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We make a systematic investigation on the two-body nonleptonic decays B, — DE’:; P, DE;‘;V
by employing the perturbative QCD approach based on kg factorization, where P and V denote
any light pseudoscalar meson and vector meson, respectively. We predict the branching ratios and direct
CP asymmetries of these B, decays and also the transverse polarization fractions of B, — DE‘X)V decays.

It is found that the nonfactorizable emission diagrams and annihilation-type diagrams have remarkable
effects on the physical observables in many channels, especially the color-suppressed and annihilation-
dominant decay modes. A possible large direct CP violation is predicted in some channels; and a large
transverse polarization contribution which can reach 50% ~ 70% is predicted in some of the B, — D)V

decays.
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L. INTRODUCTION

The B, meson is the only quark-antiquark bound system
(bc) composed of both heavy quarks with different flavors,
and are thus flavor-asymmetric. It can decay only via weak
interaction, since the two-flavor asymmetric quarks (b and
¢) cannot annihilate into gluons or photons via strong
interaction or electromagnetic interaction. Because each
of the two heavy quarks can decay individually, and they
can also annihilate through weak interaction, B, meson has
rich decay channels and provides a very good place to study
nonleptonic weak decays of heavy mesons to test the stan-
dard model and to search for any new physics signals [1].

Since the current running LHC collider will produce
much more B. mesons than ever before, a lot of theoretical
studies of the nonleptonic B, weak decays have been
performed using different approaches—for example, the
spectator model [2], the light-front quark model (LFQM)
[3,4], the relativistic constituent quark model (RCQM) [5],
the QCD factorization approach [6], the Perturbative QCD
approach (pQCD) [7-10], and so on. Among the numerous
decay channels, there is one category with only one
charmed meson in the final states. They are rare decays,
but with possible large direct CP asymmetry, since there are
both penguin and tree diagrams involved. These decays
have been studied in Ref. [3] using the naive factorization
approach. But they consider only the contribution of
current-current operators at the tree level, and thus no direct
CP asymmetry is predicted. They also have difficulty pre-
dicting those pure penguin-type or annihilation-dominant-
type decays, such as B.— D¢, DK, D/¢.
Reference [5] discussed some semileptonic and nonleptonic
B. weak decays and CP-violating asymmetries by using
the RCQM model based on the Bethe-Salpeter formalism.
They do not include the contributions of annihilation-type
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diagrams, either. Since the annihilation-type contributions
are found to be important in the B-meson nonleptonic
decays [11] and also significant in the B, decays [12],
one needs to further study these channels carefully.

In this paper, we calculate all the processes of a B.-meson

decay to one DE:? meson and one light pseudoscalar meson

(P) or vector meson (V) in the pQCD approach. It is well-
known that the B, meson is a nonrelativistic heavy quark-
onium system. Thus, the two quarks in the B, meson are
both at rest and nonrelativistic. Since the charm quark in
the final-state D meson is almost at collinear state, a hard
gluon is needed to transfer large momentum to the spec-
tator charm quark. In the leading order of m,/my ~ 0.2
expansion, the factorization theorem is applicable to the
B, system similar to the situation of the B meson [13].
Utilizing the ks factorization instead of collinear factori-
zation, this approach is free of endpoint singularity. Thus,
the diagrams including factorizable, nonfactorizable, and
annihilation type are all calculable. It has been tested in
the study of charmless B-meson decays successfully [14],
especially for the direct CP asymmetries [15]. For the
charmed decays of the B meson, it is also demonstrated to
be applicable in the leading order of the mj,/my expansion
[16-21].

Our paper is organized as follows: We review the pQCD
factorization approach and then perform the perturbative
calculations for these considered decay channels in Sec. II.
The numerical results and discussions on the observables
are given in Sec. IIl. The final section is devoted to our
conclusions. Some details related functions and the decay
amplitudes are given in Appendixes A and B.

II. THEORETICAL FRAMEWORK

For the charmed B, decays we considered, the weak
effective Hamiltonian H . for b — ¢'(¢' = d, s) transi-
tion can be written as [22]
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with the Cabbibo-Kobayashi-Maskawa (CKM) matrix ele-
ment §, = V,,/V7,. Oi(n) and C;(u) are the effective four
quark operators and their QCD corrected Wilson coeffi-
cients, respectively. Their expressions can be found easily,
for example, in Ref. [22].

With these quark-level weak operators, the hardest work
is left for the matrix element calculation between hadronic
states (DM |H |B,). Since both perturbative and nonper-
turbative QCD are involved, the factorization theorem is
required to make the calculation meaningful. The pertur-
bative QCD approach [14] is one of the methods to deal
with hadronic B decays based on k; factorization. At zero
recoil of the D meson in the semileptonic B, decay, both ¢
and b quark can be described by heavy quark effective
theory. However, when the D meson is at maximum recoil,
which is the case of two-body nonleptonic B, decay, the
final-state mesons, so as to the constituent quarks (¢ and
other light quarks) inside, at the rest frame of the B, meson
are collinear. Since the spectator ¢ quark in the B, meson is
almost at rest, a hard gluon is then needed to transform it
into a collinear object in the final-state meson. This makes
the perturbative calculations into a six-quark interaction. In
this collinear factorization calculation, endpoint singular-
ity usually appears in some of the diagrams. The QCD
factorization approach [23] just parameterizes those dia-
grams with singularity as free parameters; while in the so-
called soft-collinear effective theory [24], people separate
these incalculable parts to an unknown matrix element. In
our pQCD approach, we studied these singularities and
found that they arise from the endpoint where longitudinal
momentum is small. Therefore, the transverse momentum
of quarks is no longer negligible. If one picks back the
transverse momentum, the result is finite.

Because the intrinsic transverse momentum of quarks
is smaller than the b quark mass scale, we have one more
scale than the usual collinear factorization. Additional
double logarithms appear at the perturbative QCD calcu-
lations. These large logarithms will spoil the perturbation
expansion; thus, a resummation is required. This has been
done to give the so-called Sudakov form factors [25]. The
single logarithm between the W boson mass scale and the
factorization scale t in the pQCD approach has been ab-
sorbed into the Wilson coefficients of four quark operators.
The decay amplitude is then factorized into the convolution
of the hard subamplitude, the Wilson coefficient, and the
Sudakov factor with the meson wave functions, all of
which are well-defined and gauge-invariant. Therefore,
the three-scale factorization formula for exclusive nonlep-
tonic B-meson decays is then written as
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C(1) ® H(x, 1) ® D(x) ® exp[ —s(P, b)

—2f '/h ‘%‘ a(a () | @)

where C(z) are the corresponding Wilson coefficients. The
Sudakov evolution exp[ —s(P, b)] [25] are from the resum-
mation of double logarithms In?(Pb), with P denoting the
dominant light-cone component of meson momentum.
Y4 = —a,/m is the quark anomalous dimension in axial
gauge. All nonperturbative components are organized in
the form of hadron wave functions ®(x), which can be
extracted from experimental data or other nonperturbative
methods. Since nonperturbative dynamics has been fac-
tored out, one can evaluate all possible Feynman diagrams
for the six-quark amplitude straightforwardly, which in-
clude both traditional factorizable and so-called nonfactor-
izable contributions. Factorizable and nonfactorizable
annihilation-type diagrams are also calculable without
endpoint singularity.

