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The free energy of effective spin or ‘‘Polyakov line’’ models with a chemical potential, based on the

UðNÞ group, does not depend on the chemical potential. In a mean field-inspired expansion, we show how

the condition of unit determinant, taking UðNÞ to SUðNÞ, reintroduces the chemical potential, and allows

us to express the free energy, as a function of mean field variational parameters, in terms of an expansion

in the baryon (rather than the quark) fugacity at each lattice site. We solve the SU(3) mean field equations

numerically to determine the phase diagram and compute observables. We also calculate the first

corrections to the leading order mean field results, and find that these can significantly shift the endpoint

of a line of first order transitions. The problem of deriving an effective spin model from full QCD is

discussed.
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I. INTRODUCTION

Polyakov line or ‘‘effective spin’’ models, with lattice
actions of the form

S ¼ �
X
x

Xd
k¼1

½TrUy
xTrUxþk̂ þ TrUxTrU

y
xþk̂

�

þ �
X
x

½e�TrUx þ e��TrUy
x �; (1)

are of interest as crude models of gauge theories in D ¼
dþ 1 dimensions at finite temperature and chemical po-
tential [1]. Indeed, actions of this form can be extracted
from QCD directly by integrating out most of the variables
via a combined strong-coupling and hopping parameter
expansion, while keeping the Polyakov line holonomies
Ux fixed, and therefore (1) is justified as an effective theory
at least within the range of validity of these expansions.1 At
finite chemical potential � the Polyakov line models have
a sign problem, so that the usual Monte Carlo simulation is
not directly applicable. There are, nonetheless, several
different methods which can be used to solve this model.
One of the earliest studies applied the complex Langevin
equations to the SU(3) model [1–3]. A second method is
the mean field approach, applied to the� � 0 case by Bilic
et al. [2]. A third procedure, introduced in Ref. [4], is to
convert the partition function to a ‘‘flux’’ representation,
which, in the SU(3) case, has been simulated numerically

by Mercado and Gattringer [5]. Finally, the model can also
be solved, at least in some parameter range, by the re-
weighting technique [6].
In this article we will revisit the mean field strategy,

because there are certain aspects of that approach which we
find illuminating. It is generally believed that the free
energy of effective spin models based on the UðNÞ group
do not depend on the chemical potential, and this is be-
cause one can shift the integration contour of a U(1)
subgroup into the complex plane to absorb the factors of
e�� (cf. Ref. [7]), providing no singularities are encoun-
tered. We first rederive this �-independence, in Sec. II, in
the framework of a mean field-inspired expansion. We then
go on to show, in Sec. III, how the restriction to a unit
determinant, which converts UðNÞ to SUðNÞ, not only
reintroduces the chemical potential, but also converts
the mean field formulation into an expansion in baryon
fugacity. Numerical solutions of the mean field equations
for the SU(3) case are presented in Sec. IV, and the phase
diagram (projected to the �-� plane) is obtained. We also
display the effects of including the first correction to the
mean field approximation. In Sec. V we present some
comments on the problem of extracting the appropriate
effective spin model from full QCD, in the range of gauge
couplings and quark masses of interest. Our conclusions
are in Sec. VI.

II. UðNÞ POLYAKOV LINE MODELS

We will begin with models in which the effective spin
(or ‘‘Polyakov line’’) variable UðxÞ is an element of the
UðNÞ group. As already noted, the chemical potential
disappears from the free energy in this case, but the ex-
ample will set the stage for the more interesting SUðNÞ
models.

*Permanent address: Physics and Astronomy Department, San
Francisco State University, San Francisco, California 94132,
USA.

1Below we will refer to � in Eq. (1) as the ‘‘quark’’ chemical
potential, while keeping in mind the fact that, in the hopping
parameter expansion, � is actually related to the quark chemical
potential of full QCD by a factor of inverse temperature.
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Starting from the action (1), we mimic the mean field
approach by first adding and subtracting constants u, �,
which will eventually become variational parameters:

S ¼ �
X
x;k

½ðTrUy
x � �þ �ÞðTrUxþk̂ � uþ uÞ

þ ðTrUx � uþ uÞðTrUy
xþk̂

� �þ �Þ�
þ �

X
x

½e�TrUx þ e��TrUy
x �

¼ �2�dVu�þ 2�d�
X
x

TrUx þ 2�du
X
x

TrUy
x

þ �
X
x

½e�TrUx þ e��TrUy
x � þ J: (2)

Here V is the lattice volume, d is its dimensionality, and

J ¼ �
X
x;k

fðTrUy
x � �ÞðTrUxþk̂ � uÞ

þ ðTrUx � uÞðTrUy
xþk̂

� �Þg: (3)

We then have

S ¼ �2�dVu�þX
x

½AxTrUx þ BxTrU
y
x � þ J; (4)

where

Ax ¼ A � 2�d�þ �e� and

Bx ¼ B � 2�duþ �e��: (5)

Although Ax, Bx are x-independent constants, it is useful
below to regard them as variables. This allows us to differ-
entiate with respect to each of them, with the understand-
ing that all the Ax, Bx are set to A and B, respectively, after
the differentiation.

