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We investigate the phase structure of the Nambu-Jona-Lasinio model at zero temperature, allowing for

a two-dimensional spatial dependence of the chiral condensate. Applying the mean-field approximation,

we consider various periodic structures with rectangular and hexagonal geometries, and minimize the

corresponding free energy. We find that these two-dimensional chiral crystals are favored over

homogeneous phases in a certain window in the region where the phase transition would take place

when the analysis was restricted to homogeneous condensates. It turns out, however, that in this regime

they are disfavored against a phase with a one-dimensional modulation of the chiral condensate. On the

other hand, we find that square and hexagonal lattices eventually get favored at higher chemical

potentials. Although stretching the limits of the model to some extent, this would support predictions

from quarkyonic-matter studies.
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I. INTRODUCTION

For more than three decades, the phase diagram of
quantum chromodynamics has been the object of intensive
theoretical and experimental research [1–4]. In particular
the conjecture that at low temperatures there could be a
first-order chiral phase transition which ends at a critical
point has received a lot of interest, since this endpoint is
potentially detectable in heavy-ion experiments. However,
in most studies which support this scenario, it is tacitly
assumed that the order parameters of the various phases are
uniform in space. On the other hand, it is not a new idea
that there could be spatially modulated states in strongly
interacting matter (see Ref. [5] for a recent review). Well-
known examples are the proposal of an inhomogeneous
ground state in nuclear matter [6], the possibility of spatial
modulations in the context of pion condensation [7,8],
Skyrme crystals [9], and crystalline phases in (color-)
superconductors [10–17].

For the QCD phase diagram, it has been argued some
time ago that, at least in the limit of a large number of
colors (Nc), the favored ground state of a dense Fermi sea
of quarks should be characterized by a spatial modulation
of the chiral condensate [18,19]. More recent studies on
quarkyonic matter seem to support this hypothesis [20–22].

For the physical case of three colors, Nambu-Jona-
Lasinio- (NJL-) type model studies have revealed at inter-
mediate chemical potentials and low temperatures the
presence of an inhomogeneous phase where the chiral
condensate assumes a spatially modulated form [23–25].
Most of the existing studies on inhomogeneous phases
have restricted their analysis to simplified shapes of the
chiral order parameter. The most popular example is the
so-called ‘‘chiral density wave’’, which basically amounts
to a single plane wave [23,24,26]. This kind of ansatz is
analogous to the so-called Fulde-Ferrel solutions proposed
in (color-) superconductivity [10].

The study of a generic shape for the spatially dependent
chiral condensate is a highly non-trivial task. It has re-
cently been observed, however, that in NJL-type models
the evaluation of the energy spectrum simplifies consider-
ably when the condensate is allowed to vary only in
one spatial dimension, while remaining constant along
the two transverse directions [25]. In this particular case,
the problem can be reduced to the 1þ 1-dimensional
chiral Gross-Neveu model, where analytical expressions
for the eigenvalue spectra are known [27–30]. This formal
resemblance allows to perform an analysis of the phase
diagram including these inhomogeneous phases without
having to calculate numerically the energy spectrum of
the model.
Within this framework it has been found that the inho-

mogeneous phase covers the region where a first-order
chiral phase transition would occur when limiting the
analysis to homogeneous phases. As a consequence the
chiral critical point disappears from the phase diagram,
leaving only a Lifshitz point where three second-order
lines meet [25,31]. The inclusion of vector interactions
further enhances this effect and enlarges the size of the
inhomogeneous phase [32].
The limitation to one-dimensional structures is of course

a strong one. Especially at lower temperatures, higher
dimensional modulations are expected to play an important
role in (color-) superconductors [12,14], whose dynamics
bears strong formal resemblance with the one described in
the NJL model. Moreover, recent quarkyonic-matter stud-
ies suggest that in the high chemical potential region, as the
density of the system grows, the quark Fermi sea tends to
break chiral symmetry by forming increasingly complex
crystalline (or quasi-crystalline) structures, which can be
described as superpositions of several ‘‘quarkyonic chiral
spirals’’ [21,22].
Aside from these considerations, modulations in more

than one spatial dimension are also of interest since they
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are unaffected by the instabilities with respect to fluctua-
tions which prevent the formation of a true 1D crystalline
structure at finite temperature [33].