The meson wave function, which describes hadroniza-
tion of the quark and antiquark inside the meson, is inde-
pendent of the specific processes. Using the wave functions
determined from other well-measured processes, one can
make quantitative predictions here. For the light pseudo-
scalar meson, its wave function can be defined as [26]

i

N 75[?(%\)()6) + mod’;};(x)

+ Emy(/v — Dp(x)] 3)

where P is the momentum of the light meson, and x is the
momentum fraction of the quark (or antiquark) inside the
meson. When the momentum fraction of the quark (anti-
quark) is set to be x, the parameter ¢ should be chosen as
+1(—1). The distribution amplitudes ¢4(x), ¢E(x), and
¢7T(x) are given in Appendix C.

For the light vector mesons, both longitudes (L) and
transverse (T) polarizations are involved. Their wave func-
tions are written as [7]

1 * *
W{va Fov(x) + AR P (x)
+ MV¢{/(X)}QB)

1 # *

Of(x) = \/?N‘{Mvﬁlv%b{//(x) + £ P ()

+ iMVEMVp075E;Vnpva(ﬁg/(x)}aﬁ; (4)

DP, x, &) =

f(x) =

where ef,m denotes the longitudinal (transverse) polariza-
tion vector. And convention €”'?* = 1 is adopted for the
Levi-Civita tensor. The distributions amplitudes are also
presented in Appendix C.

Consisting of two heavy quarks (b,c), the B, meson is
usually treated as a heavy quarkonium system. In the non-
relativistic limit, the B, wave function can be written as [7]
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4N,

Dp, (x) = (P + Mp )ys6(x = r,)], (5)

with r. = m./Mpg . Here, we only consider one of the
dominant Lorentz structures and neglect another contribu-
tion in our calculation [27].

In the heavy quark limit, the two-particle light-cone dis-
tribution amplitudes of D y)/ DE‘S) meson are defined as [21]

i 1 ,
<D(x)(P2)|qa(Z)E/g(0)|O>22—]\]("/(') dxe*P2z
X[ys(Pr+ mD(A-))d’D(,\., (%, 0)]up:
1 1 _
<D?5)(P2)|qa(Z)EB(O)|O>= —\/Q_N;’[O dxe*P22
X [é(?z + mDZ}))d)DE)(x’ b)]aﬁ
(6)

We use the following relations derived from heavy quark
effective theory to determine f D;, [28]:

Mp,

f z‘) = VszﬂfDm' (7)

For the DE:))—meson wave function, we adopt the same

model as of the B meson [8]
|
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ZmZD 1
qu(S) ()C, b) = ND(:)[x(l - x)]Z exp<_ TQD(S) o 5 wD(.y)b2>’
(s)
)

with shape parameters wp = 0.6 for the D/D* meson and
wp, = 0.8 for the D;/D; meson. Here, a larger v, pa-
rameter than wp characterizes the fact that the s quark in
the D; meson carries a larger momentum fraction than the
light quark (#,d) in the D meson.

At leading order, there are eight types of diagrams which
may contribute to the B, — DE?;P, DE:)) V decays as illus-
trated in Fig. 1. The first lines are the emission-type
diagrams, with the first two contributing to the usual
form factor and the last two contributing to the so-called
nonfactorizable diagrams. The second lines are the
annihilation-type diagrams, with the first two factorizable
and the last two nonfactorizable.

A. Amplitudes for B, — D P decays

We mark LL, LR, and SP to denote the contributions
from (V — A)(V — A),(V—A)(V + A)and (S—P)(S+ P)
operators, respectively. The amplitudes from factorizable
diagrams (a) and (b) in Fig. 1 are as following:

2 1 00
FLL = 2\[§cff3fpr;§ fo dx, fo bybsdbydb (s, b1 — 2rp)xs

+ (rD - z)rb]as([a)he(ae’ :811: bl’ bZ)St(XZ) exp[_Sah(ta)]
— (rp = 2)rp(x; = Day(t)h (e, By, by, b1)S,(x1) expl—Sap(2,)] 9)

where rp, = mp/Mpg, r, = m,/Mpg; Cr = 4/3 is a color factor; fp is the decay constant of pseudoscalar meson (P). The
factorization scales 7, , are chosen as the maximal virtuality of internal particles in the hard amplitude, in order to suppress
the higher-order corrections [29]. The functions %, are displayed in Appendix B. The factor S,(x) is the jet function from

Y L g

(a) (b) (c) (d)
(e) (f) (9) (h)
()

FIG. 1. The leading-order Feynman diagrams for the decays B, — D P, Dg))\/.

B,
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the threshold resummation, whose definitions can be found in Ref. [8]. The terms proportional to r2 have been neglected
for small values. We can calculate the form factor from Eq. (9) if we take away the Wilson coefficients and fp. For the
(V — A)(V + A) operates, we have FLR = — FLL since only the axial-vector current contributes to the pseudoscalar
meson production. For the (S — P)(S + P) operators, the formula is different:

2 1 ()
P — —4\[§cff3fpr4B [0 dx, [0 brbadbydbs (s, ba){[rp(dr, — x, — 1)

—Tp + 2]as(ta)he(ae’ ﬁa’ bl’ bZ)SI(XZ) exp[_Sab(ta)] + [rD(2 - 4)C])
+ xl]a‘v(tb)he(ae’ 1817’ bZ’ bl)St(xl) exp[_Sub(th)]- (10)

For the nonfactorizable emission diagrams (c) and (d), the decay amplitudes of three types of operators are
8 1 o0
Mt = chfBﬂ'Méfo dxzdx3j; byb3dbydbsp(xy, by)p(xsHrp(1 — x; = xp) + xy + x5 — 1]

X as(tc)he(ﬁc’ a,, b3’ b2) exp[_Scd(tc)] - [rD(l - Xy x2)
+2x; + xp — x3 — Ha(t)h(By ., b3, by) exp[—S 4(1,)1}, (11)

8 1 00
MR :chfBﬂ-M%rP(l + ”D)/O dxzdx3ﬁ) bybydbydbspp(xg, bo[(x1 + x5 — 1+ rp(2x; + x5 + x5 — 2)) 1 (x3)

+ (x +x3 = 1+ rplxs = ) p(x3) g (1) (B, b3, by)expl —Scq(2.)] =[xy — x5 + rp(2x) + x, — x5 — 1))
X ph(x3) + (63 —x1 + rpas +x = 1) ph(x3) s (t) k. (Ba, @, b3, by)expl—Sca(ta) 1} (12)

8 1 0
M =2 Cpfymty [ dradrs [ bobsdbadbidp(rn bI@B) oty + 2~ 1)

—2x; — xp — x3 + 2] (t)he (B, a., b3, by) expl—Scq(t.)]
- [X3 — X rD(l — X~ x2)]as(td)he(ﬂd’ &, b3’ b2) exp[_Scd(td)]}’ (13)
where rp = m(’; /Mg, with mg as the chiral mass of the pseudoscalar meson.