Ordinary mean field theory amounts to dropping J in the
action and, in the absence of a chemical potential, setting,
u ¼ � ¼ m, where m is the mean field. One then varies m
to minimize the free energy. In our case, define

Zmf ¼ e�Fmf

¼ e�2�dVu�
Y
x

Z
dUx exp½AxTrUx þ BxTrU

y
x �; (6)

and

Z

Zmf

¼e��F¼
R
DUeJ exp½PxðAxTrUxþBxTrU

y
x Þ�R

DUexp½PxðAxTrUxþBxTrU
y
x Þ�

: (7)

Also defining the operator

~J

�
u; �;

@

@A
;
@

@B

�
� �

X
x;k

��
@

@Bx

� �

��
@

@Axþk̂

� u

�

þ
�

@

@Ax

� u

��
@

@Bxþk̂

� �

��
; (8)

we have

exp½��F�

¼
�
e
~J½u;�; @@A; @@B�

R
DUexp½PxðAxTrUxþBxTrU

y
x Þ�R

DUexp½PxðAxTrUxþBxTrU
y
x Þ�

�
jAx¼A;Bx¼B

:

(9)

Next we need to evaluate the UðNÞ integral

I ¼
Z

dU exp½ATrUþ BTrUy�; (10)

which, by standard methods (cf. Ref. [8]), becomes an
angular integration2

I ¼
Z YN

n¼1

d�n

2�

1

N!
"i1...iN"j1...jNe

iðj1�i1Þ�1 . . . eiðjN�iNÞ�N

� exp

�
A
XN
m¼1

ei�m þ B
XN
m¼1

e�i�m

�

¼ 1

N!
"i1...iN"j1...jN

YN
n¼1

Z d�n

2�
eiðjn�inÞ�n

� exp½Aei�n þ Be�i�n�

¼ 1

N!
"i1...iN"j1...jN

YN
n¼1

�
@

@A

�
jn
�
@

@B

�
in

�
Z d�n

2�
exp½Aei�n þ Be�i�n�

¼ 1

N!
"i1...iN"j1...jN

YN
n¼1

�
@

@A

�
jn
�
@

@B

�
in
I0½2

ffiffiffiffiffiffiffi
AB

p �: (11)

This gives us

Zmf ¼ e�2�dVu�
Y
x

1

N!
"i1...iN"j1...jN

YN
n¼1

�
@

@Ax

�
jn

�
�

@

@Bx

�
in
I0½2

ffiffiffiffiffiffiffiffiffiffiffi
AxBx

p �: (12)

2The solution for I in the general case where A, B are matrix-
valued and located inside the trace is given in Ref. [9], and the
answer involves Vandermonde determinants of the eigenvalues
of AB. The SUðNÞ case was presented in Ref. [10], but only for
B ¼ Ay. For the later extension to SUðNÞ with A and B arbitrary
scalar constants, it is convenient for us to work out the scalar
constant case explicitly here.
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We now introduce rescaled variables

u ¼ e��u0 and � ¼ e��0

Ax ¼ ð2�d�0 þ �Þe� ¼ A0
xe

�

Bx ¼ ð2�du0 þ �Þe�� ¼ B0
xe

��

@

@Ax

¼ e�� @

@A0
x

@

@Bx

¼ e�
@

@B0
x

:

(13)

Then Zmf becomes

Zmf ¼ e�2�dVu0�0Y
x

1

N!
"i1...iN"j1...jN

YN
n¼1

eðin�jnÞ�
�

@

@A0
x

�
jn

�
�

@

@B0
x

�
in
I0

�
2

ffiffiffiffiffiffiffiffiffiffiffi
A0
xB

0
x

q �

¼ e�2�dVu0�0Y
x

1

N!
"i1...iN"j1...jN

� exp

��XN
m¼1

im � XN
m¼1

jm

�
�

�

� YN
n¼1

�
@

@A0
x

�
jn
�

@

@B0
x

�
in
I0

�
2

ffiffiffiffiffiffiffiffiffiffiffi
A0
xB

0
x

q �
: (14)

At this point we note that, because of the "i1...iN"j1...jN�
term,

XN
m¼1

im ¼ XN
m¼1

jm: (15)

Therefore

Zmf ¼ e�2�dVu0�0Y
x

1

N!
"i1...iNj1...jN

YN
n¼1

�
@

@A0
x

�
jn

�
�

@

@B0
x

�
in
I0

�
2

ffiffiffiffiffiffiffiffiffiffiffi
A0
xB

0
x

q �

¼ e�2�dVu0�0Y
x

det

��
@

@B0
x

�
i
�

@

@A0
x

�
j
I0

�
2

ffiffiffiffiffiffiffiffiffiffiffi
A0
xB

0
x

q ��
:

(16)

As a function of the rescaled variational parameters u0, �0,
Zmf is clearly �-independent, and of course it will remain
�-independent when Fmf is minimized with respect to u0,
�0. Likewise, all � dependence cancels in the ~J operator

~J

�
u; �;

@

@A
;
@

@B

�
¼ �

X
x;k

��
@

@Bx

� �

��
@

@Axþk̂

� u

�

þ
�

@

@Ax

� u

��
@

@Bxþk̂

� �

��

¼ �
X
x;k

��
@

@B0
x

� �0
��

@

@A0
xþk̂

� u0
�

þ
�

@

@A0
x

� u0
��

@

@B0
xþk̂

� �0
��
: (17)

From this we can conclude that both Fmf and �F, and
therefore the free energy F ¼ Fmf þ �F itself, are inde-
pendent of the chemical potential � in Polyakov line
models based on the group UðNÞ.3
Before proceeding to SUðNÞ, we note that the expression

for Zmf can be simplified a little further, using the identity

@

@A

@

@B
I0½2

ffiffiffiffiffiffiffi
AB

p � ¼ I0½2
ffiffiffiffiffiffiffi
AB

p �; (18)

which is evident from the fact that

I0½2
ffiffiffiffiffiffiffi
AB

p � ¼
Z d�

2�
eAe

i�þBe�i�
: (19)