The main purpose of this paper is therefore to investigate
the properties of modulations of the chiral condensate
occurring in more than one spatial dimension. While a
complete analysis would in principle have to allow for
modulations in three spatial dimensions, for computational
reasons we will limit ourselves in the present work to two-
dimensional crystalline shapes. The generalization to
three-dimensional structures is straightforward once the
formalism and the numerical procedure are set up.

II. INHOMOGENEOUS PHASES
IN THE NJL MODEL

Our starting point is the two-flavor NJL Lagrangian [34],

L NJL ¼ �c ði��@� �mÞc þGðð �c c Þ2 þ ð �c i�5�ac Þ2Þ;
(1)

where c is a quark field with two flavor and three color
degrees of freedom and bare mass m, �a denotes the three
Pauli matrices in isospin space, and G is a coupling
constant.

We perform the mean-field approximation by expand-
ing the interaction around the scalar and pseudoscalar
condensates

h �c c i ¼ Sð ~xÞ; h �c i�5�ac i ¼ Pð ~xÞ�a3; (2)

which we allow to be space dependent. For later conve-
nience, we also introduce the complex ‘‘mass’’ function,

Mð ~xÞ ¼ m� 2GðSð ~xÞ þ iPð ~xÞÞ: (3)

The mean-field Lagrangian can then be written as

LMF ¼ �c�0ði@0 �H Þc �GðS2 þ P2Þ; (4)

with the effective Hamiltonian operator

H ¼ �0½i ~� � ~@þm� 2GðSþ i�5�3PÞ�: (5)

The mean-field thermodynamic potential per volume �
associated with these (so far generic) spatially modulated
condensates at temperature T and quark chemical potential
� contains a functional trace over the logarithm of the
inverse quark propagator [35]. For its evaluation we em-
ploy imaginary time formalism and switch to momentum
space. Assuming static (i.e., time-independent) conden-
sates, we can perform the sum over Matsubara frequencies
explicitly and obtain (up to a constant)

�ðT;�;Mð ~xÞÞ ¼ �kinðT;�;Mð ~xÞÞ þ�condðMð ~xÞÞ; (6)

with

�condðMð ~xÞÞ ¼ 1

V

Z
V
d3x

jMð ~xÞ �mj2
4G

; (7)

where V is the volume of the system, and

�kinðT;�;Mð ~xÞÞ ¼ �T
X
E

log

�
2 cosh

�
E��

2T

��
; (8)

where the sum runs over all eigenvalues E of H in color,
flavor, Dirac and momentum space.
In presence of an inhomogeneous condensate, the diag-

onalization of H is a highly non-trivial task, since quarks
may exchange momenta by scattering off the condensate
and, consequently, the resulting mean-field quark propa-
gator is not diagonal in momentum space. In the following
we assume a periodic shape of the chiral condensate form-
ing a well-defined lattice structure. This implies that we
can expand the spatially varying order parameter in a
Fourier series,

Mð ~xÞ ¼ X
~qk

M~qke
i ~qk� ~x; (9)

with discrete momenta ~qk forming a reciprocal lattice
(RL). A generic element of H in momentum space then
takes the form

H ~pm; ~pn
¼

� ~� � ~pm� ~pm; ~pn

P
~qk

M~qk� ~pm; ~pnþ ~qk

P
~qk

M�
~qk
� ~pm; ~pn� ~qk ~� � ~pm� ~pm; ~pn

0
BB@

1
CCA; (10)

where
P

~qk
runs over themomenta of theRL,making obvious

the non-diagonalmomentum structure of thematrix.1 In turn,
momentawhich do not differ by an element of the RL are not
coupled, so thatH can be decomposed into a block diagonal
form, where each blockH ðkÞ can be labeled by an element
of the first Brillouin zone (BZ). This implementation of
Bloch’s theorem allows to decompose the eigenvalue sum
in Eq. (8) into a momentum integration over the BZ times a
sum over the discrete eigenvalues of each block [17].

