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Nucleon axial charge in lattice QCD with controlled errors
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We report on our calculation of the nucleon axial charge g, in QCD with two flavors of dynamical
quarks. A detailed investigation of systematic errors is performed, with a particular focus on contributions
from excited states to three-point correlation functions. The use of summed operator insertions allows for
a much better control over such contamination. After performing a chiral extrapolation to the physical

pion mass, we find g, = 1.223 * 0.063(stat) 55
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I. INTRODUCTION

Lattice simulations of quantum chromodynamics
(QCD) have, by now, reached a stage which allows for
first-principles determinations of many hadronic proper-
ties, with overall uncertainties at the percent level [1].
While systematic errors for quantities such as quark
masses, meson decay constants and form factors appear
very well-controlled, the situation regarding properties of
the nucleon is less satisfactory. For instance, lattice calcu-
lations have so far failed in reproducing the well-known
experimental findings on nucleon structure (see Refs. [2,3]
for recent reviews). A prominent example is the axial
charge, gy, of the nucleon. Lattice results for this quantity
lie typically 10-15% below the experimental value [4—16].
What is even more worrying is the absence of any tendency
in the lattice data which would indicate that the gap is
narrowing as the pion mass is decreased; in fact, the
opposite trend is often observed. The most likely explana-
tion is that systematic effects are not fully controlled.
What is lacking, therefore, is a benchmark calculation of
a quantity which describes basic structural properties of
the nucleon, and for this purpose the axial charge is an
ideal candidate: (i) it is derived from a matrix element of a
simple fermionic bilinear which contains no derivatives,
(i1) the initial and final states can both be considered at
rest, and (iii) its definition as an isovector quantity implies
that contributions from quark-disconnected diagrams are
absent.

In this paper, we report on our results for g,, addressing
in detail all sources of systematic errors, such as lattice
artefacts, finite-volume effects, and chiral extrapolations.
We specifically focus on the problem of a systematic bias
arising from excited-state contributions in the relevant
correlation functions. To this end, we apply the method
of summed operator insertions, which helps to control any
such contamination.
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(syst), in good agreement with the experimental value.

PACS numbers: 12.38.Gc, 12.38.Aw

II. SIMULATION DETAILS

Our simulations are performed with Ny = 2 flavors of
O(a)-improved Wilson fermions and the Wilson plaquette
action. We stress that excited-state contamination is an
important issue for lattice simulations with any number
of dynamical quarks. Hence, the question whether esti-
mates for g, may be biased can be adequately addressed
in two-flavor QCD. In particular, there is ample evidence
[1] that there are no discernible differences between QCD
with Ny =2 and N; =2 + 1 flavors at the few-percent
level. Therefore, the observed gap between previous lattice
estimates of the axial charge and its experimental value is
by far too large to be explained by the presence or absence
of a dynamical strange quark.

We use the nonperturbative determination of the
improvement coefficient cg, from Ref. [17]. Table I con-
tains a compilation of lattice sizes and other simulation
parameters, including the pion and nucleon masses in lattice
units. All listed ensembles were generated as part of the
CLS initiative, employing the deflation-accelerated DD-
HMC algorithm [18,19]. Quark propagators were computed
using Gaussian-smeared source vectors [20] supplemented
by HYP-smeared links [21]. The smearing parameters were
tuned to maximize plateau lengths for effective masses for a
variety of channels. On each ensemble we collected be-
tween 150 and 250 highly decorrelated configurations. Up
to eight sources, equally spaced in the temporal direction,
were used to reduce statistical fluctuations in correlation
functions. In this way, we performed between 280 and 1700
individual measurements on our ensembles. The lattice
spacings were determined using the mass of the () baryon
as described in Ref. [22]. As we are in the process of
supplementing the set of our ensembles, estimates of the
lattice spacing will be updated in the future. Correlation
functions were computed using the same smeared nucleon
interpolating operators at the source and sink. For three-
point functions we employed the improved axial current
which is related to its renormalized counterpart via [23]
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Simulation parameters, pion and nucleon masses for all ensembles used in this

paper. The temporal extent of each lattice is twice the spatial length, T = 2L. N4, is the number
of configurations per ensemble, while N denotes the number of different sources.