Then, defining the derivative operator

DijðxÞ ¼

8>>><
>>>:

�
@

@B0
x

�
i�j

i � j

�
@

@A0
x

�
j�i

i < j

; (20)

we may write

Zmf ¼ e�2�dVu0�0Y
x

det

�
DijðxÞI0

�
2

ffiffiffiffiffiffiffiffiffiffiffi
A0
xB

0
x

q ��
; (21)

and

e��F ¼
�

1

Zmf

e
~J½u0;�0; @

@A0;
@

@B0�Zmf

�
jA0x¼A0 ;B0x¼B0

: (22)

Again, the�-independence of the free energy is manifest.4

III. SUðNÞ POLYAKOV LINE MODELS

We can convert the UðNÞ models considered above to
SUðNÞ models by simply converting the UðNÞ group inte-
gration in Eq. (11) to an SUðNÞ integration. To accomplish
this (cf. Ref. [10]) we have only to insert a periodic delta
function into the angular integrations, which imposes the
constraint that

P
n�n ¼ 0 mod 2�. We use the identity

�p

�XN
n¼1

�n

�
¼ 1

2�

X1
s¼�1

exp

�
is

XN
n¼1

�n

�
: (23)

This introduces into each �n integration an additional
factor of exp½is�n�. Tracing through the steps of the
previous section, we arrive at

3A slight subtlety is that at � ¼ 0, the free energy depends not
on u0, �0 separately, but only on the product u0�0 ¼ u�. Then one
must appeal to the hermiticity of the action to set u ¼ �. For any
nonzero � and �, however, there is no such degeneracy.

4This �-independence was also demonstrated in the N ¼ 1
limit in Ref. [11].
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Zmf¼e�2�dVu�
Y
x

1

2�

X1
s¼�1

1

N!
"i1...iN"j1...jN

YN
n¼1

�
@

@Ax

�
jn

�
�

@

@Bx

�
in

8>>><
>>>:
ðs�0Þ

�
@

@Ax

�
s

ðs<0Þ
�

@
@Bx

�jsj I0½2
ffiffiffiffiffiffiffiffiffiffiffi
AxBx

p �: (24)

Now expressing everything in terms of the rescaled varia-
bles of Eq. (13), this becomes

Zmf ¼ e�2�dVu0�0Y
x

1

N!
�i1...iN�j1...jN

1

2�

�
�X
s�0

e�sN�
YN
n¼1

�
@

@A0
x

�
sþjn

�
@

@B0
x

�
in

þ X
s<0

ejsjN�
YN
n¼1

�
@

@A0
x

�
jn
�

@

@B0
x

�
inþjsj�

I0

�
2

ffiffiffiffiffiffiffiffiffiffiffi
A0
xB

0
x

q �
:

(25)

Defining

Ds
ijðxÞ �

�Di;jþsðxÞ s � 0

Diþjsj;jðxÞ s < 0
; (26)

we can express Zmf compactly in the form

Zmf¼e�2�dVu0�0 ð2�Þ�V
Y
x

X1
s¼�1

esN�det

�
D�s

ij I0

�
2

ffiffiffiffiffiffiffiffiffiffiffi
A0
xB

0
x

q ��
;

(27)

where we have also changed variables s ! �s in the sum.
As before

e��F ¼
�

1

Zmf

e
~J½u0;�0; @

@A0;
@

@B0�Zmf

�
jA0x¼A0 ;B0x¼B0

: (28)

This gives a formal expression for the full free energy,
Fð�Þ ¼ Fmfð�Þ þ�Fð�Þ in terms of the variational pa-

rameters u0, �0, which should be chosen to minimize Fð�Þ.
The mean field expression for the free energy Fmf, as a

function of the variational parameters u0, �0 (or equiva-
lently A0, B0) has some features which are worth noting. In
the first place, the mean field partition function Zmf has

now been expressed in terms of a product, at each site, of a
fugacity expansion of the form

X1
s¼�1

esN� det½D�s
ij I0½2

ffiffiffiffiffiffiffiffiffiffi
A0B0p

��: (29)

Here we see that the quark chemical potential � only
occurs in the combination N�, which is, in effect, the
baryon chemical potential. So in fact we have an expansion
in the baryon, rather than quark, fugacity. In Ref. [12] the
determinant in an expansion of this sort is referred as the
‘‘canonical determinant.’’ The second point is that parame-
ter s, originally introduced in the representation (23) of the
periodic delta function, has now emerged as the baryon
number (which, if negative, is the number of antibaryons)
per site.

Of course, one still has to minimize the free energy with
respect to the variational parameters, and this will intro-
duce some N�-dependence into the canonical determi-
nants. Strictly speaking, it is the mean field expression of
the partition function as a function of (freely varying)
parameters u0, �0 which has the form of a fugacity
expansion.
Successive improvements to the leading mean field

result would be obtained by expanding the operator
exp½~J� in a Taylor series. In the case that � ¼ 0, and �
is so small that the minimum free energy is obtained at
u0 ¼ �0 ¼ 0, then the Taylor series simply generates the
strong-coupling expansion. At larger � and �, the series
also generates corrections to the leading mean-field re-
sult. We will compute the effect of the leading correction
in the next section.
At this point, we should draw attention to the similar-

ities and differences between our approach and the much
earlier work of Bilic et al. [2]. The starting point of the
mean field treatment in Ref. [2] was the action (4) without
the J-term. The SU(3) group integral was expanded as a
power series in A, B, and for this reason it was not obvious
that the partition function is an expansion in baryon
fugacity, arising from the unit determinant condition. In
the next section we determine the phase diagram (for both
real and imaginary �), which was not displayed in
Ref. [2], and work out leading corrections to the mean
field result.