III. TWO-DIMENSIONAL MODULATIONS

For general periodic structures, although the numerical
diagonalization procedure is in principle straightforward,
its practical implementation turns out to be computation-
ally demanding. In order to simplify the problem, we
therefore limit the generality of our ansatz Eq. (9) to
lower-dimensional modulations. In this case, the momen-
tum integration required for the evaluation of the thermo-
dynamic potential may be split into the parts ~pk along the

direction of the modulation and ~p? perpendicular to it.
One thus obtains, for a d-dimensional modulation,

1The matrix is also non-diagonal in Dirac space, as indicated
in Eq. (10). Here the chiral representation was used, and ~�
corresponds to the Pauli matrices. On the other hand, H is
diagonal in isospin and color.
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�kin ¼ �
Z d3�dp?

ð2�Þ3�d

Z
BZ

ddk

ð2�Þd

�X
E

T log

�
2 cosh

�
Eð ~p?; ~kÞ ��

2T

��
; (11)

where ~k labels the BZ momenta and Eð ~p?; ~kÞ are the

eigenvalues of H ð ~kÞ for a given ~p?.
It has been observed that the eigenvalues in 3þ 1 di-

mensions can be evaluated by diagonalizing a dimension-
ally reduced H (evaluated at p? ¼ 0) and subsequently
boosting the resulting spectrum [25]. This dramatically
simplifies the calculations. In particular for the case of
one-dimensional modulations it allows to reuse a well-
established set of analytical results without having to resort
to a numerical diagonalization of the model Hamiltonian.
The favored mass functions are then given by Jacobi
elliptic functions, which smoothly interpolate between
solitonic shapes close to the homogeneous chirally broken
phase and sinusoidal shapes close to the restored phase.

Since the one-dimensional problem has already been
treated extensively in previous works, the main focus of
this work is on two-dimensional structures. A recent
Ginzburg-Landau (GL) analysis has shown that close to
the Lifshitz point one-dimensional modulations are ener-
getically favored over higher dimensional ones in NJL-
type models [36]. We therefore focus on what happens
at zero temperature, where GL arguments are unable to
provide reliable results. For simplicity, we restrict our
calculations to the chiral limit, m ¼ 0.

Without loss of generality, we assume the chiral con-
densate to vary in the xy-plane and to be constant in the
z-direction. Unlike for the one-dimensional case, in two
spatial dimensions different crystalline shapes may be
realized. Therefore we consider different lattice geometries
and assume the mass functions to have simple symmetric
shapes consistent with these structures.

The first case is a square lattice with a unit cell spanned
by two perpendicular vectors of length a in x and y
direction. The corresponding elements of the RL are then
given by ~qm;n ¼ Qðm~ex þ n~eyÞ with Q ¼ 2�=a and inte-

gers m and n. While the general mass function consistent
with this lattice structure would be given by Eq. (9) with

arbitrary Fourier coefficientsMm;n, we restrict ourselves to

a simple ansatz for a real symmetric mass function with a
small number of nonvanishing Fourier coefficients.
Specifically we choose M1;1¼M1;�1¼M�1;1¼M�1;�1¼
M=4 and Mm;n ¼ 0 in all other cases.2 This yields

Mðx; yÞ ¼ M cosðQxÞ cosðQyÞ; (12)

which has an egg-carton-like shape (see Fig. 1, left) and is
symmetric under discrete rotations by �=2.
The second case we consider is a mass function with

hexagonal symmetry. Here we start from a unit cell
spanned by two vectors of length a, enclosing an angle
of�=3. Choosing the first one to be aligned with the x-axis,
the elements of the RL are given by ~qm;n ¼ Qðm~ex þ
2n�mffiffi

3
p ~eyÞ, with integers m and n, and Q ¼ 2�=a as before.

For the mass function we choose Mm;n ¼ M=6 on the

corners of a regular hexagon, ðm;nÞ2 fð1;0Þ;ð�1;0Þ;ð0;1Þ;
ð0;�1Þ;ð1;1Þ;ð�1;�1Þg, and Mm;n ¼ 0 in all other cases.