For the factorizable emission diagrams (e) and (f), we keep the mass of the ¢ quark in the D meson, while the mass of the
light quark is neglected. The amplitudes are given as follows:

TIEL = ff;R = _SCFfBW'Mé f(}l dxydxs j:o byb3db,ydbs b p(xs, bz){[¢§§(x3)(x3 —2rpr,)+ FP[¢1€(X3)(2FD(X3 +1)—r.)

+ ¢£(x3)(rc + ZVD(X3 - 1))]]as(te)he(a,a’ 188’ bZ’ b3)exp[_Sef(te)]St(x3)
- [x2¢?3(x3) +2rprp(x; + 1)¢£(x3)]as(lf)he(aa; By, b, b2)exp[_Sef(tf)]St(XZ)}’ (14)

1 00
FP — 16C, f M ]O dxrdxs jo bybadbadbsbp (s, b — b(xs) 2 — r.)

+ rpldp(x3)(@drorp — x3) + dp(x3)xs]lag(t)he (e, B by, bs) exp[—S, 4(1,)1S,(x3)
— [oarpdp(x3) + 2rpdp(xs)]ag(tp)h (e, By, b, by) expl—S, ()18, (x)}; (15)

and that of the nonfactorizable annihilation diagrams (g) and (h) are

8 1 oo
MY = 2 CofymM [ dradsy [ bibadbidbaoen b0 31 + ) + ool B () — x)

+ dp(3)dre — 2x; + x + x3) [l (1) (B, g, by, by) expl— Sy, (1,)] + [— 3 (x3)(ry, + xy + 23 — 1)
+ rprpl( — x3)h(x3) — dp(x3)@ry, + 2x; + xp + x5 — 2)a; (6 R (B, @y b1, by) expl =S4 (1)1} (16)
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8 | .
MR = §CFfB7TM4B/O dxzdx3/0 bibydb dbyp(xy, D)L= dp(x3)rp(re +x; = x3) + rp[ = p(x3)(—re — x; + x3)

+ dp0a)(re + x1 = x3)]la(t)he(By, gy, by, by) expl—S,,(t,)] + [— pp(xs)rp(—ry, + x; +x, = 1)
+rpl(=rp +xy + 23 = 1)(hp(x3) + dp ) e (1) he (Bh, @, by, by) expl—Sn(1)]}, (17)

M?zp == %CFfB”TM?; /01 dx,dx; [: b1bydb dbypp(xy, bz){[_¢?)(x3)(xl — X3 ’”c) + VPVD[_¢1TJ(X3)(X2 - x3)
+ dp(x3)(dre — 2x1 + x5 + x3) ]l (1) (B, g, by, by) expl—S,4(1,)] + [—hp(x3)(r, + x1 + x5 — 1)
+ rprpl(=4r, = 2x; = x; — x3 + 2)p(x3) — (xa — x3)dL(x3) e, (1)1 (B, @y, by, by) expl =S, (2,) ] (18)
With the functions obtained in the above, the total decay amplitudes of 10 decay channels for the B, — D, P can be given by
A(B = D) = & [ay -+ €, MET+ £ [ay i+ € ME] = €[(Cs + Co)( M- + ME)

1 1
+(Cs+ C)) (MR + MER) + (C4 + §C3 +Cio+ gco)(fl(;L + FEL)

#(Cor 35+ G436 )T + T 19)

VA = D* ) = &[T+ GMI - el Fit+ ¢ M - ] (300 - €+ 3Gt

1 1 1
(G + COME+ (—Cy 45 )M + (=€ =55 = Co = 3G )T

5 1 3 1 1 1 1
+ (CIO t3C6 3G -G -5G _§C8>.TIEL + <_C6 —3G 156 +6C7).7:§P

1 1
35— G =317 ) 0)

- (C5 + C7).7Vl](;R + <_C6 - 3

VIA(B, = D" 1)) = ELa T + CMET+ £l Fit+ O M = €] (204+ €3+ 30— 5 60 )Mt

1 1 1
+ (C5 + Co) MLE + (C5 - 5C7)3\/l'gR + (Cs + C7) MR + <C4 + gC3 + Cyo + gCg)j-"gL

7 5 1 2 1 1
+ (gc3 3Gt g(C9 - cm))fgL + (2C5 +3Cet 50+ gcg) LR
IR D B 1 1\ s
+ (C6 + —C5 - —Cg - _C7)fe + (C6 + —C5 + Cg + —C7)fa ], (21)
3 2 6 3 3
1 1 1 1 1
A(B,— D*n,) = —fz[(c4 - Ecm)fM%L + (C6 - Ecs)fM‘jp + (C3 + §C4 - §C9 - gclo)f%L
R TR R,
+(C5+§C6_§C7_6C8>:Fe ] (22)

VIA®B. = i) = el T+ M - g (20,45 Co )M+ (20, + 5 ¢ )

2 1 1 2 1 1
+ <2C3 + gC4 + EC9 + gcl())fgL + (2(?5 + gC6 + 5C7 + Ecg)fgl‘], (23)
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AB— DI n,) = Ellay Fi+ € M= €] (€54 €= 3(Cuot Co) ) M-+ (€5 + oM+ (€5 = 1€ )M

1

1 1 2
+(Cs+ Cy) MR + (C4 + gC3 +Cyo+ §Cg)jf‘ai + (C6 - ECs)NEP + g(2(C3 +Cy)

1 1 1 1 1
—(Co+ Cyp)) Fe- + (Cs +§C6 _§C7 _—C8>f]£R + <C6 +§C5 _ECS _6C7)f§P
1 1
+<C6+§C5+C8+§C7)f§f’], (24)
_ 1 1
A(B.— DfK°) = & Ja; F5b + ¢y MEE] — fz[<C3 - §C9)~'MIEL + (G5 + Co) M- + (Cs - 5C7)~'MIER
LR 1 1 LL 1 1 1 LL
+(C5+C7).7Vla + C4+§C3+C10+§C9 fa + C4+§C3_§C10_6C9 :}:e
1 1 1 P 1 1 P
+ C6+§C5_§C8_8C7 fe + C6+§C5+C8+§C7 :]:a y (25)

2

AB.— D7) = &l Tit+ M - €] (36O + ColFH + 506, + COFE +

3

3
3 CioMe" + 5 Csj\’lgp],

(26)

with the CKM matrix element ¢; = V,,V}, and &, = V; V7, (i = u, c, t). The combinations of Wilson coefficients are defined
asa; = C, + C,/3 and a, = C; + C,/3. The total decay amplitude of A (B. — D°K") and A(B, — D*K") can be
obtained from Egs. (19) and (25), respectively, with the following replacement:

