eigen-

vectors of @2S0½�̂� associated to positive eigenvalues.
Hence K ~� does not intersect C for a generic choice of

the parameters. This is compatible with the expectation
that, generically, no dramatic change happens at small �.
In fact, what gives a finite contribution at � ¼ 0 (the local
minima) still contributes at small �, since n ~� � 0. While

the terms that have zero measure at � ¼ 0 (the saddle
points) have, generically, also n ~� ¼ 0 at small �.

This last discussion is obviously relevant only to show
the consistency of the picture at small �, and certainly not
to justify our approach at finite �. The justification of the
latter relies on the considerations done previously in this
section.
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C. Algorithm

In this section we describe an importance sampling
Monte Carlo algorithm to simulate the integral in Eq. (8).
In this section we ignore the phase due to the measure,
which will be taken into account in Sec. II C 1 via a
reweighting step.

Since the imaginary part of the action SI is constant
along J 0, we can rewrite Eq. (8) as

1

Z0

Z
J 0

Y
x

d�xe
�S½��O½��

¼ 1

Z0

e�iSI
Z
J 0

Y
x

d�xe
�SR½��O½��; (16)

and the phase factor e�iSI effectively cancels from the
expectation values. Hence, we need an algorithm to simu-
late the real action SR on J 0. Note that SR is bounded from
below on J 0.

We would like to compute the integral (16) through a
Langevin algorithm, constrained in J 0. The corresponding
Langevin equations are

d

d	
�ðRÞ

a;x ¼ � �SR

��ðRÞ
a;x

þ �ðRÞ
a;x

d

d	
�ðIÞ

a;x ¼ � �SR

��ðIÞ
a;x

þ �ðIÞ
a;x;

(17)

which we summarize hereafter as _�j ¼ �@jSR þ �j,

where j ¼ ðR=I; a; xÞ is the multi-index introduced earlier,
and �j is a random field with the usual properties: h�ji¼0,

h�j�j0 i¼2�j;j0 . As already noted, these are not the com-

plex Langevin equations. Instead, (17) coincides (for�¼0)
with the equations of steepest descent for SR. As opposed to
Eq. (6), which might develop nontrivial attractors in Cn,
Eq. (17) would drive the system all the way down to
SR ! �1, unless it is constrained in J 0.

We now come to the problem of constraining the system
in J 0. The drift term in Eq. (17) keeps the configuration in
J 0 by definition. The difficulty lies in extracting a noise �
tangent to J 0, despite the fact that we lack a practical local
characterization of J 0. In fact, if we start from a configu-

ration �̂ 2 J 0, it is not clear how to determine which

directions from �̂ are tangent to J 0 and which are or-
thogonal to it. This depends on the long time evolution of
the nearby paths of steepest descent, which is difficult to
determine locally.

On the other hand, the space T�¼0ðJ 0Þ, tangent to J 0 at

� ¼ 0, is easy to compute. Hence, the random noise can be
projected onto the correct subspace T0ðJ 0Þ, at � ¼ 0.
After that, it can be parallel transported along the flow
@SR, that connects � ¼ 0 to a previously generated con-

figuration �̂, and it can be added to �̂. The combination of
the Langevin noise steps with drift steps drives the system
naturally toward the regions of J 0 that dominate the func-
tional integral.

The concept of Lie derivative provides the natural tool to
parallel transport a vector � along the flow @SR. As we
shall see below, this is also straightforward to implement.
In this way, the importance sampling is realized in the
usual sense of the Langevin equation, that relies on the
correct balance between a drift term and a noise term.
There are important questions of stability in this procedure,
and we address them in detail in Sec. II C 2.
The following algorithm is, essentially, a Langevin al-

gorithm except that each time we want to add a noise
vector, we have to transport it back and forth to the origin,
in order to ensure that it belongs to T�ðJ 0Þ. The detailed

procedure is the following (steps 1–7 are preparatory; steps
8–14 should be iterated):
(1) Compute the Hessian matrix ð@2S0RÞ :¼ ð@2SRÞj�¼0

at the critical point (this can be done analytically
once and for all, and it is reported in the Appendix).

(2) Extract a random field � (with 2n real components)
from an isotropic distribution (normalization will be
done later).

(3) Project the noise � into the eigenspace of ð@2S0RÞ of
real dimension n associated to positive eigenvalues
of ð@2S0RÞ.5 In this way, we obtain a vector �k,
parallel to J 0 in the origin � ¼ 0.

(4) Normalize the vector �k such that k�kk ¼ ". The
sphere of radius " must be sufficiently small so that
the second derivative of the action can be approxi-
mated by a quadratic form in the fields�. This is the
region where the Hessian matrix computed in �¼0
can be used reliably.

(5) Evolve the vector �k with the equations of steepest

ascent. For this first step, it is irrelevant how long we
follow the curve (say for time 	0): this produces the
starting configuration �0.

(6) Extract a new random field �ð1Þ as in step 2.

(7) Transport �ð1Þ along the path of SD that brings the
configuration�0 back to the sphere of radius ". This

is done by ensuring that Lie derivativeL@SRð�ð1Þð	ÞÞ
of �ð1Þ along the flow defined by @SR is zero. In fact,
the condition that the Lie derivative is zero is
equivalent to ensure that the transported vectors

�ð1Þð	Þ commute with the field @SR, and hence, the
paths that follow the two vector flows in different

order commute. Evolving �ð1Þð	Þ while ensuring

L@SRð�ð1Þð	ÞÞ ¼ 0 is also straightforward to imple-

ment numerically:

0 ¼ L@SRð�ð1Þð	ÞÞ ¼ ½@SR; �ð1Þð	Þ�
¼X

j

@jSR@j�
ð1Þ
j0 ð	Þ �

X
j

�ð1Þ
j ð	Þ@j@j0SR;

which is equivalent to

5We remind the reader that ð@2S0RÞ has n positive and n
negative eigenvalues, by holomorphicity.
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d

d	
�ð1Þ
j ð	Þ ¼X

j0
�ð1Þ
j0 ð	Þ@j0@jSR; (18)

and can be solved numerically by applying standard
methods for ordinary differential equation (ODE)

integration. Note that �ð1Þð	Þ remains constant (in
direction) only if it happens to be an eigenvector of
@2SR.

(8) Project �ð1Þ onto the positive eigenspace of (@2S0R)

to produce �ð1Þ
k .

(9) Transport �ð1Þ
k along the SD curve that leads from the

sphere of radius " to�0. This is done by ensuring that

the Lie derivative of �ð1Þ
k along the field @SR remains

zero, as described in step 7. Note that this means, in

particular, that �ð1Þ
k ð	Þ remains tangent to J 0.