This yields

Mðx; yÞ ¼ M

3

�
2 cosðQxÞ cos

�
1ffiffiffi
3

p Qy

�
þ cos

�
2ffiffiffi
3

p Qy

��
;

(13)

which is symmetric under discrete rotations by �=3 (see
Fig. 1, right). Note that the normalization of the amplitude
was chosen to match the homogeneous case Mðx; yÞ ¼ M
when Q goes to zero.
After inserting these shapes into Eq. (10), the

Hamiltonian is diagonalized numerically in Dirac and
momentum space, and the thermodynamic potential is
minimized with respect the variational parameters M and
Q, characterizing amplitude and period of the modulations.
For the numerical calculations, we have to specify a pro-
cedure to regularize the integrals and eigenvalue sum in
Eq. (11). Following Refs. [25,32,37], we use a Pauli-Villars
schemewith three regulators. For the results in this section,
we fit our model parameters (the regulator � and the
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FIG. 1 (color online). Mass functions Mðx; yÞ with two-dimensional modulations in coordinate space. Left: ‘‘egg-carton’’
modulation on a square lattice, Eq. (12). Right: hexagonal modulation, Eq. (13).

2An alternative choice would be M1;0 ¼ M�1;0 ¼ M0;1 ¼
M0;�1 ¼ M=4 and Mm;n ¼ 0 in all other cases, which yields
Mðx; yÞ ¼ M

2 ðcosðQxÞ þ cosðQyÞÞ. However, this is equivalent to
Eq. (12) in a frame rotated by �=4 and Q replaced by Q=

ffiffiffi
2

p
.
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coupling constant G) to reproduce the pion decay constant
in the chiral limit, f� ¼ 88 MeV, and a vacuum constitu-
ent quark mass of Mvac ¼ 300 MeV [25].

The results of the numerical minimization for the square
and hexagonal shapes, Eqs. (12) and (13) respectively, are
presented in Fig. 2. For both modulations, we find a sharp
onset of the crystalline phase around � � 310 MeV and a
smooth approach to the restored phase, which is reached at
� � 345 MeV via a second-order phase transition as the
amplitude of the chiral condensate melts to zero. For
the transition to the homogeneous chirally broken phase,
the situation is therefore different from the case of one-
dimensional solitonic solutions [25] and might be due to
our limited ansatz with a finite number of Fourier compo-
nents. We also note that the results for the amplitudeM are
comparable for both shapes in the inhomogeneous window.

The results presented in Fig. 2 have been obtained by
enforcing in each case a fixed shape of the chiral modula-
tion. Under this restriction we found a window where the
different two-dimensional solutions are energetically fa-
vored over the homogeneous solutions. This is basically
the same region where one-dimensional modulations are
also found to be favored over homogeneous solutions. In
fact, as shown in Ref. [31] using GL arguments, the critical
chemical potential for the transition from the inhomoge-
neous to the chirally restored phase is independent of the
shape of the spatial modulation, as long as the phase
transition is second order.

The next obvious step is to compare the free energies of
these solutions with each other, in order to find out which
of them corresponds to the most stable solution. The results
of our comparison are shown in Fig. 3. One can clearly see
that the one-dimensional Jacobi elliptic functions lead to
the biggest gain in free energy compared to all the other
cases considered. In particular, the two-dimensional struc-
tures turn out to be energetically disfavored with respect to
one-dimensional real modulations throughout the whole
inhomogeneous window.

In this context it is instructive to introduce a rectangular
structure, which interpolates continuously between a
square lattice and a one-dimensional periodic modulation.

Specifically, we can generalize the ‘‘egg-carton’’ ansatz
Eq. (12) to

Mðx; yÞ ¼ M cosðQxxÞ cosðQyyÞ; (14)

which reduces to a single cosine varying in one spatial
dimension when one of the twowave numbers goes to zero.
Starting from this ansatz, we minimize the thermody-

namic potential with respect to the amplitude M for fixed
wave numbers Qx and Qy, and then study the result as a

function of Qx and Qy. Since we know already that the

square-lattice solution along the line Qx ¼ Qy is disfa-

vored against the one-dimensional cosine, we are mainly
interested in the question whether the former corre-
sponds to a local minimum or to a saddle point in the
Qx �Qy plane.
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FIG. 2 (color online). AmplitudeM and wave number Q at T ¼ 0 as functions of the chemical potential � after minimization of the
thermodynamic potential for given shapes of the mass function. Left: ‘‘egg-carton’’ modulation on a square lattice, Eq. (12). Right:
hexagonal ansatz, Eq. (13).