IV. NUMERICAL RESULTS FOR THE SU(3)
POLYAKOV LINE MODEL

We will now specialize to SU(3). From Eq. (27), we see
that the mean field free energy per lattice site at N ¼ 3 is

fmf ¼ 2�du0�0 � log

� X1
s¼�1

e3s� det½D�s
ij I0½2

ffiffiffiffiffiffiffiffiffiffi
A0B0p

��
�
;

(30)

where we have dropped an irrelevant constant. In numeri-
cal work we cannot sum s over the full range ½�1;1�, so it
is necessary to cut off the sum at some maximum baryon/
antibaryon number smax per site

fmf � 2�du0�0 � log½GðA0; B0Þ�;

GðA0; B0Þ � Xsmax

s¼�smax

e3s� det½D�s
ij I0½2

ffiffiffiffiffiffiffiffiffiffi
A0B0p

��; (31)

and of course it is important, when computing observables,
to check sensitivity to the cutoff. We will return to this
issue below.
Minimizing the free energy with respect to the varia-

tional parameters u0, �0, or, equivalently, with respect to
A0 ¼ 2�d�0 þ �, B0 ¼ 2�du0 þ �, leads to two equations
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B0 � �

2�d
� 1

GðA0; B0Þ
@G

@A0 ¼ 0

A0 � �

2�d
� 1

GðA0; B0Þ
@G

@B0 ¼ 0;

(32)

whose roots may be determined numerically.5 At the
minimum, we can regard A0 ¼ A0ð�; �;�Þ and B0 ¼
B0ð�; �;�Þ as functions of the parameters of the theory.

Apart from the free energy itself, the observables
of interest are Tr½U�, Tr½Uy�, and the baryon number
density n (baryon number per lattice site). The latter is
given by

hni¼� @fmf

@ð3�Þ

¼ 1

GðA0;B0Þ
Xsmax

s¼�smax

se3s�det½D�s
ij I0½2

ffiffiffiffiffiffiffiffiffiffi
A0B0p

��

�1

3

�
@A0ð�;�;�Þ

@�

@

@A0þ
@B0ð�;�;�Þ

@�

@

@B0

�
fmfðA0;B0Þ;

(33)

where it is understood that the derivative is taken at the
point where fmfðA0; B0Þ is minimized. But at this point, the

first derivatives of fmf with respect to A0 and B0 vanish.
Therefore

hni ¼ 1

GðA0; B0Þ
Xsmax

s¼�smax

se3s� det½D�s
ij I0½2

ffiffiffiffiffiffiffiffiffiffi
A0B0p

��: (34)

From (6) we see that

hTrUi ¼ 1

V

X
x

@

@Ax

logZmf ¼ @

@A
logGðA0; B0Þ

¼ e�� @

@A0 logGðA0; B0Þ: (35)

At the minimum of the free energy, determined by the roots
of (32), this simply becomes

hTrUi � 1

V

X
x

hTrUxi ¼ e��u0 ¼ u; (36)

and likewise

hTrUyi � 1

V

X
x

hTrUy
x i ¼ e��0 ¼ v: (37)

This is, of course, reminiscent of the standard mean field
approach to a spin system, in which the variational pa-
rameter becomes the average spin. It must be understood,
however, that due to the complex weight there is no con-
straint that the ‘‘average’’ values of TrU and TrUy are
necessarily bounded by Tr1.
We now have all the tools needed to evaluate observ-

ables and map out the phase diagram. Figure 1 shows a
typical result for hTrUi, hTrUyi and the mean field free
energy per site fmf, as a function of �, at fixed � ¼ 0:02

and chemical potential � ¼ 1:2. There is a clear first order
phase transition at � ¼ 0:1257. As the chemical potential
is increased at fixed � ¼ 0:2, the discontinuity at the
transition decreases, until it disappears altogether at � ¼
1:67. At larger �, there is only a crossover.
Repeating this procedure, we can map out the region of

first order transitions in the �, �, � parameter space. In
Fig. 2 we show sample first-order phase transition lines in
the �-� plane at �¼0,0.02,0.03,0.04,0.05,0.059. At �¼0
the transition, at � ¼ 0:1339, is of course independent of
�. At fixed, finite � the transition line terminates at some
value of �, and this termination point happens at smaller
and smaller values of � as � increases. The transition line
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FIG. 1 (color online). Observables vs � at fixed � ¼ 0:02 and � ¼ 1:2, evaluated at mean field level for SU(3).

5Note that these are real-valued equations with real-valued
roots, despite the complex character of the action (1). Ultimately
this is due to the fact, which one can easily show using the reality
of the Haar measure and the property DU ¼ DUy, that hTrUi,
hTrUyi and F are all real-valued quantities.
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shrinks to a point at � ¼ 0 for � ¼ 0:059, and beyond this
value of � there are no further transitions.