(10) Once �ð1Þ
k ð	Þ has been evolved up to 	0, it can be

added to �0. The norm of �ð1Þ
k ð	Þ is determined by

the theorem of stochastic quantization: it must
be sampled from a suitable distribution (e.g.,

Gaussian) with standard deviation equal to
ffiffiffiffiffiffiffi
2dt

p
.

(11) Perform one Langevin (i.e., steepest descent) step of

length dt. This produces a new configuration �ð1Þ.
(12) Extract a new noise �ð2Þ.
(13) Evolve �ð1Þ via SD down to the origin and check

that it meets the ball of radius " and that it falls into
the positive eigenspace of (@2S0R). If not, reduce dt
and repeat.

(14) At the same time transport �ð2Þ along the path

connecting�ð1Þ to the origin, as described in step 7.6

(15) Iterate from 8 to 14, ad libitum.

1. The residual phase

The algorithm described above only samples the con-
figurations; it does not yet take into account the phase that
comes from the misalignment of the tangent space T�ðJ 0Þ
with respect to the canonical complex basis, in which the
complexified integral is formulated. In order to do so, we
need to compute an orthonormal basis of T�ðJ 0Þ, for each
configuration � that we sample, in terms of the canonical
basis and compute its determinant. As already noted, the
tangent space is easy to compute only in � ¼ 0, and it can

be computed in other configurations only through the
parallel transport along the flow. Unfortunately, in this
case, Liouville’s formula cannot be used directly to trans-
port the determinant along the flow, and we currently see
no better option than transporting every single vector of a
full basis, using Eq. (18). Such procedure costs OðV2L5Þ
both in terms of storage and flops, where V is the four-
dimensional volume, and L5 is the number of steps in
which the SD flow is discretized. Moreover, the calculation
of the determinant requiresOðV3Þ flops. This is of course a
lot. One could argue that this is already much better than
the OðeVÞ, which is expected from a direct simulation of
the model. But this clearly limits the approach to very
small lattices. The importance of simulating at least small
lattices should not be underestimated, however. In fact, the
real trouble with the sign problem is not only the bad
scaling, but also the fact that even lattices as tiny as 44

appear intractable by brute force. This is unfortunate,
because the experience from the early days of lattice field
theories suggests that very qualitative, but useful informa-
tion on the phase structure might be gained already from
tiny lattices [33]. It becomes then crucial to understand
how much the sign problem is reduced with the method
proposed here. To this purpose, we can presently only argue
that the phase must be essentially constant over the portion
of phase space that dominates the integral, and the fluctua-
tions should only determine the corrections to the dominant
behavior. However, we are unable to provide clear quanti-
tative support to this qualitative argument. This question
should be definitely assessed through tests. On the other
hand, we observe that this approach is quite new in many
respects, and we expect that new ideas might solve or
substantially improve on the problem described in this
section, even before proceeding to expensive tests.

2. Remarks on numerical stability

The algorithm described in the previous section requires
the solution of a few systems of ODEs and it is mandatory
to comment on their expected numerical stability.
Step 5 consists of integrating the equations of steepest

ascent evolution from the sphere of radius " towards the
interior of J 0. Such integration should be stable against
perturbations, because the evolution in those directions
should suppress the eigenmodes leading out of J 0 (this
is exactly true in the quadratic approximation of the
Hessian). Moreover, step 5 needs to be performed only
once in the initialization phase. Steps 7, 9, and 14 require
the solution of ODEs along a path in J 0 which is already
known. The components of the vector�which are orthogo-
nal to J 0 are likely to be enhanced when approaching
� ¼ 0 in the descending direction, but these components
are projected out when the point � ¼ 0 is reached within
the precision ". Certainly, the ODE in Eq. (18) is expected
to be stiff, and the integration method must be chosen
accordingly.

6One could imagine generating random noise vectors directly
at the origin � ¼ 0 and transporting them only upwards along
the directions of steepest ascent, thus omitting steps 7 and 14.
However, isotropy of the noise would not be guaranteed. This
might not be a problem for some algorithms that do not require
isotropy of the proposal for correctness, but only detailed bal-
ance. This might be the case if we add an accept/reject step as in
the Langevin Monte Carlo algorithm [38,39]. However, it is not
completely clear to us whether detailed balance is satisfied in
this case. So, we require isotropy of the noise in this paper,
which is ensured by the above procedure and is compatible both
with a Langevin and a Langevin Monte Carlo algorithm.
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The integration in step 13 deserves more attention. In
fact, when we try to construct a new path that follows the
curve of steepest descent that goes from a point in the
interior of J 0 towards the point � ¼ 0, any small pertur-
bation outside J 0 is expected to be associated to diverging
eigenmodes that drive the system away from� ¼ 0. There
is, however, considerable experience in dealing properly
with these kinds of ODEs which are boundary value prob-
lems rather than the more common initial value problems.
In these cases it is essential [40] to use the information at
	 ¼ 1. Once this constraint is imposed, the ODE can be
solved via a finite difference method, which involves ex-
actly the same kinds of derivatives that are typical of the
lattice discretization of QFTs. In order to have a chance of
success, it is crucial to start from a good initial guess. This
is available in our case. In fact, from the previous path and
from the noise vector projected along T�ðtÞðJ 0Þ, we can

propose a first guess not only of the new configuration
�ðtþ dtÞ, but also a guess for the whole new path
that joins �ðtþ dtÞ to � ¼ 0. This is done by exploiting
the fact that the noise field defined along the SD path
(as constructed in step 9) commutes with the SD flow,
and hence we can add to each point of the previous path
the corresponding vector �, which produces a guess for the
new path which is good toOðdt2Þ. A final check is to verify
that the imaginary part of the action is indeed constant. In
other words, the integration path obtained in the previous
step provides a very good guess for the subsequent path,
and the solution of the boundary value problems prevents
the accumulation of errors.

In conclusion, the algorithm outlined above includes two
tunable parameters: dt and ". The step-size dt needs to be
sufficiently small to ensure correctness of the algorithm
and sufficiently large to enable an effective sampling of the
fields. On the other hand, the ball radius " needs to be
sufficiently small, so that the quadratic approximation of
the Hessian is valid, but also sufficiently large, such that
the small Oðdt2Þ perturbations to the paths in J 0 do not
cause the paths to miss the sphere around the origin. Only
suitable numerical tests on realistic conditions can tell
whether such compromises are possible.