A (BC - D0K+) = le(Bc - D07T+)|77—>K,§i—>§l’.» */,Zl(Bc - D+K0) = JZL(Bc - D;—KO)lDSﬁD,&-—»f;- (27)
It should be noticed that, in Eqs. (21)-(24), the decay amplitudes are for the mixing basis of (1,, 7,). For the physical state
(n, m'), the decay amplitudes are
A(B, — D" ) = A(B, — D*n,) cosp — A(B, — D7) sing,
AB,— D"7n')= A(B.— D" n,)sing + A(B. — D" n,)cose, (28)
A(B, — Df m) = A(B, — D} n,)cos — A(B. — D} ,)sing,
A(B, — Di 7)) = A(B.— D} n,)sing + A(B, — D n,)cosb,

where ¢ = 39.3° is the mixing angle between the two

states.
( n ) (c?s¢ —sin¢)< 7, ) 29
n' sing ~ cos¢ 7R

B. Amplitudes for B, — D,V decays

In B, — D,V decays, the vector meson is longitudi-
nally polarized. In the leading power contribution, the
formula of each Feynman diagram for B, — D,V is
similar to that of the B, — D,P modes, but with the
replacements

fe—=rv dp— by, dp—— Py,

bp— Y. (30)
The total decay amplitude for B, — D,V can be obtained
through the substitutions in Egs. (19)-(27):

rP_’rv,

m—p, K—K', n,—m0, n,—¢ (31)

C. Amplitudes for B, — D,V decays

The decay amplitude of B, — DZ‘S) V can be decomposed
into

Alep, ey) = AL+ ANeper - €y

+iATe,p,on" VP €. €7, (32)

where €pr(€yr) is the transverse polarization vector for
the D*(V) meson. A’ corresponds to the contributions of
longitudinal polarization; AY and AT corresponds to the
contributions of normal and transverse polarization, re-
spectively. The factorization formulae for the longitudinal,
normal, and transverse polarizations are all listed in
Appendix A. There are also 10 channels for B, — DTS)V

decay modes. We can obtain the total decay amplitudes
from those in B, — D,V with replacing D, by D;‘S).

074008-6



TWO-BODY B, — D{/)P, ...
D. Amplitudes for B, — D P decays
For B, — DTS)P, only the longitudinal polarization of
Dy,
the longitudinal polarization amplitudes for the B, — D,V

will contribute. We can obtain their amplitudes from

decays with the following replacement in the distribution
amplitudes:

Sfv—=1ps d’v—’d’?»
by — b

In fact, the B, — DZ)P decay amplitudes are the same as

by — b5,

ry—7rp,

(33)

the B, — Dy P ones only at leading power under the hier-
archy Mg > mpe > Agep. An explicit derivation shows
that the difference between the two kinds of channels occurs
at O(rp») and at the twist-3 level in Eqgs. (9)—(18).

ITII. NUMERICAL RESULTS AND DISCUSSIONS

The numerical results of our calculations depend on a set
of input parameters. We list the decay constants of various
mesons and parameters of hadronic wave functions in
Table 1. For the 7 — n' system, the decay constants f,
and f, in the quark-flavor basis have been extracted from
various related experiments [31,32]

fq=(1.07i0.02)f77, fs=(1.34%0.06)f . (34)
For the CKM matrix elements, the quark masses, etc., we

adopt the results from Ref. [33]:

PHYSICAL REVIEW D 86, 074008 (2012)

For the considered B. — DP, B, — D’(“S)P, and
B.— D,V decays, the branching ratios (BR) and the direct
CP asymmetry A‘g}; for a given mode can be written as

Gr7p, ; |jl|2 - |~7l|2

BR = c (1 — 2 ﬂ 2’ Adlr =
327TMB( I Al AR+ AR

(36)

where the decay amplitudes A have been given explicitly
in Sec. II for each channel. A is the corresponding charge
conjugate decay amplitude, which can be obtained by con-
jugating the CKM matrix elements in A.

Our numerical results of CP-averaged branching ratios
and direct CP asymmetries for B, — D, P and B.— D,V
decays are listed in Tables II and III, respectively. The
dominant topologies contributing to these decays are
also indicated through the symbols 7 (color-allowed
tree), C (color-suppressed tree), P (penguin), and A (anni-
hilation). The first theoretical error in all our tables is
referred to as the D ,)-meson wave function: (1) The shape
parameter wp = 0.60 = 0.05 for the D/D* meson and
wp, = 0.80 £ 0.05 for the D, /D% meson; (2) The decay
constant f, = (206.7 = 8.9) MeV for the D meson and
fp, = (257.5 = 6.1) MeV for the D; meson. The second
error is from the combined uncertainty in the CKM matrix
elements V,;, and the angle of unitarity triangle y, which
are given in Eq. (35). The third error arises from the hard
scale ¢ varying from 0.75¢ to 1.25¢, which characterizes the
size of next-to-leading-order QCD contributions. Most of
the branching ratios are sensitive to the hadronic para-

[Vl = (3.89 £ 0.44) X 1073, [V.ial = 0.97425, meters and the CKM matrix elements. The CP asymmetry
[Vey| = 0.0406, [Veal = 0.23, |V,s| = 0.2252, parameter is only sensitive to the next-to-leading-order
contributions, since the uncertainty of hadronic parameters

[Ves| = 1.023, y = (1313)°, me = 1.27 GeV, is mostly canceled by the ratios.
my, = 4.2 GeV, m7 = 1.4 GeV, We also cite theoretical results for the relevant decays
© " evaluated in the LFQM model [3] and the RCQM model
my = 1.6 GeV, my" = 1.07 GeV, [5] to make a comparison in Tables II and III. Our pQCD
md* = 1.92 GeV, ASQ cp = 0.112 GeV. (35)  results are generally close to RCQM results but differ
substantially from the ones obtained by LFQM. This is

TABLE I. The decay constants and the hadronic meson wave function parameters taken from the light-cone sum rules [30].
The decay constants (MeV)

I, I I, fr fx fo ) fo fo fo Iy s [k
489 206.7 = 8.9 257.5 = 6.1 131 160 209 165 195 145 231 200 217 185
Values of Gegenbauer moments

T K Mg s
af e 0.17 e Ce
af 0.25 0.115 0.115 0.115
af —0.015 —0.015 —0.015 —0.015
p 1) o) K*
al 0.03
ag 0.15 0.15 0.18 0.11
af‘ R Ce e 0.04
ar 0.14 0.14 0.14 0.10
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TABLE II. CP-averaged branching ratios and direct CP asymmetries for B, — D) P decays, together with results from RCQM and
LFQM.