We can also solve the mean field equations for imagi-
nary �. The results for several values of � are shown in
Fig. 3. The continuity of first order transition lines, as �
varies from real to imaginary values, as well as the weak-
ening of the transition at larger values of �, ties in with the
considerations of Ref. [13].

Figure 2 can be compared directly to the phase diagram
recently obtained by Mercado and Gattringer [5] via a
Monte Carlo simulation in the flux representation. The
two diagrams are qualitatively, and even quantitatively,
very similar. The main difference is that we only show
first order transition points, and most of these are found in
Ref. [5] to be crossover points, rather than first order
transitions. According to Mercado and Gattringer [5], the

endpoint of a line of first order transitions, at a given �,
occurs at a much smaller value of � than we find in our
mean field calculations. So an interesting question is
whether inclusion of higher order corrections, beyond the
leading order mean field result, would bring our endpoints
to smaller values of �, in closer agreement with Ref. [5].
We will turn to this question in subsection IVB below.

A. Effect of the baryon number cutoff

The data displayed above was obtained using a cutoff
smax ¼ 4 in the sum over baryon number, but the results
shown are quite insensitive to increasing the cutoff to
smax ¼ 6, and even to decreasing the limit to smax ¼ 2.
The reason for this insensitivity is that the phase transitions
occur at values of the baryon number density which are
very small compared to the cutoff. Only when the chemical
potential is raised to values such that the number density
becomes comparable to smax does the cutoff dependence
become apparent. To illustrate this dependence, we fix� ¼
0:1257 and � ¼ 0:02 (where we have found a transition at
� ¼ 1:2), and compute the Polyakov lines and number
density over a wider range of �.
The results, for � � 10 and smax ¼ 2, 4, are shown in

Fig. 4. We see that hTrUi and hTrUyi are comparable to one
another and of Oð1Þ until hni approaches the cutoff in s.
Beyond that point, hTrUi falls exponentially as e��, and
hTrUyi diverges as e�, exactly as in the UðNÞ theory, and
the results are no longer valid for the SUðNÞ case. When
hni saturates the cutoff then, in order to probe a larger range
of �, it is necessary to increase smax. For the purpose of
determining the phase diagram, however, smax ¼ 4, which
can be interpreted as a limit of no more than four baryons
per lattice site, appears to be more than sufficient.6

B. The leading correction to the mean
field free energy

Going back to Eq. (7), we have

e��F ¼ heJimf ¼
�Y

x;k

eJx;k
	
mf
: (38)

The product is over all links, where

Jx;k ¼ �fðTrUy
x � �ÞðTrUxþk̂ � uÞ

þ ðTrUx � uÞðTrUy
xþk̂

� �Þg; (39)

and the himf notation denotes the expectation value with

respect to the mean field action, as in (7). The expansion of
exp½J� generates products of terms such as Jl1Jl2 . . . Jln ,

where the li denote links, some of which may be the same.
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FIG. 2 (color online). Phase diagram of the Polyakov line
model (1) for the SU(3) group, obtained via mean field methods,
in the �-� plane at several values of �. The lines indicate first
order transitions. Beyond � ¼ 0:059, there are no transitions at
any value of �.

Transition points for imaginary µ
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FIG. 3 (color online). Some transition points for Polyakov line
models in the �� Imð�Þ plane, for imaginary values of the
chemical potential, at several values of �. Filled circles indicate
first order transition points, open circles indicate a crossover.

6It should be emphasized that saturation of the smax cutoff has
nothing to do with the Pauli principle, and corresponding limit
on baryons per site. That limit is not really seen in the simple
effective spin model discussed here.
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Because hTr½U�imf ¼ u and hTr½Uy�imf ¼ �, it is clear

that the expectation values of such products are only non-
zero if each endpoint of a link li appearing in the product is
also an endpoint of at least one other link appearing in the

product. The simplest product whose expectation value is
nonvanishing, containing the minimum number of J fac-
tors, is simply the product of JlJl on the same link.
Therefore, to leading order, we approximate

e��F ¼
�Y

x;k

eJx;k
	
mf

� Y
x;k

heJx;kimf �
Y
x;k

�
1þ 1

2
hJ2x;kimf

�
: (40)

Now

hJ2x;kimf ¼ �2hðTrUy
x � �Þ2ðTrUxþk̂ � uÞ2 þ ðTrUy

x � �ÞðTrUx � uÞðTrUxþk̂ � uÞðTrUy
xþk̂

� �Þ þ H:c:imf

¼ 2�2½ðhTrUTrUimf � u2ÞðhTrUyTrUyimf � �2Þ þ ðhTrUTrUyimf � u�Þ2�
¼ 2�2½ðhðe�TrUÞ2imf � u02Þðhðe��TrUyÞ2imf � �02Þ þ ðhðe�TrUÞðe��TrUyÞimf � u0�0Þ2�; (41)

and we use

hðe�TrUÞmðe��TrUyÞnimf ¼ 1

GðA0; B0Þ
�
@

@A0

�
m
�
@

@B0

�
n
GðA0; B0Þ: (42)

Putting all the pieces together, the free energy per unit volume is

fðA0; B0Þ ¼ 2�du�� ~fðA0; B0Þ; (43)
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FIG. 4 (color online). Observables hTrUi, hTrUyi and hni vs � at fixed � ¼ 0:02 and � ¼ 0:1257, for two values of the cutoff smax.
Note that these observables are independent of the baryon/site cutoff smax, until a little beyond� ¼ 4, which is well past the value of�
at the first order transition.
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where

~f ¼ logGðA0; B0Þ

þ d log

�
1þ �2

��
1

G

@2G

@A02 � u02
��

1

G

@2G

@B02 � �02
�

þ
�
1

G

@2G

@A0@B0 � u0�0
�
2
��
; (44)

and GðA0; B0Þ is as defined in (31). Note that the terms
inside the logarithm, which correct the leading mean field
expression, depend on fluctuations around the mean field
values.