3. Costs estimate and possible improvements

The cost of computing the determinant of the tangent
space T�ðJ 0Þ has been already estimated in Sec. II C 1.

This is by far the dominant cost. However, in the optimistic
perspective that the computation of such phase may be
simplified or avoided, it is interesting to estimate also the
other (presently subdominant) costs.

The next dominant part of the algorithm is the solution
of an ODE of a system of size V for a length L5. If it is
carried out with a finite difference method, this task costs
OðVL5Þ in memory and OðVL5nFDÞ in flops, where nFD is
the number of iterations used by the solver. Further insight
is provided by the observation [32] that the distances in the

fifth direction have physical dimension ½length�2. Hence
we might expect the unfavorable scaling L5 � V2=d. On the
other hand, the fifth dimension does not entail a true
quantum dynamics, as the fields at finite 	 are completely
determined by those at 	 ¼ 0. For this reason, the auto-
correlation length cannot be affected by this growth of the
problem. Moreover, it is very likely that methods of over-
relaxation [41,42] and Fourier acceleration [43] will be
important to integrate the equations of steepest descent/
ascent efficiently. Further possibilities to accelerate the
evolution in the fifth dimension will be mentioned in the
case of QCD.
In any case, the algorithm proposed in this paper con-

tains a number of new elements with respect to the well
known and reliable tools to which lattice QCD theorists are
well accustomed. In this context, one can imagine many
unexpected difficulties, but one should also expect that
other computational sciences will suggest new strategies
to overcome them. In any case, it is easy to foresee a hard
work of testing and tuning.

III. QCD WITH BARYONIC
CHEMICAL POTENTIAL

In this section, we apply the same analysis done in
Sec. II to the case of QCD�.

A. Definition of the path integral

1. The standard formulation

For the lattice action of QCD at finite density, we assume
the classic Wilson regularization [44,45] and introduce the
baryonic chemical potential as usual [46]:

S½U� ¼ 

X

x;�<�

�
1� 1

3
<TrU�;�ðxÞ

�
þ Nf Tr logQ½U�;

(19)

where Nf is the number of degenerate quark flavors,

U�;�ðzÞ is the classic Wilson plaquette, and the Dirac

operator Q is defined as

Q½U�xy ¼ ðmþ 4rÞ�xy

� 1

2

X
�¼0;3

ðr� ��Þ�xþ�̂;ye
��0;�U�ðxÞ

� 1

2

X
�¼0;3

ðrþ ��Þ�x��̂;ye
���0;�U�ðx� �̂Þ�1;

(20)

where we assume either periodic or antiperiodic boundary
conditions and a finite box of volume V ¼ L3 � T. In the
standard formulation, the observables are defined through
the path integral:
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hOi ¼ 1

Z

Z
C

Y
x;�

dU�ðxÞe�S½U�O½U�;

Z ¼
Z
C

Y
x;�

dU�ðxÞe�S½U�;
(21)

where C ¼ fU�ðxÞ 2 SUð3Þ, 8 x 2 ½0 . . .L� 1�3 �
½0 . . .T � 1�; � ¼ 0 . . . 3g is a manifold of real dimension
n ¼ V � d� ðN2

c � 1Þ ¼ V � 32. Note that we have ex-
plicitly performed the integration over the fermionic quark
fields, to produce the exact effective action in Eq. (19).
Finally, note that the gauge does not need to be fixed,
although it is possible to do it.

2. The new formulation

In order to introduce our formulation we need to define
the corresponding integration cycle J 0. The first step is to
complexify the system. This is achieved by extending the
SUð3Þ gauge group to SLð3;CÞ. This corresponds7 to the
complexification of the algebra suð3Þ4�V ! slð3;CÞ4�V ,
which is a vector space of complex dimension n¼32�V:

Aa
�ðxÞ ! Aa;R

� ðxÞ þ iAa;I
� ðxÞ a ¼ 1 . . .N2

c � 1:

In Sec. III B 4 we discuss the domain of holomorphicity of
S½A� in greater detail. Here, we simply observe that S½A� is
holomorphic, as a function of A, in a neighborhood of
A ¼ 0 (except for a discrete set of values of � that will
be discussed later).

The second ingredient that we need is a notion of
derivative with respect to the fields U�ðxÞ 2 SLð3;CÞ.
The natural definition of field derivative on a lattice regu-
larization of QCD is the left covariant one. In order to
derive the analogues of Eqs. (5) and (7), it is convenient to
define the following set of left covariant derivatives:

rx;�;aF½U� :¼ @

@

F½ei
TaU�ðxÞ�j
¼0;

rR
x;�;aF½U� :¼ @

@

F½ei
TaU�ðxÞ�j
¼0;

rx;�;aF½Uy� :¼ 0;

rR
x;�;aF½Uy� :¼ @

@

F½U�ðxÞye�i
Ta�j
¼0;

�rx;�;aF½U� :¼ 0;

rI
x;�;aF½U� :¼ @

@

F½e�
TaU�ðxÞ�j
¼0;

�rx;�;aF½Uy� :¼ @

@

F½U�ðxÞye�i
Ta�j
¼0;

rI
x;�;aF½U� :¼ @

@

F½U�ðxÞye�
Ta�j
¼0;

(22)

where Ta are the (Hermitian) generators of the algebra
suð3Þ in the fundamental representation [normalized as
TrðTaTbÞ ¼ 1

2�a;b]. Note that the derivatives above satisfy

the Cauchy-Riemann relations on the functions that de-
pends only on U or Uy, and that8

rk ¼ rR
k � irI

k;
�rk ¼ rR

k þ irI
k: (23)

The important advantage of these definitions is that the
derivatives of gauge invariant functionals are exactly gauge
covariant—even at finite lattice spacing a. One should
keep in mind that the derivatives (22) do not commute.
Instead, they obey the following commutation relations
(which hold for any of the above derivatives):

½rx;�;a;ry;�;b� ¼ �x;y��;�fabcrx;�;c;

where the fabc are the structure constants, defined by
½Ta; Tb� ¼ ifabcTc. Note, however, that the Hessian matrix
of a function F½U� is well defined and symmetric at any of
its stationary points.
We will also need to express the derivative of a function

F: SLð3;CÞn ! C along a one-dimensional curve Uð	Þ �
SLð3;CÞn [we suppress inessential ðx; �Þ indices in this
discussion]. To that purpose, note that if Uð	Þ is such a
curve, generated at 	 by an infinitesimal left translation in
the direction of 
aTa, i.e.,