BR(1077) Al (%)
channels Class This work RCQM?* LFQM This work RCQM
B.— Dz* T 267131160108 22.9 43 —41.27 431 L1108 6.5
B.— D" x° C.A 0.821 03¢+ 0.5 +0.00 2.1 0.067 23443 -1.9
B, — D°K* AP 47.815 T4 44.5 035 —34.8%401 74018 —4.6
B.— DK’ AP 4697138103 Te 493 2.3703703%00 -0.8
B.— D' CA 0.9225 1570352600 0.087 40.8%557 1507138
Bo-DYWCAL 09I 0048 ~14070870
B, — Df m° Cp 0.417504+001+0.02 0.0067 46.71 1475355
B.— D{ K° AP 21108103403 1.9 o 54375335709 133
B.— Dfn AP 17.3717402+33 0.009 2.87001044 1]
B, — Df 7/ AP 510123704451 0.0048 L1750 0*03+07

*We use the results of decay widths in Ref. [5], but we take 75 = 0.453 ps to estimate the branching ratio.

TABLE IIl.  CP-averaged branching ratios and direct CP asymmetries for B, — D)V decays, together with results from RCQM and
LFQM.

BR(1077) AZH(%)
channels Class This work RCQM LFQM This work RCQM
B.— D" T 66.2778+1600+ L0 60.0 13 —24.5726%33+03 3.8
B.— D*p° C.A 1.4301+0.3+0.1 3.9 0.2 79.81%3 1leta -3.0
B, — D°K** AP 25.9437H 03763 347 0.68 —66.21 8 LY —6.2
B, — D*K* AP 19.1733404+07 28.8 35500708703 -0.8
B.—D'w C.A 1.9¥03703+00 0.15 R AR
B~ D" P 0.008 3515338
B.— D{p° Cp 0.955000 70,01 004 RIUVAR R A
B, — D} K*° AP 1.4102+0.0+01 1.0 e 61.0108* 05145 13.3
B.— D w CP 031310 0016 AL
B.— D} ¢ AP 27.0+48+0.142.0 15.7 0.0048 3.3109104402 —-0.8

due to the fact that LFQM used smaller form factors
FB=P(g%? = 0) = 0.086 at maximum recoil, which is quite
smaller than other model predictions [4] and also another
covariant LFQM results [34]. In fact, these model calcula-
tions all give consistent form factors at the zero-coil region,
considering only soft contributions by the overlap between
the initial and final-state meson wave functions, which is
good at the zero-recoil region. At the maximum-recoil
region, which is the case for nonleptonic B decays, the
soft contribution is suppressed, since a hard gluon is needed,
as discussed in the previous section. Furthermore, LFQM
only considers the contribution of current-current operators
at the tree level; therefore, they cannot give predictions for
those modes without tree diagram contributions like B, —
D*KY and B, — D/ K°. For the color-suppressed decays

(C), our predictions differ from the ones of RCQM, since in
these modes, the contributions from the nonfactorizable
emission diagram and annihilation diagram dominated the
branching ratio, which are not calculable in RCQM.

Our numerical results of the CP-averaged branching
ratios and direct CP asymmetries for B, — DE‘_Y)P decays
are listed in Table IV, together with the RCQM model
predictions. Again, our results are similar with the
RCQM model for the tree dominant mode (T). But for
the annihilation dominant and penguin dominant modes
(A,P), the branching ratios obtained in the RCQM are one
order of magnitude smaller than ours. The reason is that
these decay amplitudes are governed by the QCD penguin
parameters a, and a¢ in the combination a4 + Rag [35] in
the factorization hypothesis. The coefficient R arises from
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TABLE IV. CP-averaged branching ratios and direct I asymmetries for B, — DZ-)P decays, together with results from RCQM.

BR(1077) ASE (%)
channels Class This work RCQM This work RCQM
B, — D7t T 18.8720+41%04 19.6 64.0112046.1+07 1.5
B.— D70 CA 1.3104+02+00 0.66 9.613313314%° -2.1
B, — DK* AP 73.5319108+07 4.9 25.0%54133100 -8.2
B, — D**K° AP 77.8' 33403713 2.8 —0.3+0000+00 —8.2
B.— D" C.A 0.34 045 015000 —2.05300 150
B, — D"ty C.A 0.15 2503666001 —418503T30003
B.— D"’ C.p 0.27 50030650 02 299535555518
B.— D" KO AP 1.6702+0.1+02 021 —3.3104+06709 133
B.—Di*n AP 16.7533503503 —0.75303°08
B.—~ D"’ AP 1445087017558 0.0250, 7601033

the penguin operator Og, where R > 0 for B— PP, R =0
for PV and V'V final states, and R <O for B — VP; the
second meson in the final states is the one emitted from
vacuum. Therefore, the branching ratios of various types of
decays have the following pattern in the factorization
approach:

BR(B, — DP) > BR(B, — DV)
~BR(B, — D*V) >BR(B, — D*P),  (37)

as a consequence of the interference between the a4 and ag
penguin terms. In the contrary, we have additional non-
factorization contributions and large annihilation-type con-
tributions in the pQCD approach, which spoils the relation
in Eq. (37).

As expected, the annihilation-type diagrams give large
contributions in the B.-meson decays, because the
annihilation-type diagram contributions are enhanced by
the CKM factor V7, V., [7,36]. For the b — d process,
I%l = 2.5; for the b — s process, I%I = 47. The
annihilation diagram contributions are the dominant contri-
bution in some b — s processes. Therefore, we have the

BR(B,—DOKM+) 1 -
BR(B,—D" 7 K0) 1 for these two annihilation

dominant b — s transition processes.

For the color-suppressed decays, our predictions differ
from the ones of RCQM, since in these modes, the con-
tributions from the nonfactorizable emission diagram and
annihilation diagram dominated the branching ratio, which
are not calculable in RCQM. For example, in decays
B, — DY (7% n, 1/, p°, ), the nonfactorizable contri-
bution, which is proportional to the large Wilson coeffi-
cient C,, is the dominant contribution. In fact, the
annihilation diagrams can also give relatively large con-
tributions for the enhancement by CKM factor. We also
find that the twist-3 distribution amplitudes play an im-
portant role, especially in the factorizable annihilation

ratio relation

diagrams. As stated in Sec. IID, the B, — DP(V) decay
amplitudes are different from B. — D*P(V) ones only
at twist-3 level. The numerical results show that the
contributions from factorizable annihilation diagrams
have an opposite sign between the two types of channels.
For example, this results in a constructive interference be-
tween nonfactorizable emission diagrams and factorizable
annihilation diagrams for B, — D** 7%, but a destructive
interference for B, — D" 7. This makes BR(B,— D** %)
larger than BR(B, — D™ #¥). Similarly, we have BR(B,—
D** p°)>BR(B,— D™ p°). However, for B,.— D" 5(n’),
while the dd part contributes to the annihilation diagrams,
the constructive or destructive interference situation are just
the reverse, and BR(B, — D** n(n’)) are smaller than
BR(B. — D" n(7)).