The variational parameters A0, B0 are again derived by
minimizing fðA0; B0Þ, which implies

B0 � �

2�d
� @

@A0 ~f ¼ 0;
A0 � �

2�d
� @

@B0 ~f ¼ 0; (45)

whose roots may again be determined numerically. It is
also still true that u ¼ hTrUi, � ¼ hTrUyi, which can be
seen as follows: Define

~Z � eV
~f ¼

Z
DUeJ exp½X

x

ðATrUx þ BTrUy
x Þ�: (46)

Then it is clear that

hTrUi ¼ 1

V

@

@A
log ~Z ¼ @

@A
~f: (47)

Applying the first of Eqs. (45), and the definitions (13), we
arrive at u ¼ hTrUi. In the same way, we can show that
� ¼ hTrUyi. Thus the correspondence between the varia-
tional parameters u, � and the observables hTrUi, hTrUyi is
maintained exactly, in fact to all orders beyond the leading
mean field expressions.
We can now study how inclusion of the leading correc-

tion will modify the phase diagram shown in Fig. 2. It turns
out that the location of the phase transition points changes
very little. Generally, at fixed �, �, the value of � at the
transition changes by less than one percent. What does
change significantly are the endpoints of the first-order
transition lines. For example, at � ¼ 0:02, the endpoint
of the transition line was at � ¼ 1:67, � ¼ 0:1213.
Inclusion of the first correction brings the endpoint down
to � ¼ 1:38, � ¼ 0:1249. The free energy at lowest order
(mf), and the free energy after inclusion of the first cor-
rection (mf þ nlo) is shown in Fig. 5. The free energy
changes substantially, but the transition point hardly at all
(from � ¼ 0:1243 to � ¼ 0:1249). However, at �¼1:38,
the order of the transition changes, from first order in the
leading mean-field approximation, to a sharp crossover
when the first correction is included. In Fig. 6 we show a
closeup of the hTrUi in the near neighborhood of the tran-
sition in both cases.
We also find that at � ¼ 0:04, the endpoint of the line of

first order transitions moves from � ¼ 0:87, � ¼ 0:1211
to � ¼ 0:46, � ¼ 0:1246. At � ¼ 0:045 the line of tran-
sitions shrinks to a point, at � ¼ 0, � ¼ 0:1245. Beyond
� ¼ 0:045, there are no transitions. The corresponding
phase diagram, including the leading correction, is shown
in Fig. 7.
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FIG. 5 (color online). �F in lowest order mean field theory,
and in mean field þ next leading order. Inclusion of the next
leading order can change a first-order transition to a crossover, as
seen clearly in Fig. 6.
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So the first correction to mean field is taking us in the
right direction, in the sense of bringing the endpoint of the
first order transition line to smaller values of �. Mercado
and Gattringer [5] find that the endpoints of the first-order
transition lines are located at yet smaller values of �. It
would be interesting to see if the next higher-order correc-
tions generated by exp½J� would bring the endpoints still
closer to the endpoints found in Ref. [5]. We leave this
exercise for a future study.

V. EFFECTIVE SPIN MODELS AND FULL QCD

It seems to be easier to solve effective spin models at
finite chemical potential, by a variety of methods, than to
solve full QCD at finite chemical potential. This means that
if we knew the effective spin models corresponding to full
QCD at relevant points in the plane of temperature and
quark chemical potential, then by solving the effective
models we could determine the QCD phase diagram. We
know how to derive the effective spin model in the strong
coupling and hopping parameter expansions; for � ¼ 0
this has been done in Refs. [14,15], and for � � 0 in
Ref. [6]. Reference [6] uses high-order strong-coupling/
hopping parameter expansions to derive an effective spin
model, which is then used to determine critical couplings.
We still think it desirable, however, to be able to extract the
effective spin model without reliance on either the hopping
parameter or the strong-coupling expansions.7

In principle the effective Polyakov line model is derived
from full QCD by integrating out the quark and gauge field
variables, under the constraint that the Polyakov lines
are fixed. It is convenient to impose a temporal gauge on
the periodic lattice, in which all timelike links are set to the

unit matrix except on a single time slice, t ¼ 0 say. Then
the effective theory, at chemical potential� ¼ 0, is defined
by integrating over all quark fields and link variables with
the exception of the timelike links at t ¼ 0, i.e.,

Zð�; T;mfÞ ¼
Z

DU0ðx; 0Þ
Z

DUkD �cDc eSQCD

¼
Z

DU0ðx; 0ÞeSeff ½U0;U
y
0
�; (48)

where � is the gauge coupling, T ¼ 1=Nt is the tempera-
ture in lattice units with Nt the lattice extension in the time
direction, and mf represents the set of quark masses.