Uð	þ d	Þ ¼ ed	
aiTaUð	Þ
we can express


a ¼ �2Tr

�
iTa

�
d

d	
Uð	Þ

�
Uð	Þ�1

�
:

Hence,

d

d	
F½Uð	Þ�

¼ raF½Uð	Þ� �
�
�2Tr

�
iTa

�
d

d	
Uð	Þ

�
Uð	Þ�1

��
: (24)

We now need to discuss how the appearance of local
gauge invariance, in Eq. (19), affects the construction of
the manifold J 0. In fact, the point A ¼ 0 (as well as any
other stationary point) changes nontrivially under general
gauge transformations, and hence it cannot be an isolated
stationary point. More precisely, every stationary point of
S½A� belongs to a manifold of stationary points and, in
particular, the Hessian is degenerate. In this case, the
concept of (un)stable thimbles attached to A becomes
ambiguous.
The appropriate way to deal with these cases is ex-

plained in Refs. [31,34]: in presence of symmetries that
act nontrivially on critical points, it is convenient to gen-
eralize the concept of a nondegenerate critical point into
that of a nondegenerate critical manifold [47]. A manifold

7Also in this case, the procedure of complexification coincides
with the one adopted in the context of complex Langevin
formalism [12]. 8We use the multi-index k ¼ ðx; �; aÞ.
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N � C is a nondegenerate critical submanifold of C for
the function F: C ! R if

(1) dF ¼ 0 along N ;
(2) The Hessian @2F is nondegenerate on the normal

bundle �ðN Þ.

Under these conditions, we can decompose the bundle
normal to N as �ðN Þ ¼ ��ðN Þ � �þðN Þ, where the
first (second) bundle in the sum is associated to strictly
negative (positive) eigenvalues of @2F.

In the case of the QCD lattice action in Eq. (19),
the manifold N represents a full gauge orbit of sta-
tionary points,9 which has real dimension nG :¼dimRN ¼
ðV�1Þ�ðN2

c�1Þ. As we complexify the system, the mani-
fold N also extends to a larger manifold N C of complex
dimension nG. The manifold N C is the orbit generated by
application of all possible SLð3;CÞ gauge transformations
to the configuration A ¼ 0. Hence, the Hessian of the
real part of a holomorphic and gauge invariant function
F: C ! C can be regarded as a real matrix in Hom
ðR2n;R2nÞ, which has n� nG positive, n� nG negative
and 2nG zero eigenvalues. As stressed in Ref. [31] (see, in
particular, Sec. 3.3 of Ref. [31]), the n-dimensional integra-
tion cycle that we need should be build out of the stable
manifold of curves of SD attached to a middle-dimensional
manifold contained inN C. A natural choice for the middle-
dimensional manifold in N C is the original N itself.

Finally, we need suitable SD equations. The general-
ization of Eq. (7) to the left-covariant case leads to

d

d	
U�ðx; 	Þ ¼ ð�iTa

�rx;�;aS½U�ÞU�ðx; 	Þ: (25)

Similarly to the scalar model, Eqs. (25) are equivalent to
minimizing the real part of the action SR½U�. Moreover, the
imaginary part SI½U� is conserved along those curves. Both
of these properties can be verified by using Eqs. (24) and (25):

d

d	
SR=I ¼ 1

2

d

d	
ðS� �SÞ

¼ 1

2

X
k¼ðx;�;aÞ

ð�rkS � �rk
�S� �rk

�S � rkSÞ

¼
� � krSk2
0

:

After this long preamble, we can finally define the
integration cycle J 0 as

J 0 :¼ fU 2 ðSLð3;CÞÞ4V j9Uð	Þ solution of Eq:ð25Þj;
Uð0Þ ¼ U&lim

	!1Uð	Þ 2 N ð0Þg; (26)

where N ð0Þ is the critical manifold that contains the point
A ¼ 0. The definition (26) ensures that J 0 is an integration
cycle of the right dimension ðn� nGÞ þ ð2nGÞ=2 ¼ n.

Moreover, the choice of the critical manifoldN ð0Þ ensures
(as shown in Sec. III B 2) that the perturbative expansion of
the new formulation coincides with the standard one.
Substituting C with J 0 in Eq. (21) concludes the defi-

nition of our procedure10:

hOi0 ¼ 1

Z0

Z
J 0

Y
x;�

dU�ðxÞe�S½U�O½U�;

Z0 ¼
Z
J 0

Y
x;�

dU�ðxÞe�S½U�:
(27)

In the next sections we justify why this new formulation is
physically relevant, and propose a Monte Carlo algorithm
to study it numerically.

B. Justification of the approach

As already explained in Sec. II B, we do not attempt to
derive an exact relation between the path integral on the
cycle C and the one on the cycle J 0. Our motivation to
study QCD on the thimble J 0 is that it is a nonperturbative
definition of a local QFT with the same algebra of opera-
tors, the same degrees of freedom, the same symmetries,
and the same perturbative expansion as QCD. If the con-
tinuum spectrum of QCD is an unambiguous prediction of
these properties—as it is generally expected on the basis of
universality—then studying the formulation inJ 0 is physi-
cally very significant. If that should not be the case, it
would represent a very interesting surprise, and a major
step forward in our understanding of QFTs.
Motivated by these ideas, we examine, in the following

sections, the symmetry properties (Sec. III B 1) and the
perturbative expansion (Sec. III B 2) of our formulation.
In Sec. III B 3 we define a strategy to compare precisely the
formulations in C and J 0 at � ¼ 0. Finally, in Sec. III B 4
we comment on the branches of the logarithm that appear
in the fermionic effective action.

1. Gauge symmetry

The only new symmetry that deserves special com-
ments, in the case of QCD, is the SUð3Þ gauge symmetry.
The SD Eq. (25) is exactly covariant under gauge trans-
formationsU�ðxÞ ! �ðxÞU�ðxÞ�ðxþ �̂Þ�1, but only if the
transformations � belong to the SUð3Þ subgroup of the
whole SLð3;CÞ symmetry group that emerged after com-
plexification. This is due to the fact that—as opposed to the
complex Langevin equation—in the SD Eq. (25) the con-

jugate term ðTa
�rx;�;aS½U�Þ appears, which transforms as

9In the pure Yang-Mills case,N also includes toronic degrees
of freedom [48], but this degeneracy is removed by the fermionic
part of the action, as confirmed by the computation of the
Hessian in the Appendix.