Run L/a B8 K am, amy m,L Neto Ny
A2 32 5.2 0.13565 0.2424( 4) 0.592(4) 7.73 144 4
A3 32 5.2 0.13580 0.1893( 5) 0.531(4) 6.06 265 4
A4 32 5.2 0.13590 0.1454( 7) 0.481(6) 4.65 199 4
A5 32 52 0.13594 0.1249(14) 0.469(8) 4.00 212 8
E3 32 53 0.13605 0.2071( 6) 0.510(3) 6.63 139 2
E4 32 53 0.13610 0.1934( 5) 0.497(3) 6.19 162 8
ES 32 53 0.13625 0.1439( 6) 0.420(3) 4.60 168 8
F6 48 53 0.13635 0.1036( 5) 0.382(5) 4.97 199 4
F7 48 53 0.13538 0.0886( 4) 0.334(8) 4.25 250 4
N4 48 5.5 0.13650 0.1358( 3) 0.351(2) 6.52 150 4
N5 48 55 0.13660 0.1090( 3) 0.320(3) 5.23 150 4

(AR) = Z,(1 + byam,)(A, + acyd,P), (1)

where A, and P denote the local axial current and pseudo-
scalar density, respectively, and m, is the bare subtracted
quark mass. Since g, was determined from the third
component of the axial current alone, the contribution
proportional to 9, P vanishes, as the axial charge is defined
at zero momentum transfer. Nonperturbative values for the
renormalization factor Z, were taken from Ref. [24], while
the improvement coefficient b, was estimated in tadpole-
improved perturbation theory [25]. Since the contribution
from the improvement term is at the sub-percent level in the
range of quark masses considered, the systematic effect
arising from the unknown nonperturbative value for b,
will be negligible.

III. EXCITED-STATE CONTAMINATION

We denote the Euclidean time separation between the
nucleon source and sink by 7, while # with # = ¢, marks the
interval between the source and the axial current. If, as in
our case, the same smeared interpolating operators are
applied at the source and sink, the axial charge can be
determined from a simple ratio,

Cy(t, 1)
C2(ts) '
where C?(t, t,) denotes the three-point correlation function
of the local, bare axial current at vanishing momentum

transfer. For large values of ¢ and ¢ the ratio R(1, t,) yields
directly the bare axial charge, i.e.,

R(t t,) == ()

(= 1)>0 - —A(t—
g + 0 + 0, (3)

R(t, 1)
where A denotes the gap between the masses of
the nucleon and its first excitation. The axial charge
is usually extracted by fitting R(z, ;) to a constant. Due
to the exponentially increasing noise-to-signal ratio in

correlation functions of the nucleon, typical values of ¢,
are of the order of 1 fm. To guarantee a reliable determi-
nation of g,, excited-state contributions in Eq. (3) must
already be sufficiently suppressed for 7, (z, — ¢) < 0.5 fm.

The lowest-lying multiparticle state in the nucleon chan-
nel consists of one nucleon and two pions forming an
S-wave. Therefore, assuming that the nucleon and pions
are only weakly interacting, one expects the gap A to be
proportional to the pion mass, since the mass difference to
the Roper resonance amounts to about 500 MeV. The same
argument applies if one nucleon and one pion form a
P-wave, provided that the nonzero momentum induced
by the box size is small enough. It is then clear that excited
states may increasingly distort the results for g, as the
physical pion mass is approached. A typical situation is
shown in Fig. 1: as ¢, is varied from 0.8 to 1.26 fm, the ratio
R(1, t,) is shifted by about 10% to larger values. Given the
rapid degradation of the signal, it then remains unclear
whether 7, = 1 fm is sufficient to rule out a bias in the

FIG. 1 (color online). The ratio R(f,t) at B =52 and
m, = 312 MeV for several different values of the source-sink
separation f,.
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FIG. 2 (color online). The summed ratio S(z) at m, =
320 MeV for two different lattice spacings (ensembles A5
and F6).

result for g,. The most straightforward strategy to address
this problem is to include the first excitation into the fit
ansatz for R(z, t,) (see Ref. [26]) or to investigate larger
values of t and ¢, [27].

Here we present an alternative approach, based on the
use of summed operator insertions [20,28,29]. The key
observation is that excited-state contributions can be para-
metrically reduced when R(z, ;) is summed over ¢. More
precisely, the asymptotic behavior of the summed ratio
S(z,) is given by

tS
S(t) == 3 R, 1) + 1 fghme + 0(e40)), (4
t=0

where the (divergent) constant, ¢, includes contributions
from contact terms. By computing S(z,) for several suffi-
ciently large values of ¢, the quantity of interest can be
extracted from the slope of a linear fit. Since ¢, > ¢, (¢, — 1)
by construction, excited-state contributions to the slope of
S(z,) are more strongly suppressed relative to R(, 7).
Compared to the standard method of computing the latter
at a single fixed value of 7, it is clear, however, that the
approach via summed insertions is computationally more
demanding. In Fig. 2 we show typical fits to the summed
ratio S(¢;) which demonstrate that the linear behavior is
very well-satisfied.