Because temporal gauge has a residual symmetry under
time-independent gauge transformations, it follow that Seff
is invariant under U0ðx; 0Þ ! gðxÞU0ðx; 0ÞgyðxÞ, and
therefore can depend on the timelike links only through
their eigenvalues. This just means that Seff is a Polyakov
line action of some kind.
Let S�QCD denote the QCD action with a chemical

potential, which can be obtained from SQCD by the follow-

ing replacement of timelike links at t ¼ 0:

S�QCD ¼ SQCD½U0ðx; 0Þ ! eNt�U0ðx; 0Þ; Uy
0 ðx; 0Þ

! e�Nt�Uy
0 ðx; 0Þ�: (49)

The effective Polyakov line action, at finite chemical po-
tential is defined via

Zð�;�; T;mfÞ ¼
Z

DU0ðx; 0Þ
Z

DUkD �cDc eS
�
QCD

¼
Z

DU0ðx; 0ÞeS
�
eff
½U0;U

y
0
�: (50)

As already mentioned, the integration over Uk, �c , c
can be carried out in a strong gauge-coupling and hopping
parameter expansion, to obtain Seff and S

�
eff . It is not hard to

see that each contribution to Seff in the strong couplingþ
hopping parameter expansion of (48) maps into a corre-
sponding contribution to S

�
eff , in the expansion of (50), by

the replacement

Ux ! eNt�Ux; Uy
x ! e�Nt�Uy

x ; (51)

where we have identified Ux � U0ðx; 0Þ. Since this map-
ping holds to all orders in the strong couplingþ hopping
expansion, it is reasonable to assume that it holds in
general, i.e.,

S
�
eff½Ux;U

y
x � ¼ Seff½Ux ! eNt�Ux; U

y
x ! e�Nt�Uy

x �:
(52)

Equation (52) is a rather trivial, but potentially powerful
identity. It suggests that if, by some means, one could
obtain Seff at fixed f�;mf; Tg and chemical potential � ¼
0, then one would immediately also have the effective
action S�eff at the same set of parameters f�;mf; Tg, but
any chemical potential �, by the replacement shown.
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FIG. 7 (color online). Phase diagram of the Polyakov line
model (1) for the SU(3) group, obtained via mean field methods,
now including contributions at next-to-leading order (NLO). The
main effect of the NLO corrections is that the endpoints of the
first-order transition lines at fixed � occur at lesser values of �,
as compared to the leading order result.

7For efforts at deriving the effective Polyakov line model in
pure gauge theories, cf. Ref. [16] and references therein.
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Unfortunately, there is some degree of ambiguity in Seff at

� ¼ 0. Suppose we have some ansatz for Seff½Ux;U
y
x �,

depending on some small set of parameters, which we
would like to fix by comparing to the full theory at � ¼
0. The problem is that whatever ansatz we make for Seff ,
there is another form which is identical to that ansatz at
� ¼ 0, but differs under (51). In the case of SU(3), the
identity

TrUy
x ¼ 1

2
½ðTrUxÞ2 � TrU2

x�; (53)

allows us to replace TrUy
x everywhere in Seff by the right

hand side of (53), but this again produces quite a different
theory at � � 0 under the rule (52). Of course a similar
identity holds for TrUx, so we can convert the original Seff
to another theory which may be symmetric in Ux, U

y
x , but

which has quite a different extension to finite chemical
potential.

It may be possible to overcome this ambiguity, however.
Suppose we take the timelike link variables at t ¼ 0 to be
U(3), rather than SU(3) matrices. Then the ambiguity due
to (53) is no longer present, but the effective spin theory
still only depends on the eigenvalues of the U(3) matrices.
Then let us suppose that we have some reasonable ansatz
for Seff in a physically interesting range of parameters �,
mf, T, e.g.,

Seff ¼
X
x;y

Jðx� yÞTr½Ux�Tr½Uy
y �

þX
x;y

J0ðx� yÞðTr½Ux�Tr½Uy� þ Tr½Uy
x �Tr½Uy

y �Þ

þX
x

VðUx;U
y
x Þ; (54)

where JðxÞ, J0ðxÞ are parametrized by a few constants (such
as nearest and next-nearest neighbor couplings), and

VðUx;U
y
x Þ can be limited to a few terms involving the

characters of U(3). In that case, the effective spin model
is specified by a handful of constants fcjg, which of course

depend on f�;mf; Tg.
Since there is no sign problem at � ¼ 0 and Ux ¼

U0ðx; t ¼ 0Þ 2 Uð3Þ, it should be possible to numerically
simulate both the effective theory and the full theory. Then
one can imagine a number of strategies for obtaining the
constants fcjg. One possibility is to simply calculate an

appropriate set of observables in both theories (Polyakov
lines in various representations and Polyakov line correla-
tors), and fix the set of constants fcjg in Seff so that the two
theories yield the same results. Or perhaps some variant of
the inverse Monte Carlo method could be applied [16]. A
third procedure is inspired by a recent study of the Yang-
Mills vacuum wave functional [17]. The idea is to select a
finite set of M timelike link configurations

fUðiÞ
x ¼ UðiÞ

0 ðx; t ¼ 0Þ 2 Uð3Þ; i ¼ 1; 2; . . . ;Mg; (55)

where each member UðiÞ
0 of the set specifies the timelike

link variables at every spatial site x and t ¼ 0. Then the
Monte Carlo simulation of the full theory proceeds in the
usual way, except that on the t ¼ 0 timeslice, one member
of the given set of timelike link configurations is selected
by the Metropolis algorithm, and all timelike links on that
timeslice are updated simultaneously. LetNi be the number
of times that the ith configuration is selected by the algo-
rithm, and Ntot ¼