For another kind of b — s processes, the decays B, —
D (79, p°, w) have a small branching ratio at @(10~%)
due to the absent annihilation diagram contributions, and
the emission diagram contributions suppressed by CKM
matrix elements |V}, V,|. Since the contribution of the
penguin operator is comparable to the one of the tree
operator, the interference between the two contributions
is large. As a result, a big CP asymmetry is predicted in
these decays. The branching ratio is even smaller ~1071°,
and there is no CP violation for B, — D" ¢ decays,
since there are only penguin-diagram contributions. All
these and other rare decays are also important, since they
are quite sensitive to new-physics contributions.

For the B, — D'(*S) V decays, the branching ratios and the

transverse polarization fractions Ry are given as

Gpr B.

BR=—"—<(1-1r}) | A%,
327My P i=0,z+,— (38)
24 2
R, | AP+ 1A |

T AL HIALP A
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TABLE V. CP-averaged branching ratios, direct CP asymmetries, and the transverse polarizations fractions for B, — DZ"S>V decays,

together with results from RCQM.

BR(1077) AL (%) R1(%)
channels Class This work RCQM This work RCQM This work
B.— D*p* T 55.37 86T 59.7 —24.1+39+42+04 3.8 16.472372.0702
B, — D** p° CA 3.811010570. 13.0 30.210.01 2054 -3.0 543118140102
B.— DK™ AP 16123535 377 —14.97 530103 —6.2 526113133763
B, — D*T K™ AP 1725375120 30.6 0.4+0.0+0.0+00 —0.8 57.4%05F01409
B.— D" w C.A 2450809701 —7.8550735130 56.01 55765707
B.— D¢ P 0.004 7% 5001 L4FZ3 0005
B.— D" p° CP 0.7223 8 0.0370.03 —29.3119108553 -3.0 1L2533 51401
B.— DK AP 4.3113+04703 6.2701%13+0.0 133 68.8721139+08
B.—D;"w CP 0.26 7003 7005004 21303308803 49,5559 %104
B.— D" ¢ AP 137.3139.3403+10.5 38.8 0.35:1+0.1%0.0 -0.8 67.5721%01+14

where the helicity amplitudes “A; have the following
relationships with ALNT:

A,= AL, A.=AN+ AT, (39)
Our numerical results of the CP-averaged branching

ratios, direct CP asymmetries, and the transverse polariza-
tion fractions for B, — DE‘_‘,)V decays are shown in Table V.

The transverse polarization contributions are usually sup-
pressed by the factor ry or rp+ comparing with the longi-
tudinal polarization contributions; thus, we do have
relatively small transverse polarization factions for the
tree-dominant decay (R;(B, — D*°p*) = 16.4%) and
the pure penguin type decay (R;(B,—D** ¢)=11.5%).
For the pure-emission-type decay B, — D" w, the trans-
verse polarization faction is large because the nonfactoriz-
able emission diagram induced by operate O4 can enhance
the transverse polarization sizably. The fact that the non-
factorizable contribution can give large transverse polar-
ization contribution is also observed in the B® — p°p?,
ww decays [37]. For other decays, the annihilation-type
contributions dominate the branching ratios due to the
large Wilson coefficients. Therefore, the transverse polar-
izations take a larger ratio in the branching ratios, which
can reach 50% ~ 70%. This is similar to the case of
B — ¢K* and various B — pK* decays [38,39].

From Table V, one can also see that our branching ratios
for B, — D*TK*, D*OK**  D**K*0 D** ¢ decays, are
about 2 to 5 times larger than those in the RCQM model,
due to the sizable contributions of transverse polarization
amplitudes. Another point should be addressed that the
annihilation contributions with a strong phase have remark-
able effects on the direct CP asymmetries in these decays.
As a result, our predictions are somewhat larger than those
from RCQM.

IV. CONCLUSION

In this paper, we investigate the two body nonleptonic
decays of the B, meson with the final states involving one

Dg)) meson in the pQCD approach based on k; factori-

zation. It is found that the nonfactorizable emission and
annihilation-type diagrams are possible to give a large con-
tribution, especially for those color-suppressed modes and
annihilation-diagram-dominant modes. All the branching
ratios and CP asymmetry parameters are calculated, and
the ratios of the transverse polarization contributions in the
B.— DZ“S)V decays are estimated. Because of the different

weak phase and strong phase from tree diagrams, penguin
diagrams, and annihilation diagrams, we predict a possible
large direct CP violation in some channels. We also find that
the transverse polarization contributions in some channels,
which mainly come from the nonfactorizable emission dia-
grams or annihilation-type diagrams, are large.

Generally, our predictions for the branching ratios in the
tree-dominant B, decays are in good agreements with that
of the RCQM model. But we have much larger branching
ratios in the color-suppressed, annihilation-diagram-
dominant B, decays, due to the included nonfactorizable
diagram and annihilation-type diagram contributions.
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APPENDIX A: FACTORIZATION FORMULAS FOR B, — D*V

We mark L, N and T to denote the contributions from longitudinal polarization, normal polarization, and transverse
polarization, respectively.

2 ! °°

X {[XZ - zrb + rD(rh - 2x2)]a.\'(ta)he(aer Bw bl’ bZ)St(XZ)
X expl =S ()] + [rp () — Dla,(t,)he (e, By, by, b1)S,(x1) expl—Sa (1)1}, (A1)

2 ! *
FEN = 2\[§chf3va4Brv Jy s [} bbb o)

X {[rb -2+ rD(x2 +1-— 4rh)]as(ta)he(ae’ :Bw bl’ bZ)St(XZ)
X expl=Sup(t,) + rp[2x; = Hey(tp)ho(ae, By, ba, b1)S,(x1) expl =S, (1)1}, (A2)

2 | ()
:FIEL,T = ZJ;WCffovMérvj; dej;) b]bzdbldbz(i)D-&)(xZ, bz)
X {[rb -2+ rD(l - x2)]as(ta)he(ae; Ba: b]» bZ)St(XZ)
X exp[_Sab(ta)] - rDax(tb)he(ae: Bb: b2r bl)St(xl) exp[_Sab(tb)]}: (A3)

FERL = FlbL - FIRN_ pLLN pIRT _ plLT (Ad)

SP,i
e

The factorizable emission topology contribution F.""'(i = L, N, T) vanishes due to the conservation of charge parity.

