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We study nonequilibrium dynamics of SUð2Þ pure gauge theory starting from initial overpopulation,

where intense classical gauge fields are characterized by a single momentum scaleQs. Classical-statistical

lattice simulations indicate a quick evolution towards an approximate scaling behavior with exponent 3=2

at intermediate times. Remarkably, the value for the scaling exponent may be understood as arising from

the leading Oðg2Þ contribution in the presence of a time-dependent background field. The phenomenon is

associated to weak wave turbulence describing an energy cascade towards higher momenta. This

particular aspect is very similar to what is observed for scalar theories, where an effective cubic interaction

arises because of the presence of a time-dependent Bose condensate.
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I. MOTIVATION AND OVERVIEW

The question of thermalization is one of the most
pressing issues in the physics of ultrarelativistic heavy-ion
collisions. These experiments involve far-from-equilibrium
systems of strongly interacting matter described by quan-
tum chromodynamics (QCD). The data reveal robust col-
lective phenomena, whose theoretical understanding from
QCD represents a great challenge [1]. This concerns even
the theoretically ‘‘clean case’’ of very large nuclei and
energies. In this idealized limit, the matter formed shortly
after the collisionmay be described by classical gluon fields
with a characteristic ‘‘saturation’’ momentum scaleQs that
grows with the energy and the size of nuclei. Since Qs is
large, the strong coupling constant �ðQsÞ is small.
However, the gluons at saturation are strongly correlated
because their low momentum modes have very high
occupancy �1=�.

Recently, it has been argued that in the earlier stages of a
heavy-ion collision at sufficiently high energies, the para-
metrically large gluon density may lead to the phenomenon
of Bose condensation [2]. This has to be compared to
alternative scenarios [3]. For a recent review see Ref. [4].
Inelastic, particle number changing processes preclude the
possibility that the true equilibrium state be a Bose con-
densate, but there is the possibility that a transient conden-
sate develops during the evolution of the system. Finally,
this question is related to the competing time scales for
elastic as compared to inelastic processes in gauge theo-
ries. However, the weak-coupling analysis is complicated
by the fact that modes with occupancies �1=� require
nonperturbative descriptions.

Important aspects of this nonperturbative gluon dynam-
ics can be described by classical-statistical lattice gauge
theory simulation techniques [5–8]. Such classical field
simulations, with suitable averages over the initial condi-
tions, can accurately describe the dynamics if the expec-
tation values of field anticommutators are much larger than
the corresponding commutators [9]. Loosely speaking, this

is realized in the presence of sufficiently high occupation
numbers per mode, nðpÞ. This concerns regimes of large
occupation [nðpÞ � 1] all the way up to the overpopulated
regime, where nðpÞ � 1=�. They fail of course when
typical occupations become smaller than unity, at which
point quantum effects need to be taken into account. The
range of validity of classical-statistical simulations has
been tested to high accuracy for self-interacting scalar
field theories [10–12] and theories with fermions [13],
where appropriate far-from-equilibrium approximation
techniques are available also directly for the respective
quantum field theory.
In particular, the dynamical formation of a Bose con-

densate was recently demonstrated for scalar quantum
fields starting from initial overpopulation [14]. It has
been shown that Bose condensation occurs as a conse-
quence of an inverse particle cascade with a universal
power-law spectrum. This particle transport towards low
momenta is part of a dual cascade, in which energy is also
transferred by weak wave turbulence towards higher mo-
menta. Exponents associated with these two cascades are
under analytical control and are well reproduced in the
simulations [12,15]. In particular, the value of the exponent
for the UV cascade can be understood as arising from
the existence of the condensate leading to an effective
cubic interaction [16]. Condensation was also discussed
in Ref. [17], and similar dynamics was analyzed in
Ref. [18] in the context of cold atoms emphasizing also
the role of nontrivial topological configurations [19].
Whereas a Bose condensate develops and remains present
in the relativistic system until eventually inelastic scatter-
ing depletes it, for the nonrelativistic theory with con-
served particle number no decay of the condensate due to
number changing processes is observed [14].
In this work, we study the non-Abelian dynamics of

overpopulated gauge fields for the SUð2Þ gauge group. A
major focus is to work out further the relevant differences
and similarities between gauge and scalar degrees of
freedom out of equilibrium in this context. The most
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remarkable result will be that classical simulations starting
from initial overpopulation indicate for Yang-Mills theory
the same turbulence exponent as for scalars. This appears
nontrivial for the following reasons. In scalar theories, the
fact that the interactions are nearly local in momentum
space typically plays a crucial role to explain the flow of
momenta. This is apparently not the case in gauge theories,
where one may go from hard to soft momenta in one
collision [20].

Furthermore, for scalar theories the inelastic processes
are of higher order in the coupling than elastic collisions.
Therefore, one expects that the role of number changing
processes, which can compete with condensate formation,
can be suppressed for weak coupling in scalar theories. In
contrast, elastic and inelastic processes are parametrically
of the same order in the gauge theory. It is, therefore, a
question beyond simple parametric estimates whether con-
densation occurs from initial overpopulation or not.