P
iNi. Then it is not hard to show that

exp½Seff½UðiÞ��
exp½Seff½UðjÞ�� ¼ lim

Ntot!1
Ni

Nj

: (56)

Information derived from a number of such simulations,
each using a different set of configurations at t ¼ 0, can in
principle completely determine the fcjg. However, since
the fNig vary exponentially with Seff , the variation of Seff
within a given set must be kept relatively small, i.e.,
�Seff � 5–7, in order to ensure a reasonable acceptance
rate for all members of the set. For details of the algorithm,
and its application to the vacuum wave functional of pure
Yang-Mills theory, cf. Ref. [17].
Once the set of constants fcjg is found, by whatever

method, the effective theory at finite chemical potential,
S
�
eff , for any � but the same set f�;mf; Tg, is given by the

identity (52). The final step is simply to note that
SU(3)	 U(3), so that the theory we want, S

�
eff , is obtained

by restricting the Ux matrices to the SU(3) subset.
Equivalently, since we can always express the U(3)
matrices as8

Ux ¼ exp½i	x�USUð3Þ
x ; Uy

x ¼ exp½�i	x�ðUSUð3Þ
x Þy;

(57)

the conversion from Seff to S
�
eff is obtained by setting 	x ¼�iNt�.

With the effective Polyakov line model S
�
eff in hand, the

theory can be solved by the mean field approach discussed
above, or by other methods such as complex Langevin
[1–3], the flux representation [5], or reweighting [6]. To
check that the method is working at � � 0, one would
compare full QCD with the effective spin model at, e.g.,
small or imaginary �, where the �-dependence of the full
theory can be obtained by other means.
This approach can be expected to break down at suffi-

ciently large �. At some point, terms in the potential

involving high powers of Ux and Uy
x , which might be

negligible for computing observables at � ¼ 0 because
they are multiplied by very small coefficients, could be-
come important under the replacement (52). Towhat extent
this effect will inhibit the study of the phase diagram
remains to be seen.

8Allowing for the Z3 subgroup of SU(3), the angle 	x can be
restricted to the range ½0; 2�=3Þ.
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There is no doubt that determining the set of constants
fcjg in full QCD would be computationally demanding. As

a first step, it may be worth trying to extract the effective
spin theory from gauge theories with scalar, rather than
fermionic, matter fields.

VI. CONCLUSIONS

The mean field expansion for effective spin models with
a chemical potential turns out to have an interesting struc-
ture. The constraint taking U(N) to SUðNÞ is responsible
for the�-dependence of the free energy, and this constraint
introduces an infinite sum whose index, as it turns out, can
be interpreted as the baryon number at each site. The
partition function can then be formally expressed in terms
of a baryon fugacity expansion.

If we ignore the distinction between first-order and
crossover points, then even the lowest order mean field
equations do a reasonably good job of accounting for phase
structure. The main error lies in the location of the end-
points of first-order transition lines, which occur, for fixed

�, at higher values of � than those determined by other
methods. The first correction to the mean field result moves
those endpoints in the right direction, i.e., to lower values
of �. It remains to be seen whether realistic results for the
endpoints would be obtained from still higher orders in the
mean field expansion.
We have also commented on the problem of deriving

effective spin models from full QCD, and on certain subtle-
ties associated with continuing those models from zero to
finite chemical potential. We have suggested that a method
which was previously applied to study the Yang-Mills
vacuum wave functional may be useful in this context,
and hope to discuss this further at a later time.

ACKNOWLEDGMENTS

We thank Poul Henrik Damgaard for useful discussions.
J. G.’s research is supported in part by the U.S. Department
of Energy under Grant No. DE-FG03-92ER40711. The
work of K. S. was supported by the Sapere Aude program
of the Danish Council for Independent Research.

[1] F. Karsch and H. Wyld, Phys. Rev. Lett. 55, 2242 (1985).
[2] N. Bilic, H. Gausterer, and S. Sanielevici, Phys. Rev. D 37,

3684 (1988).
[3] G. Aarts and F. A. James, J. High Energy Phys. 01 (2012)

118.
[4] C. Gattringer, Nucl. Phys. B850, 242 (2011).
[5] Y. D. Mercado and C. Gattringer, Nucl. Phys. B862, 737

(2012).
[6] M. Fromm, J. Langelage, S. Lottini, and O. Philipsen, J.

High Energy Phys. 01 (2012) 042.
[7] A. Dumitru, R. D. Pisarski, and D. Zschiesche, Phys. Rev.

D 72, 065008 (2005).
[8] J. B. Kogut, M. Snow, and M. Stone, Nucl. Phys. B200,

211 (1982).

[9] B. Schlittgen and T. Wettig, J. Phys. A 36, 3195 (2003).
[10] R. Brower, P. Rossi, and C.-I. Tan, Nucl. Phys. B190, 699

(1981).
[11] C. H. Christensen, Phys. Lett. B 714, 306 (2012).
[12] J. Danzer and C. Gattringer, arXiv:1204.1020.
[13] P. de Forcrand and O. Philipsen, Phys. Rev. Lett. 105,

152001 (2010).
[14] F. Green and F. Karsch, Nucl. Phys. B238, 297 (1984).
[15] M. Ogilvie, Phys. Rev. Lett. 52, 1369 (1984).
[16] C. Wozar, T. Kaestner, A. Wipf, and T. Heinzl, Phys. Rev.

D 76, 085004 (2007).
[17] J. Greensite, H. Matevosyan, Š. Olejnı́k, M. Quandt, H.
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