8 1 00
MELL = _gﬂcffBMé/(; dxdeSL bzbsdbzdbsd’Dfs)(xzy by) by (x3)

XA = x; —x3 = rp(xy + x3 — D]a(t)h. (B, a,, b3, by) exp[—S 4(1.)]
+[—1+2x; +x — x3 — rplxy + xo — D]a(t)h,(Ba ., by, by) exp[—S.q(ta)]} (A5)

8 1 00
MIEL’N = §7TCffBM4B’”VL dxyb@fo bzbsdbzdbs(ﬁbfs)(xz, bo{[(xy + x5 — 1)¢\V/(x3) + 2rp(x3 — x3)

X @5 (x3)]a(t)h,(Be, a,, by, by) exp[—S 4(1.)] — [(=2rp(1 — 2x; — x5 + x3) — X1 + X3)P7(x3)
+2(rp(1 — x5 — x3) — 2x; + 2x3)¢(‘l/(x3)]as(td)he(:8d! @, by, by) exp[—S ()1}, (A6)

8 1 0
MLt :g’ﬂ'cffBM?;erO dxzdx3/;) byb3db,dbs d’D(*S) (X2, bO)[(xy + x5 = D (x3) = 2rp(2x) + x5 +x3 —2)

X ¢€/(x3)]as(tc)he(ﬁc: (2P b3’ b2)exp[_Scd(tc)] - [()C3 - X1)¢C(X3)
+2(rp(2x; +xp —x3 = 1) = 2x1 + 2x3) 5 (x3) Jets (1) he ( By, e, b3, by)exp[—S.4(2)]}, (A7)

M = =2yt [ dvads [ babsdbadbsdy (o b) byt
XAL(x; +x3 = 1+ rplxs —x3))Ppj(x3) + (x; +x3 = 1 = rpx; + x5 + x3 — 2))
X ¢y (x3)]as(t)he(Be, e, b, by) expl=Sca(te)] = [(x1 = x5 — rp(l = X2 = x3)) 3 (x3)
— (= x3 + rp(1 = 2x; = xp + x3)) b (x3) e (1) he(By, @, b3, by) expl—Scq(ta)]}, (AB)

8 i 0
MET = MEN = 2y fuMiry [ dvad [~ babidbadbidy (e b @)y + 32— 1)

X {as(tc)he(ﬁc’ Q,, b3’ b2) exp[_Scd(tc)] + as(td)he(ﬁd’ A, b3’ bZ) exp[_Scd(td)]}» (A9)
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8 1 00
MEPL = —§7TCffBM4Bf0 dxzdx3/0 bzbadbzdb3¢0;:)(xz, b))y (x3)

XA{[2 = 2x; — xp — x3 + rp(x; + xp — D]a(t)h, (B, a., bs, by) exp[—S 4(1,.)]
—[x3 — x; — rplxy + x — D], (t)h(Ba a, by, by) expl—S.q4(t)1} (A10)

8 | .
MEP,N = ——ﬁCffBMgrv'/;) d.X'de:;'/;) b2b3db2db3¢Dz)(X2, bz){[(xl + X3 — 1— 27’D(2X1 + Xy + X3 — 2))¢€/(X3)

3
- (xl + X3 — l)djl\l/(xS)]ax(tc)he(Bc’ a,, b3’ b2) eXP[_Scd(tc)] + (.X] - )C3)(¢€(X3)
— ¢V (x3))as(t)h(Ba e bs, by) expl=Sca(ta)} (Al1)

8 1 00
MEPT = gWCf"fBM%’”V[O dxzdx3fo bzbadbzd%d’z)js)(xz, bo){[(x) + x5 — 1 = 2rp(2x; + x5 + x3 — 2))h{(x3)

— (%) + x5 — Dy (x3)]ay(t)h.(B., a., bs, by) expl—S.4(t)] + (x1 — x3)(§(x3)
— dy(x3))ay(t)h,(By a,, bs, by) expl—Se(ta)]} (A12)

1 o0
Fat = 8CFfB7TMé[0 dxﬂmfo b2b3db2db3¢DE)(x2’ by)

XA[—x30v(x3) + rcrv(q’)’v(x3) - ¢§/(X3))]as(l‘e)he(0‘a’ Be: b, b3)exp[_Sef(te)]St(x3)
+ Doody(xs) + 2ryrp(x, — D)y (x3)]e(tp)h(ag, By, bs, by) expl—S.4(t£)]S,(x2)} (A13)

1 0
BN = —8Cp My [ dvadss [T babsdbadbid (xn baHEretes — D) — redlix)

+ rv(X3 + 1)(1)5](1“‘(1‘8)/16(&“, Be’ b27 b3)exp[_sef(te)]st(x3) - rV[(XZ + 1)(1)%’/()(3)
— (xy = Do (x3)]ag(tp)h (aq, By bs, by) expl—S,,(1,)]1S,(x,)}, (Al4)

1 00
FLLT _ 8Cpr7TM§rDj; dxzdx3f0 b2b3db2db3¢Dz)(x2, bo{[ry(x; + D)d§(x3) — redpl(xs)

+ ry(xs — Dy (xs)]ag(t)h (a,, B., by, b3) eXP[_Sef(fe)]Sz(x3) + ry[(=x, = 1) (x3)
+ (0 = Dy (x3)]e(tp)h (g, By, bs, by) expl—S,4(t7)]S,(x2)} (A15)

FERE = FHLL RN S N ERT - gl (A16)

1 0
FI =16 fymth [ dvads [ babsdbadbs by (oo breby(ey) + roxs(@i )

- l‘/(xf’)))]as(te)he(aw Be’ b2r b3) exp[_Sef(te)] - [er2¢V(x3)
— 2ry ¢y (x3)]e(tp)h (ay, By, by, by) expl—S (1]}, (A7)

1 00
N = _16CFfB7TM4B[0 dxzdx3j;) b2b3db2db3¢1)(*5)(xz, by) X {rpldt(x3) = 2r.rydl(x3)]a,(t,)h (e, B, ba, b3)

X exp[_Sef(te)] + rV((»b{)/(x?a) + qst\l/(-x?;))as(tf)he(aa’ Bf’ b3> b2) exp[_Sef(tf)]}’ (AIS)

1 00
al = _16CFfB7TM§/O dxzdxafo bzb3db2db3¢oz;)(x2, by) XA{rpl by (x3) = 2r.ry b (x3)lag(t)he (g, B, b, b3)

X exp[—S,/(t.)] + ry(dy(x3) + d§(x3)as(tp)h(au By bs, by) exp[—S.,(t)]} (A19)
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8 1 00
leI;L’L = chfBWM?;fO dxzdx3[0 bledblde(ﬁD(*x)(xZ’ bz){[(xl — X ”c)¢v()€3) - FD”V[(xz - x3)¢‘{,(x3)

— (2x; — x5 — x3) @y (x3) s (1) (B, g, by, b)) expl— S, (2)] — [(1 — 1, — x; — x3) by (x3)

— rpry[(x3 — x2) 7 (x3) + (2x1 + x5 + x5 — 2) L (x3) (1) h (B, @u by, by) expl— S, (1)1}, (A20)
MLL'N=—1—6Cf M4 axsdrs [ bybydb,db (X2, by) % (x3){rea(2,)h,( by, bs)
a 3 CF BTMprply 0 X24X3 o 10240, 2¢D(*§) X3, by) py (x3)ir ay tn, Bg’ Qg 01, 02

X exp[_Sgh(tg)] - rbas(th)he(ﬁh’ ay, blv b2) exp[_Sgh(th)]}’ (Azl)

16 1 00
MET = =2 Cofymithrory [ duadvs [ bibsdbidbady (v b 89 () rat ) By by, )