-4

-3

-2

-1

 0

 310  320  330  340

Ω
 -

 Ω
re

st
 (

M
eV

/fm
3 )

µ (MeV)

restored
homogen. broken

jacobi 1d
cos 1d

square 2d
hexagon 2d

FIG. 3 (color online). Thermodynamic potential relative to the
restored phase for different modulations of the chiral condensate
at T ¼ 0. The homogeneous broken and restored solutions are
disfavored compared to the crystalline phases in a window
between � � 308 and � � 345 MeV. The lowest free energy
is found for the one-dimensional Jacobi elliptic function. In
particular at the onset of the inhomogeneous phase it is favored
over a one-dimensional cosine, while with increasing � the two
shapes quickly become almost degenerate. The two-dimensional
square ansatz, Eq. (12), is always disfavored against the one-
dimensional modulations, and the hexagonal crystal, Eq. (13),
leads to an even smaller gain in free energy.
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Our result for � ¼ 325 MeV is presented in Fig. 4,
showing that the solution at Qx ¼ Qy is a local minimum.

One can also see that in the vicinity of the minimum the
potential remains rather flat along the direction perpen-
dicular to the line Qx ¼ Qy. Going along this valley, we

find two saddle points at ðQx;QyÞ � ð175 MeV; 400MeVÞ
and (400 MeV, 175 MeV). Unfortunately, the computing
time rises strongly with decreasing wave numbers, so that
we could not continue this analysis to values of Qx or Qy

lower than 100 MeV. However, it is not hard to imagine
how beyond the saddle points the valley approaches the
absolute minima at vanishingQx orQy, corresponding to a

one-dimensional cosine.
One may ask whether our observation that the two-

dimensional crystalline structures are disfavored against
the one-dimensional ones is caused by the restricted ansatz
for the mass functions. Taking into account more Fourier
modes would lead to additional variational parameters and
could thus lower the free energy. It is however unlikely that
this would change our results considerably. As seen in
Fig. 3 the difference in free energy between the Jacobi
elliptic function and the one-dimensional cosine is negli-
gible in a large chemical-potential range and always much
smaller than the difference to the two-dimensional solu-
tions. We therefore expect that the corrections to the con-
sidered two-dimensional shapes are small as well.

In order to test this, we extend the simple ‘‘egg carton’’
ansatz [Eq. (12)] into

Mðx; yÞ ¼ X3
n¼1

Mn cosðnQxÞ cosðnQyÞ: (15)

The minimization of the thermodynamic potential with
respect to the variational parameters (M1;M2;M3; Q)
leads, within numerical errors, to M2 ¼ M3 ¼ 0 through-
out the whole inhomogeneous window. Although numeri-
cal errors are more significant than for the one-dimensional

case, it is safe to say that the inclusion of those higher
harmonics considered above does not lead to an appre-
ciable gain in free energy.

IV. HIGHER CHEMICAL POTENTIALS

In recent quarkyonic-matter studies it was found that
increasing the chemical potential leads to two-dimensional
structures with growing geometrical complexity [22].
While no definite scale was given, this could be a hint
that the chemical potentials we have considered so far are
too low for two-dimensional crystals to be favored. This
motivates us to extend our investigations to higher values
of �.
In fact, while so far we have concentrated on the in-

homogeneous ‘‘island’’ close to the would-be first-order
phase boundary for homogeneous phases, we have recently
found that in the NJL model a second inhomogeneous
region (‘‘continent’’) appears at higher � and seemingly
persists to arbitrarily high chemical potentials [37]. Of
course, we have to keep in mind that the NJL model is a
low-energy effective model with a limited range of validity.
In particular, since the continent appears in a region where
the chemical potential is of the order of the regulator masses,
we have to be cautious not to overinterpret the results.
However, as thoroughly discussed in Ref. [37], although
the inhomogeneous continent is sensitive to regularization
effects, it is not obviously created by them. Indeed, there is
no a priori reason to exclude the possibility of an inhomo-
geneous chiral symmetry breaking phase at high chemical
potentials. For instance, inhomogeneous phases extending
to arbitrarily high chemical potentials have been predicted
for the Gross-Neveu model and its chiral counterpart [27],
for quarkyonic matter [22] and for QCD in the large-Nc
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limit [18]. Here we do not want to enter this discussion, but
simply take the inhomogeneous continent as a ‘‘model
laboratory’’ to study the competition of one- and two-
dimensional chiral crystals as a function of �.