10The measure dU�ðxÞ needs to be evaluated on a basis of the
tangent space of J 0, which produces a phase, as discussed in the
scalar case.
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ðTa
�rx;�;aS½U�Þ ! ð�ðxÞ�1ÞyðTa

�rx;�;aS½U�Þ�ðxÞy:
More precisely, we can show the SUð3Þ gauge invariance

of J 0 through essentially the same argument used in

Sec. IIB 1. In fact, let Û 2 J 0, and let ~U ¼ Û� denote the

gauge transformation of Û. By definition of J 0, there is
a curve Uð	Þ that solves the SD equations (25), with

Uð0Þ¼Û and Uðþ1Þ 2 N ð0Þ. If we define the curvegU�ðx; 	Þ ¼ U�
� ðx; 	Þ ¼ �ðxÞU�ðx; 	Þ�ðxþ �̂Þ�1, then we

find gUð0Þ ¼ Û� ¼ ~U, gUðþ1Þ 2 N � ¼ N ð0Þ, and gUð	Þ
satisfies the equation of SD by covariance of �r S½U� . In
conclusion, althoughJ 0 cannot be expressed globally as the
tensor product of SUð3Þ groups, it is nevertheless invariant
under the full group of local SUð3Þ gauge transformations.11

Note that, by definition,J 0 is attached only to the middle-

dimensional critical manifoldN ð0Þ and not to the fullN ð0Þ
C .

This is consistent with the invariance only under the SUð3Þ
subgroup of SLð3;CÞ. This also means that any section at
fixed 	 (in a given parametrization) of the manifold J 0 is
compact.12 Therefore, gauge-fixing is not expected to be
necessary to prevent numerical instabilities arising from
gauge transformations of arbitrarily large norm.

2. Perturbative analysis

We claimed that the perturbative expansion of the path
integral defined on the thimble J 0 reproduces the standard
perturbation theory of QCD. In order to check this, we need
to compute the power series in g of the integral

hOi0 ¼ 1

Z0

Z
J 0

Y
x;�

dU�ðxÞe�S½U�O½U�;

Z0 ¼
Z
J 0

Y
x;�

dU�ðxÞe�S½U�;

where S½U� is the action (19).
The perturbative computation of an observable

O½A; c ; �c � at order gp involves the computation of inte-
grals of the form

dp

dgp

�Z
J 0ðg;�Þ

dAe�S2½A�þgSint½A� detðQ½A ¼ 0�Þ

� F½A;g;��Q½A ¼ 0;���1 . . .Q½A ¼ 0;���1

�
jg¼0

:

(28)

In the above expression, S2½A� ¼ 1
4

P
x;�;�;að�f

�Aa
�ðxÞ �

�f
�Aa

�ðxÞÞ2, where �f
� is the forward lattice derivative. The

functionalsF½A;g;�� and Sint½A� are some polynomial in the
field variables A. Note that the integral in Eq. (28) does not

include singularities in thevariableA. Note also that the action
S2½A� does include zero modes (associated to both gauge and
toronic degrees of freedom). These need to be regularized, as
is always necessary in lattice perturbation theory.
The expression (28) generates, again, the two types of

terms that we have seen after Eq. (11). Those of the first
type are identical to standard perturbative QCD [the argu-
ment in this case is even simpler, because, for g ¼ 0, the
action S2½A� does not depend on �, and hence J 0ð0;�Þ¼
C for all �]. The terms of the second type vanish for the
same reason explained in relation to Eq. (13). Hence, the
perturbative series, in the expansion parameter g, of the
path integrals (21) and (27) are identical. Note that this
result is far from trivial. For example, neither the symme-
tries, nor the perturbative expansion of QCD with imagi-
nary chemical potential [9,10] coincide exactly with those
of QCD with real chemical potential. In fact, the simula-
tions at imaginary chemical potential assume analyticity13

in �. Finally, the procedure of restricting the functional
integral to those gauge configurations with a positive real
part of the fermionic determinant—which is known to fail
[49]—also lacks an acceptable perturbative expansion.

3. Relation with the standard approach at zero density

It is interesting to check to what extent our nonpertur-
bative formulation coincides with the standard Wilson
regularization of QCD at � ¼ 0. This was exactly true in
the case of the model defined by our regularization of the
action (2) coincident with the standard one at � ¼ 0,
because the action (2) has one single minimum at � ¼ 0
and no further stationary points in C.
In the case of QCD, we should first check whether the

point at A ¼ 0 is actually a minimum for the QCD effective
action (19) at � ¼ 0. In the Appendix, we compute the
gradient and the Hessian of the action (19) at A ¼ 0. As
already noticed, it is easy to check that the configuration
A ¼ 0 is a stationary point. The computation of the
Hessian matrix at A ¼ 0 requires a bit more work. The
analytic computation is reported in the Appendix, but
the final sum must be performed numerically. It turns
out14 that the point A ¼ 0 is not a minimum for periodic
boundary conditions, but it is a minimum for (fermionic)
antiperiodic boundary conditions in all directions. This is
in agreement with the findings of van Baal [50]. In the
following we will always assume this choice.
The fact that the pointA ¼ 0 is a local minimum, together

with the observation that it is a global minimum in the
continuum limit, justifies our approach. However, it might
be interesting to check whether there are other (local or

11In terms of fiber bundles, we may say that the points in J 0

are sections of an SUð3Þ bundle, without being sections of a
principal SUð3Þ bundle.
12This is a vanishing (n� 1) cycle, as defined in Ref. [27].

13Also the Taylor expansion method assumes analyticity in �.
14This was checked for a wide range of values for the parame-
ters g, m, r, L and T, covering those typically used in numerical
simulations. The signs of the eigenvalues seem to depend only
on the choice of the fermionic boundary conditions, but we could
not prove this result analytically, by inspection of Eq. (A5).
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global) minima. For sure, there must be at least another local
minimum, since the configuration space contains at least
two disconnected components, distinguished by the sign of
the fermionic determinant and separated by a singularity of
the effective action (19).15 Since the minimum A ¼ 0 is not
the only minimum, the functional integral over the thimble
J 0 attached to the point A ¼ 0 does not coincide with the
usual functional integral over C, because a portion of the
phase space with finite measure cannot be explored.
However, the minimum of the component with negative
fermionic determinant is most likely not a global minimum
of the effective action, and its contribution is suppressed, as
it is also confirmed by direct simulations [51].

In general, the search for other minima can be done
numerically by starting from random gauge configurations
and evolving the system with the SD Eq. (25). Since we are
considering � ¼ 0, the action is real and the evolution
determined by Eq. (25) preserves the manifold C. Hence
the evolution by SD will drive our random configuration to
the local minimum of the action to which it is associated.16

If we repeat this procedure for a set of random configura-
tions, we can (1) determine whether there are other (global
or local) minima of the action (19) besides A ¼ 0, (2) es-
timate the volume of the phase space associated to the
other minima and (3) compute the suppression factor of
the nonglobal minima of the effective action.