X exp[_Sgh(tg)] - rbas(th)he(ﬂh’ Ay, bl’ bZ) exp[_Sgh(th)]}r (A22)

8 1 00
MRL = chfBWM%L dxzdx_sj(; blbzdbldb2¢0(*x)(x2, bo)\[rp(x; — xp + 1) by(xs) + ry(—x; + x3 — r) (P (x3)

+ ¢§/(x3))]as(fg)he(,3g’ ay, by, by) exp[_Sgh(tg)] —[=rplx; + 22 = 1, = Dy (x3)
+ ry(xy + x5 = 1, = D(@Y(x3) + ¢4(x3))Jag(t,)h, (B @y by, by) exp[—S,, (1)1} (A23)

MR = MIN =Sy pymnty [ vy [ bibadbidbabiy, (xsb2) X Lrylr = x5 + r)(@4 () + $(x2)
a a 3 FJBTMp o XpdX3 o 10240140, D'(*A_)XZr 2 ry\Xp — X3 ™ re y\X3 y\X3

— rp(xy = xo + 1) (x3)]ag(t)h, (B, ag, by, by) expl— S, ()] + [ry(xy + x5 — 1, — D@} (x3)
+ d4(x3) + rp(1 + 1y, — x1 — x) 1 (x3) e (1) (B, s by, by) exp[ =S (1)1} (A24)

8 1 00
MEP’L = chfBWM?;fO dxzdx3/() blbzdbldbzd’z)j”(xzy by){[(x, — x3 = 1) dy(x;) — I”Drv[(x3 - x2)¢§,(x3)

— (2x; = xy — x3) Py (x3) ] (1) h (B, g, by, by) expl—Sg(t)] — [(1 — 1, — x1 — x2) Py(x3)
— rpry[(x — x3) @} (x3) + 2x1 + x5 + x5 — 2), (x3) g (1) R (B, @y by, by) expl—S,,(1,)]} (A25)

MSPN _ gqLLN MSPT — _ pLLT (A26)
APPENDIX B: SCALES AND RELATED FUNCTIONS IN HARD KERNEL

We show here the functions %,, coming from the Fourier transform of the hard kernel.

Ko(\/abl), a>0
h,(a, B, by, by) = hi(a, by) X hy(B, by, by), h(a, b)) =
(@ b1 b)) = by b)) X (B, biubs) hy(a b)) {Ko(iﬁbl), "

0(by — by)Io(\/Bb2)Ko(/Bby) + (by < by), B>0
0(b, — by)Jo(N=Bb)Ko(iy=PBb)) + (by = by), B <0

where Jj is the Bessel function and K, /, are modified Bessel functions with K(ix) = % (—Ny(x) + iJy(x)). The hard
scale t is chosen as the maximum of the virtuality of the internal momentum transition in the hard amplitudes, including
1/b,(i = 1,2,3):

max(\llael, V|ﬁa|r 1/b1r 1/b2)r tb = maX(V|ae|’ Vlﬂblr 1/blr 1/h2)’ tc = maX(V|ae|’ \“Bclx 1/b21 l/bS)’
tg = max(yla.l, yflBal, 1/b5, 1/b3), 1, = max(ylagl, y/IBcl, 1/b2,1/b3), 17 = max(ylayl, /B4l 1/, 1/b3),
Ip = max(\llaal, ’\“Bgl) 1/by, 1/b,), Iy = max(\”aaL \/|,3h|, 1/by, 1/b5), (B2)

where

ho(B, by, by) = { (B1)

N
Q
l

[\

=
|
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a, = (1= x; — x)x —rp)Mz, a, = —xx3(1 — rp)Mj, Ba =y — x2(1 = rp) M5,
By = —(1—x))(x; — rp)M3, Be=—(0—x —x)[1 —x — x3(1 — rp) M3,
Ba=(1—x; —x)[x; — x5 — rp(1 — x3)IM3, Be=1[r2—x3 — (1 — x3)rp M3, By = —xo(1 — r})IM3,
= ["% - (x1 - x3(1 - V%))(M - xz)]M%» Bn = [”%, -(1- Xy —x3t x3r%)(1 - X~ xz)]M%- (B3)

The Sudakov factors used in the text are defined by

Mp ) 5 ft du j’t du
an(t x;, by )+ sl—=x,, b, ) + = - +2 — R
b() (ﬁ 1 1) (\/-2— 2, D3 3 )i 1 ’)’q(M) by b Yq(,U«)

MB MB > 11 ft d,LL /
t L by ) + s —=x5, by ) + 5| —=x3, b3 ) + b +2 —
Sea(t) = S(ﬁ)ﬁ 2) S(ﬁ %9) 2) S(\/i)% 3) S<\/§( — X3), bs 3 b, (M) Yq(M)
MB MB MB t d/.L d
Set=s<—x,b)+s(—x,b)+s(—l—x,b)+2f —_ +2[ —_ ,
f() \/5 2, 02 \/5 3, 03 \/—( 3), b3 by M Yq(M) b p Yq(M)
MB MB MB MB 5 t d/.L t d/.L
S,t—s(—x,b)-i—s(—x,b)-i—s( X b) (—1—x,b),+—[ —_ +4f —_ ,
éh() > 1» 01 5 2,02 \/5 3, 02 \/5( 3), by 3 )i 1 %,(;U«) Uby b ’}’q(M)
(B4)
where the functions s(Q, b) are defined in Appendix A of Ref. [8]. Vg = Qg / is the anomalous dimension of the quark.

APPENDIX C: LIGHT-CONE DISTRIBUTION AMPLITUDES

Here, we specify the light-cone distribution amplitudes for pseudoscalar and vector mesons. The expressions of twist-2
light-cone distribution amplitudes are [7]

Ax) = \/_3x(1 — D[+ alC(1) + ab C*(1) + al (1)),

¢V(x)=723x(1 O+ al, &0 + dl, 3P0, (C1)

BT (x) = §K3x(1 — 01 + a, C(1) + ad, C32(1)],

and those of twist-3 ones are

5 9
HP(x) = W[l + (30n3 - pg)c;/z(t) - (7]3w3 oo+ 6a§)) l/z(t)],
f 1 7 3 3f7 (C2)
¢P(X) = jg[l + 6(57’]3 2 nN3wWs3 — ?Op% - gp%ag)(l — 10x + 10x2):|, ﬁ/(x) = ﬁ%tz,
f 3fv, f 3v,
v = y(x) = (1 +7), vx) =
where t = 2x — 1, fy and f1 are the decay constants of the vector meson with longitudinal and transverse polarlzatlon
respectively. For all pseudoscalar mesons, we choose 73 = 0.015 and w3 = —3 [26]. The mass ratio p ,x) = M(x)/ mo(
and p,, = 2my /Mgq(ss)» and the Gegenbauer polynomials C,(t) read
1 1
Gl =56 =1, ) =gB 307 +35%), %) =3t
3 15
C(r) = (52 =), C3 (1) = 5 (1= 142 4217, (C3)
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