Figure 5 shows the free energies associated with the one-
dimensional solitonic solutions and the two-dimensional
‘‘egg carton’’ close to the phase transition marking the
onset of the inhomogeneous continent (the second-order
nature of the transition from the restored phase is visible in
the behaviour of both free energies). From this comparison,
it is possible to see that in this region, two-dimensional
solutions become favored over one-dimensional ones.
Since with the current parameter set the continent is not
connected to the inhomogeneous island, it is not clear at
which point higher-dimensional structures become fa-
vored. In order to achieve a better understanding of the
problem, in the following we therefore employ a slightly
modified parameter set with a vacuum constituent quark
mass of 330 MeV. This does not modify any qualitative
behaviour of the model but has the advantage that the
inhomogeneous island merges with the continent, so that
the comparison of the inhomogeneous phases can be per-
formed on a continuous interval, without being interrupted
by the restored phase.

In Fig. 6, the differences between the free energies of
three inhomogeneous phases with different modulations
are displayed as functions of �. As we have seen before,
at low chemical potentials the two-dimensional crystals are
disfavored against the one-dimensional Jacobi elliptic
function. Above � � 450 MeV, however, the two-
dimensional square lattice leads to a lower free energy.
At � � 600 MeV, also the hexagon surpasses the one-
dimensional modulation and finally becomes the most
favored shape at � � 900 MeV. Thus, while being aware
that the model cannot be trusted blindly in this high density
region, it is nevertheless remarkable that we recover the
same sequence of crystalline phases as described in
Ref. [22].

V. DISCUSSION AND OUTLOOK

In this paper we presented the results of our numerical
study of two-dimensional chiral crystalline structures in
the NJL model at zero temperature. At intermediate chemi-
cal potentials, in the region where the chiral phase tran-
sition would take place if the analysis was restricted to
homogeneous condensates, we find that two-dimensional
modulations are disfavored against one-dimensional ones,
indicating that their greater kinetic energy cost is not
sufficiently compensated by a larger gain in condensation
energy. We also find that a hexagonal structure is even less
favored than a square lattice in this regime.
From these observations, it seems unlikely that a phase

where the chiral condensate is modulated along three
spatial dimensions could become thermodynamically
favored, due to its even higher kinetic-energy cost.
Moreover, since a GL analysis has revealed that also close
to the Lifshitz point phases with higher-dimensional mod-
ulations are disfavored against one-dimensional ones [36],
we do not expect that higher-dimensional structures appear
at finite temperature, at least in mean-field approximation.
A numerical analysis to confirm these expectations would
of course be desirable.
The situation gets successively reversed when we in-

crease the chemical potential. At a certain value, we find
that the structure of the ground state changes from having
one-dimensional modulations to a two-dimensional square
lattice and, at even higher �, to an hexagonal shape.
Although the results must not be trusted blindly in this
high-density regime, which lies at the edge of the expected
range of validity of the model, we find it nevertheless
noteworthy that we reproduce qualitatively the behavior
recently proposed for quarkyonic matter [22].3 It is also
interesting that a similar sequence of phases was predicted
for a 2D superconductor in a magnetic field [12]. On the
other hand, the chemical potentials where the two-
dimensional structures appear in our model belong to the
realm of color superconductivity. Therefore it would be
important to include the effects of diquark pairing as well.
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3Quasicrystalline structures with discrete rotational symme-
tries higher than six, which have also been discussed in Ref. [22],
are much more difficult to implement in our model since we
heavily rely on the translational periodicity to perform our
numerical calculations. These structures are anyway expected
to appear only at even higher chemical potentials.
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