We should stress that the stationary points which are not
minima (they are certainly present in large quantity in
QCD) are irrelevant, since they represent the 	 ! 1 limit
of a set of zero measure in C.

Finally, nothing that we know about nonperturbative
QCD suggests that the thimble J 0 might miss some rele-
vant physical information. In fact, for instance, center
vortices’ configurations [52] are stationary points of the
action, but not minima. Moreover, the topological sectors
are not disconnected in lattice QCD with Wilson fermions
(unless special constraints are imposed [53]). In particular,
it is known that the iterated application of cooling trans-
formations (which are equivalent to steps of SD) eventually
lead any configuration with nonzero topological charge to
the neutral topological sector [54]. Moreover, even if we
consider those lattice actions that effectively separate the
topological sectors (such as the overlap formulation [55]),
it is still true that the restriction to the sector with zero
topological charge can only introduce finite size effects to
the local correlation functions,17 because no local observable

can be aware of the total topological charge, in a sufficiently
large volume.

4. Branches of the logarithm

Up to now, we have used the holomorphicity of S½A�
only at the critical manifold N ð0Þ, in order to deduce the
properties of the Hessian matrix. The action S½A� is hol-
omorphic in N ð0Þ for all value of �, except for a discrete
set that will be discussed in Sec. III C.
Sincewe do not useMorse theory to justify our approach,

the holomorphicity of S½A� is not strictly needed, besides
the point A ¼ 0. But, the insight offered by Morse theory is
very important and we should comment on the presence of a
logarithm in the effective action (19). The complex loga-
rithmic function has two peculiarities: its imaginary part is
multivalued (or, alternatively, it has a cut, along one semi-
axis starting from the origin of C) and it has a singularity in
zero. The logarithm of a complex matrix has the same
features for each eigenvalue of the matrix.
The presence of the logarithm naturally leads to regard

S½A� as a holomorphic function defined on the universal
covering space ~X of X ¼ SLð3;CÞnnZ, whereZ is the zero
set of the fermionic determinant. Hence, the action S is
holomorphic in ~X, which is connected and simply con-
nected. This means that the thimbles attached to the sta-
tionary points of Smay provide a basis for the homology of
~X, and the discussion of Sec. II B 3 can be repeated essen-
tially unchanged.
Since in numerical simulation one typically works with

a parametrization of X and not of its covering space ~X, it is
still necessary to check whether the multivaluedness of the
logarithmic function may cause some difficulties. The
imaginary part of the action SI½A� is constant, by defini-
tion, along J 0. However, it is obtained as the sum of a
fermionic and a gauge part, and the fermionic part is itself
the sum of many contributions which are not individually
constant. If we compute the imaginary part of the loga-
rithm in Eq. (19) using the prescription of the principal
branch, we may observe jumps of 2�. This is, however, not
a problem, because the computation of SI½A� is needed
only as a check of the stability of the algorithm.18 Hence,
any jump of a multiple of 2� is acceptable.
In principle, our setup offers the possibility of a more

elegant description of the manifold J 0 as a true submani-
fold of the covering space ~X, which removes the ambiguity
of 2� completely. In fact, any point inJ 0 is connected by a

natural path to the manifold N ð0Þ, and the manifold N ð0Þ
is connected by a gauge transformation (which leaves all
the eigenvalues of the Dirac operator invariant) to the point
A ¼ 0. Hence, the imaginary part of the logarithm of the

15Note, however, that in the complexified configuration space,
the complement of the zero set of the determinant is connected.
16We ignore the possibility that a configuration is driven to a
saddle point which is not a minimum, because this possibility
has zero measure and hence zero probability.
17Note that in the case of Yang-Mills theory in 1þ 1 dimen-
sions, the topological sectors affect the asymptotic space-time
behavior of Wilson loops, also in the continuum [56]. But in two
dimensions, the Wilson loops are effectively a global sum over
the whole space-time.

18This is true even if we include a step of accept/reject. In this
case we need to compute, besides the force @SR½A�, also the
value of the action SR½A�. However, it is always only the real part
that matters.
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Dirac operator is well defined in any configuration in J 0,
as soon as it is defined in A ¼ 0, where it can be fixed
conventionally. However, using this procedure to compute
SI½A� is more difficult and probably not justified by the
wish of removing the ambiguity of 2�.

The singularity of the logarithm implies that the mani-
foldJ 0, defined in Sec. III A 2, is bounded by the algebraic
variety Z ¼ fU: detðQ½U�Þ ¼ 0g, which has complex
codimension 1 (real codimension 2) in Cn. This means

that the curves of steepest ascent coming from N ð0Þ at
	 ¼ �1 may end not only at infinity (as it necessarily
happens in the scalar model) but also in Z. In the high
density regime one should expect the set Z to come very
close to the point A ¼ 0. In fact, the point A ¼ 0 actually
belongs to Z for a discrete set of � values, that become
more and more dense in the large volume limit. This
phenomenon reminds us of the fact that QCD at finite �
has really two (quite independent) problems: the sign
problem and the problem of a high concentration of zero
eigenvalues of the fermionic determinant near the physi-
cally interesting phase space. The two problems are inde-
pendent, since the latter appears also where the former is
absent, as in two color QCD [57]. Our approach tries
to address the former problem, but it is not expected to
offer any particular advantage with respect to the latter.
Nevertheless, the experience of two color QCD is encour-
aging, as it shows that much progress can be obtained in
that case by tenacious algorithmic tuning.19

C. Algorithm

It is straightforward to adapt the algorithm described in
Sec. II C to the case of QCD. In this section we comment
only on the new issues that appear in the case in QCD. In
particular, the problem of computing the phase associated
with the alignment of the tangent space of J 0 with respect
to the canonical complex volume form is exactly the same
as for the scalar theory and will not be discussed further.