IV. RESULTS

We have determined the axial charge by fitting
the summed correlator S(7,) to a linear function for
0.7 fm = ¢, = 1.3 fm and multiplying the slope by the
relevant renormalization factor of the axial current,
Eq. (1). We have verified the stability of the method by
excluding the smallest value of ¢, from the fit for each
ensemble. Typically, this leads to an increase in the value
for g, albeit with a 1.5-2 times larger statistical error.
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TABLE II. Results for the axial charge determined via
summed insertions and the conventional plateau method. The
data are corrected for finite-volume effects estimated in
HBChHPT (see text).

Run a[fm] m, [MeV] myx/m, gSomm e

A2 0079 603 2.454(15) 1.179( 45) 1.195(28)
A3 473 2.803(23) 1.256( 52) 1.256(28)
A4 363 3309(41) 1.084(103) 1.121(42)
A5 312 3.751(77) 1.382(127) 1.228(61)
E3 0063 649 2.462(12) 1.212(49) 1.195(40)
E4 606 2.561(11)  1.154( 68) 1.160(36)
E5 451 2.920(22) 1.311(105) 1.184(52)
F6 324 3.683(48) 1.268( 91) 1.217(55)
F7 277 3.771(86) 1.162( 95) 1.137(37)
N4 0.050 536 2.581(13)  1.221(32) 1.176(26)
N5 430 2.939(28) 1.212(48) 1.180(37)

In the following we present a detailed comparison
between the results obtained using summed insertions
(“‘summation method’”) with those arising from fitting
the ratio R(z, t ) to a constant in ¢ for 7, = 1.1 fm (“plateau
method”’). Results are shown in Table II and Fig. 3. One
observes that the plateau method yields estimates for g,
that mostly lie below the experimental value, which is the
typical behavior seen in other calculations at similar pion
masses. Typically, the summation method produces results
which are higher than those from the plateau method, in
some cases by up to 10%. At the same time, the summation

1B e foroeeeanee ET IPRRRTR
4 ; ;summation; ;
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m2 [GeV?

FIG. 3 (color online). Chiral behavior of g, extracted from
summed insertions (upper panel) and using the standard plateau
method (lower panel). Chiral fits of type “A” and “D” (see text)
applied for m, < 540 MeV are represented by the blue/hatched
and red bands, respectively. The black point denotes the experi-
mental value.
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method has larger statistical errors. Still, since an increase
is observed in seven out of eleven cases, while a slightly
smaller value was obtained only for one ensemble, it is
unlikely that this can be merely attributed to statistical
fluctuations.

In order to investigate the chiral behavior in detail,
we have performed chiral extrapolations based on sev-
eral different ansdtze commonly used in the literature
[7,8,13,14,30], i.e.,

FitA: o + Bm2,
FitB: o' + B'm2 — |y'|m2 Inm% /A2, (5)
FitC: o + B"m2 — |y"|e "L,

with fit parameters a, B, o/, .. .. Another ansatz, Fit D, is a
three-parameter fit, based on the expressions derived in
Heavy-Baryon Chiral Perturbation Theory (HBChPT) in
infinite volume [31,32], with three additional low-energy
constants fixed by phenomenology [14]. Examples are
shown in Fig. 3. A simple linear chiral extrapolation
(Fit A) applied to the data from all three lattice spacings
for which m, <540 MeV yields a value for g, at the
physical pion mass which agrees well with experiment
within the statistical uncertainty. A similar statement
applies to the fit based on HBChPT (Fit D). By contrast,
extrapolations of the data determined using the plateau
method fail to reproduce the experimental value by two
standard deviations.

Fit C was introduced in Ref. [8] to test whether the
widely observed underestimates of g, could be a manifes-
tation of finite-volume effects. After determining the
parameters «”, B" and y”, the volume-dependent term
proportional to exp{—m_L} can be subtracted. Indeed, a
nonzero value for y" results when Fit C is applied to the
data obtained via the plateau method. A linear chiral
extrapolation, using the fitted coefficients «” and B”,
then yields an estimate for g, which agrees with experi-
ment (see Fig. 4). However, repeating the procedure for the
summation method produces a vanishing coefficient y”.
We conclude that, in this case, there is no need to subtract
any term designed to account for finite-volume effects, in
order to get agreement with experiment. When addressing
the influence of excited states it is important to realize that
such contributions are volume-dependent, whenever they
are due to multiple-particle states. Thus, for a true bench-
mark calculation of the axial charge one must be able
to separate finite-volume corrections to g, from volume-
dependent excited-state contamination.