For convenience, we write here explicitly the main for-
mulas. The observables that we want to compute can be
written as

hOi ¼ 1

Z0

e�iSI
Z
J 0

Y
x;�

dU�ðxÞe�SR½U�O½U�; (29)

and the Langevin equations are easily derived from those
of SD (25):
d

d	
U�ðx; 	Þ ¼ �iTað �rx;�;aS½U� þ �a;x;�ÞU�ðx; 	Þ; (30)

where the �a;x;� are random Gaussian C numbers. The

procedure to project the noise vector into a direction
tangent to J 0 is exactly the same that is described in
Sec. II C. In particular, the evolution equation for parallel

transport of the noise vector takes the form [j, j0 multi-
indices stand for ðR=I; x; �; aÞ]

d

d	
�jð	Þ ¼ �j0 ð	Þrj0rjSR: (31)

In presence of dynamical quarks, there is a further
difficulty: the effective fermionic action SF½U� cannot be
estimated stochastically with a single extraction of pseudo-
fermions, as it is usually done, but must be computed with
sufficient precision so that the curves of SD are well defined
and can be integrated precisely. This applies both to the
evolution that makes use of Eq. (30) and the one determined
by Eq. (31). This implies a considerable extra cost, as one
Dirac inversion is necessary for each pseudofermion, and it
is not clear how many pseudofermions will be necessary.
An alternative could be to introduce pseudofermion

fields and treat them similarly to the gauge fields.
However, if we make this choice, the pseudofermion can-
not be refreshed at every trajectory. Instead one should
evolve them by small steps exactly like the gauge fields. It
is not clear whether this leads to a better solution. But, it is
clear that there are many possible directions in which one
could try to improve the efficient computation of the
fermionic effective action. A discussion of these improve-
ments is beyond the goals of this paper.
The procedure outlined here is certainly challenging in

the case of QCD. For example, in order to reach the region
where the quadratic approximation of the action is valid, it
is necessary to apply as many SD iterations as necessary to
suppress any nontrivial topological structure which may be
present in the gauge configuration. The experience gained
from the application of the cooling method [54] suggests
that the trivial sector will be reached, eventually, but it may
require as many as Oð100Þ iterations. It will probably be
difficult to preserve the parallelism of the noise vector �
along such distance and through such nontrivial structure of
the gradient flow. However, the slow evolution of the low
modes is essentially due to the highly local nature of the
smearing procedures which are typically used in applica-
tions that aim at preserving the lowmodes structure as much
as possible. Since our goal is the opposite, we expect that
techniques of Fourier acceleration [43] may be highly bene-
ficial. Moreover, we expect that including a sufficient num-
ber of stout [58] or HEX, as defined in Ref. [59], smearing
steps in the action may reduce considerably the distance
between the regionwhere the simulations are performed and
the region where the quadratic approximation is valid.
Ideally, we should use an action that smears the gauge fields
as much as possible, but without spoiling the locality of the
underlying QFT. If this procedure has a chance at all, it will
most probably require considerable tuning.

IV. CONCLUSIONS

We have introduced a new approach to deal with a class
of sign problems that appear in lattice QFTs. The approach

19Similarly to the case of two color QCD, the drift in the
Langevin equation pushes the system away from Z, which is
important to make the problem tractable.
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is, in principle, quite general. We have illustrated it with
reference to two examples of QFTs with a sign problem: a
scalar field theory with chemical potential and QCD at
finite baryonic density. The former represents an ideal
test bed for the method. The latter is much more chal-
lenging. However, it is natural to think to other possible
applications, such as, e.g., the study of QCD with a theta
term [60].

The approach consists in regularizing the partition func-
tion as an integral over that particular Lefschetz thimble
which ensures a well behaved perturbative limit. There is
no proof that this regularization coincides or is physically
equivalent to the standard one. Nevertheless, we have
shown that the new formulation describes a local QFT
with the correct symmetries, the correct representations
and the correct perturbative expansion. Since the idea of
universality is a fundamental element of our understanding
of QFTs and, in particular, of QCD, this formulation does
not simply represent a new model, but has the ambition to
enable the testing of our current fundamental laws.

Lattice QCD is too complicated to determine the exact
relation between the standard formulation and the one
proposed here. But, Morse theory can at least provide
further evidence that the equivalence that we conjecture
is not inconsistent.

In this paper we have also introduced an algorithm to
achieve an importance sampling of the configurations in
the Lefschetz thimble. It involves an elegant application of
the idea of gradient flow to ensure that Monte Carlo up-
dates remain in the thimble. Moreover, we have shown that
the algorithm is protected against the obvious sources of
instabilities. We certainly expect that its numerical appli-
cation will be very challenging, especially in QCD, but we
do not see any no-go obstacle that cannot be cured by a
careful tuning.

A sign problem remains, due to the relative phase be-
tween the canonical complex volume form and the basis of
the tangent space to the thimble. General arguments sug-
gest that this sign problem should be much milder than the
original one, but we have no convincing evidence of this
yet. Moreover, computing such phase is very expensive:
OðV2L5Þ in storage and OðV3Þ in flops. Because of this, its
applicability is currently restricted, at best, to very small
lattices. This might already be very important, since the
experience of the pioneering works in lattice gauge theo-
ries suggests that some qualitative features of the phase
structure might be visible already there.

However, the main goal of this paper is to introduce a
new approach, and to prove that its theoretical framework
is solid and that its numerical applicability is worth testing.
This is necessary, in view of the fact that such tests (which
are presently in progress) will certainly be demanding.
On the other hand, we also hope to stimulate interest in
this original approach that certainly still has much room for
improvements.
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APPENDIX: COMPUTATION OF
THE HESSIAN MATRIX

In this paper we use the following notation:

k̂� ¼ 2 sin
k�
2

k̂2 ¼ X
�

k̂2� �k� ¼ sink�

�k2 ¼ X
�

�k2� V ¼ L3T:

For periodic boundary conditions (which are always as-
sumed for bosonic fields) the momenta take the values

p� ¼ 2�n�
L�

n� ¼ 0 . . .L� � 1; (A1)

while, in case of antiperiodic boundary conditions, the
possible values are

p� ¼ 2�ðn� þ 1
2Þ

L�

n� ¼ 0 . . .L� � 1: (A2)

1. The Hessian of the scalar field theory at � ¼ 0

Here we report the analytic computation of the Hessian
matrix at � ¼ 0, derived from the action (2). The Hessian
matrix in configuration space reads

Hac
x;y ¼ �S

��c;y��a;x

¼ ð2dþm2Þ�ca�xy þ 2��yx�a;x�c;x

þ �
X
b

ð�b;xÞ2�ac�xy � �ac

X
�¼1;3

ð�y;xþ�̂ þ �y;x��̂Þ

� �ac cosh�ð�y;xþ0̂ þ �y;x�0̂Þ
þ i sinh�"acð�y;xþ0̂ � �y;x�0̂Þ; (A3)

where "ab is the antisymmetric tensor. In momentum space
we have
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Hac
p;q½�¼0�
¼ 1

V

X
x;y

eip�xe�iq�yHac
x;y½�¼0�

¼�p;�q

�
�ac

�
m2þ4

X
�¼1;3

sin2p�þ2ð1�cosh�cosp0Þ
�

�i"ac2sinh�sinp0

�
: (A4)

2. The Hessian of QCD at U ¼ 1

Here we report the analytic computation of the Hessian
matrix at A ¼ 0, derived from the action (19). We adopt the
notation for momenta (A1) and (A2). The covariant de-
rivative is defined as

rx;�;af½U� :¼ @

@

f½ei
TaU�ðxÞ�j
¼0:

The action (19) consists of two terms:

S½U� ¼ SG½U� þ NfSF½U�
SG½U� ¼ 


X
z;�<�

�
1� 1

N
<TrU�;�ðzÞ

�
SF½U� ¼ Tr logQ½U�;

where the Dirac operator Q½U� is defined in (20). The
contribution to the Hessian matrix due to SG is well known:

~Sð2ÞabG�� ðqÞ ¼
1

V

X
w;z

eiqðwþ�̂=2Þeiq0ðzþ�̂=2Þrw;�;arz;�;bSG½U�jU¼1

¼ �
�ab�q;�q0 ½q̂2��� � q̂�q̂��:

The Hessian matrix of the fermionic effective action
does not seem to be available in the literature. Hence, we
report it here in some detail. We consider both periodic and
antiperiodic boundary conditions for the fermionic fields.
The following expressions are valid in both cases, but the
substitution rule (A1) should be understood in the periodic
case, while the rule (A2) holds in the antiperiodic case.
Note that in the following the momentum variables p and k
are associated to fermionic degrees of freedom, while
q and q0 to gauge one. The derivative of the fermionic
effective action has two contributions:

rw;�;arz;�;bSF½U�
¼ TrðQ�1rw;�;arz;�;bQÞ

� TrðQ�1ðrw;�;aQÞQ�1ðrz;�;bQÞÞ
¼ X

xy

Trsc½Q�1
xy ðrw;�;arz;�;bQÞyx�

� X
xyx0y0

Trsc½Q�1
xy ðrw;�;aQÞyx0Q�1

x0y0 ðrz;�;bQÞy0x�:

The fermionic propagator reads, in momentum space,

~Q�1
p;q ¼ �p;q

mþ r
2 p̂

2 þ i �6p
ðmþ r

2 p̂
2Þ2 þ �p2

;

which is valid for both periodic and antiperiodic boundary
conditions, and also at finite �, if we take into account
(A1), (A2), and (A6). The first and second covariant de-
rivatives of the fermion matrix (20) are

rz;�;bQ½U�xy¼
�
ð�iÞr���

2
TbU�ðzÞe���;0�xþ�̂;y�x;zþ i

rþ��

2
U�1

� ðzÞTbe
����;0�x��̂;y�y;z

�
rw;�;arz;�;bQ½U�xy¼��;��w;z

�
r���

2
TbTaU�ðzÞe���;0�xþ�̂;y�x;zþrþ��

2
U�1

� ðzÞTaTbe
����;0�x��̂;y�y;z

�
:

In momentum space they become

rz;�;b
~Qp;q½U ¼ 1� ¼ 1

V

X
xy

eipxe�iqyrz;�;bðQ½U ¼ 1�Þxy ¼ i
1

V
Tbe

izðp�qÞ
�
r
eip� � e�iq�

2
þ ��

eip� þ e�iq�

2

�

rw;�;arz;�;b
~Qp;q½U ¼ 1� ¼ 1

V

X
xy

eipxe�iqyrw;�;arz;�;bðQ½U ¼ 1�Þxy

¼ 1

V
eiðp�qÞz��;��w;z

�
r� ��

2
TbTae

�iq� þ rþ ��

2
TaTbe

ip�

�
:

Hence, we get

rw;�;arz;�;bSF½U ¼ 1� ¼ X
pq

Trsc½ ~Q�1
pq ðrw;�;arz;�;b

~QÞqp� �
X

pkp0k0
Trsc½ ~Q�1

pk ðrw;�;a
~QÞkp0 ~Q�1

p0k0 ðrz;�;b
~QÞk0p�

¼ ��;��w;z�ab

2V

X
p

4½ðmþ r
2 p̂

2Þr cosp� � �p2
��

ðmþ r
2 p̂

2Þ2 þ �p2
þ �ab

8V2

X
pk

eiðw�zÞðp�kÞT ðp; k; �; �;mÞ
½ðmþ r

2 p̂
2Þ2 þ �p2�½ðmþ r

2 k̂
2Þ2 þ �k2� ;
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where

T ðp; k; �; �;mÞ :¼ Trs

��
mþ r

2
p̂2 þ i �6p

�
½rðeip� � e�ik�Þ þ ��ðeip� þ e�ik�Þ� �

�
mþ r

2
k̂2 þ i�6k

�
½rðeik� � e�ip�Þ

þ ��ðeik� þ e�ip�Þ�
�

¼ 4½E�;�
p;k E

�;�
k;p r

2ðMpMk � �p� �k�Þ þ E�;þ
p;k E

�;þ
k;p ð��;�MpMk þ ��;� �p� �k� � �p�

�k� � �p�
�k�Þ

þ irE�;�
p;k E

�;þ
k;p ðMp

�k� þMk �p�Þ þ irE�;þ
p;k E

�;�
k;p ðMp

�k� þMk �p�Þ�;
and

E�;�
p;k ¼ eip� � e�ik� Mp ¼

�
mþ r

2
p̂2

�
:

Finally, we obtain the fermionic contribution to the Hessian in momentum space:

~Sð2ÞabF�� ðq; q0Þ ¼
1

V

X
wz

eiqðwþ�̂=2Þeiq0ðzþ�̂=2Þrw;�;arz;�;bSF

¼ 2��;��a;b�q;�q0

V

X
p

½ðmþ r
2 p̂

2Þr cosp� � �p2
��

ðmþ r
2 p̂

2Þ2 þ �p2
þ �a;b�q;�q0e

i
2ðq��q�Þ

8V

�X
p

T ðp; k; �; �;mÞ
½ðmþ r

2 p̂
2Þ2 þ �p2�½ðmþ r

2 k̂
2Þ2 þ �k2�jk¼pþq

: (A5)

These expressions can be generalized to the case with chemical potential� � 0 by substituting all the fermionic momenta
(p and k, in the formulas above) as

p0 ! p0 þ i�: (A6)

Equation (A5) is not very transparent, but can be easily computed and diagonalized numerically.
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