Figure 4 shows a compilation of the chirally extrapo-
lated g, from the four different fit types. While summed
insertions invariably produce estimates that are compatible
with experiment, one consistently obtains lower values
using the plateau method, except for Fit C with the term
containing exp{—m, L} subtracted. These observations are
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FIG. 4 (color online). Results for g, at the physical pion mass
for the plateau and summation methods. Solid points refer to a
pion mass cut at m, < 540 MeV, while open symbols are used
to denote results from fits across the entire pion mass range. Fits
A, B and D were applied to the volume-corrected data (see text).
The vertical lines represent the experimental value.

stable under variations of the pion mass range, as indicated
in the figure.

We now proceed to discussing our final result and the
estimation of systematic errors. We applied a finite-volume
correction based on the expression derived in HBChPT
[31] (see Ref. [14] for details on the numerical evaluation).
Since m,L >4 and 2 fm = L = 3 fm the resulting shifts
are at the sub-percent level for all our ensembles. As our
best estimate, we quote the result from Fit A, applied to the
volume-corrected data obtained from summed insertions,
with a cut of m_ <540 MeV, i.e.,

ga = 1.223 + 0.063(stat), (6)

which agrees with the PDG average [33] of 1.2701(25)
within the statistical error. By contrast, when the same
fitting procedure is applied to the results extracted from
the plateau method, one finds the much lower estimate of
ga = 1.173 = 0.038(stat).

It is instructive to compare our findings to other recent
results for the axial charge. A compilation is plotted in
Fig. 5. With the exception of the results by RBC/UKQCD
[9,10], our estimate based on the summation method is the
only one which agrees with the experimental value within
statistical errors. It is also worth mentioning that, in order
to achieve agreement with experiment, a large downward
curvature in the data had to be separated off in Refs. [9,10],
by applying the procedure of Fit C.

We note that, with our current level of statistical accu-
racy, no significant dependence on the lattice spacing could
be detected. For instance, applying Fits A—D only to the
data at 8 = 5.3 produces a tiny variation, which is ten
times smaller than the statistical error. Therefore we refrain
from quoting a separate systematic uncertainty relating
to cutoff effects. In order to quantify the uncertainty
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FIG. 5 (color online). Estimates for g, determined from the
summation and plateau methods compared to recent results by
ETMC [14], RBC/UKQCD (Ref. [9] for N; = 2, Ref. [10] for
Ny =2+ 1) and LHPC [13]. Only statistical errors are shown.
The thick vertical line represents the experimental result.

associated with the chiral extrapolation, we adopted two
procedures. First, by applying different cuts to the upper
limit on the pion mass interval between 470 and 640 MeV,
we observe a variation of *=0.035 relative to the central
value in Eq. (6). Second, we considered the spread among
Fits A-D as a measure for the uncertainty relating to the
extrapolation, which amounts to a downward shift by
—0.060. Taking the largest upward and downward varia-
tions from both methods as the error estimate, we arrive at
our final result,

ga = 1.223 = 0.063(stat) * 2033 (syst), (7)

which agrees with the experimental result at the level
of 6-7%.
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V. CONCLUSIONS

The typical source-sink separations in baryonic three-
point functions can be smaller by up to a factor two
compared to those used in the mesonic sector. Even for
ty = 1.3 fm it is hard to judge whether or not a significant
bias due to excited-state contributions can be excluded, if
the standard plateau method is employed without further
checks (see Fig. 1). Summed operator insertions offer an
attractive alternative, since excited-state contributions are
parametrically more strongly suppressed relative to those
encountered in conventional ratios. Our findings, summa-
rized in Fig. 4, demonstrate that a much better agreement
with the experimental value of g, can be achieved in this
way. On the downside, one must list the necessity to
compute correlation functions for several source-sink sep-
arations, as well as the larger statistical errors associated
with the method. However, since excited-state contamina-
tion might be a generic problem for lattice calculations of
structural properties of the nucleon, the larger numerical
effort seems a worthwhile investment. We plan to corrobo-
rate our findings by including additional ensembles with
smaller pion masses and extend our studies to other quan-
tities, such as the vector and axial vector form factors of the
nucleon. For this purpose, optimized anisotropic smearing
functions for nonvanishing hadron momenta [34,35] may
prove to be a useful addition to the technique of summed
insertions.
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