We explain that both scalar and gauge theories can show
the same turbulent scaling exponents in the presence of a
time-dependent background field. This can be done using
resummed perturbation theory, since the phenomenon of
weak wave turbulence occurs in the kinetic regime with
occupancies in the range 1=� � nðpÞ � 1 [21]. In this
regime one may safely choose to study occupancies which,
in our case, are derived from equal-time correlation func-
tions in Coulomb gauge.

For the gauge theory it is a subtle question of how to
interpret the most infrared modes beyond the kinetic re-
gime in this way. It has been argued that the infrared
cascading solutions observed for scalars [12] can be carried
over to non-Abelian gauge theories [22]. It would be very
desirable to devise suitable gauge-invariant measures, in
particular, of condensation. This nontrivial task is beyond
the scope of the present work.

This paper is organized as follows. In Sec. II we describe
the classical-statistical lattice gauge theory approach, and
the results obtained from initial overpopulation. In Sec. III
we compare the numerical results to perturbative compu-
tations of scaling exponents in the presence of a time-
dependent background field. We conclude in Sec. IV.

II. CLASSICAL LATTICE GAUGE THEORY
SIMULATIONS

We study the real-time evolution of classical-statistical
Yang-Mills theory following closely Ref. [6], to which we
refer for further technical details. For the simulations we
employ theWilsonian lattice action for SUð2Þ gauge theory
in Minkowski space-time:

S½U� ¼ ��0

X
x

X
i

�
1

2Tr1
ðTrUx;0i þ TrUy

x;0iÞ � 1

�

þ �s

X
x

X
i<j

�
1

2Tr1
ðTrUx;ij þ TrUy

x;ijÞ � 1

�
; (1)

with x ¼ ðx0;xÞ and spatial Lorentz indices i, j ¼ 1, 2, 3.

It is given in terms of the plaquette variable Ux;�� �
Ux;�Uxþ�̂;�U

y
xþ�̂;�U

y
x;�, where Uy

x;�� ¼ Ux;��. Here Ux;�

is the parallel transporter associated with the link from the
neighboring lattice point xþ �̂ to the point x in the direc-
tion of the lattice axis � ¼ 0, 1, 2, 3. The definitions �0 �
2�Tr1=g20 and �s � 2Tr1=ðg2s�Þ contain the lattice

parameter � � as=at, where as denotes the spatial and
at the temporal lattice spacings, and we will consider g0 ¼
gs ¼ g.
Varying the action (1) with respect to the spatial link

variables Ux;j yields the classical lattice equations of

motion. Variation with respect to a temporal link gives
the Gauss constraint. We define the gauge fields as

gAa
i ðxÞ ¼ � i

2as
Trð�aUiðxÞÞ; (2)

where �1, �2 and �3 denote the three Pauli matrices. The
coupling g can be scaled out of the classical equations of
motion and we will set g ¼ 1 for the simulations. The
initial time derivatives _Aa

�ðx0 ¼ 0;xÞ are set to zero,

which implements the Gauss constraint at all times. We
performed simulations on spatial lattices with N3 ¼
1283–2563, and we see no significant dependence on the
lattice size. The results we show are obtained as an average
over 10 independent runs on a 2563 lattice.
In order to make contact with discussions in the

literature, which are typically formulated in terms of
Boltzmann-type equations, we need to extract suitably
gauge-fixed distribution functions. These are related to
equal-time correlation functions, which are obtained by
repeated numerical integration of the classical lattice equa-
tions of motion and Monte Carlo sampling of initial
conditions [6]. The dynamics is solved in temporal axial
gauge. Though this gauge is very efficient for computa-
tional purposes, it involves already on the perturbative level
spurious poles in the propagatorwhichmake the extractionof
sensible distribution functions or dispersion relations diffi-
cult. Therefore, we choose to transform the configurations
to Coulomb gauge. The gauge transformation to achieve
Coulomb gauge is calculated by the overrelaxation method
described in Ref. [23]. We typically use 105 overrelaxation
steps, which achieves a very good convergence for the
employed lattice sizes. The Coulomb gauge distribution
functions can safely be extracted for momenta where pertur-
bation theory is useful, although it may be unclear how to
interpret themost infraredmodes in thisway. Fortunately, we
will see that important lessons can already be learned for not
too low momenta such that a characterization of physics in
terms of distribution functions is useful.
Distributions will be computed with the help of

time-dependent field momentum modes, which are ob-
tained as Aa

i ðt;pÞ ¼
R
d3xAa

i ðt;xÞ expðip � xÞ. We average
over color and Lorentz indices for better statistics. The
occupation number distribution we then define as [24]
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npðtÞ ¼ 1

V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjEðt;pÞj2iclhjAðt;pÞj2icl

q
; (3)

where h. . .icl also denotes the classical average over typi-
cally five to ten runs and V is the volume. Correspondingly,
we consider the ‘‘dispersion’’

!pðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjEðt;pÞj2icl
hjAðt;pÞj2icl

s
; (4)

which in Coulomb gauge should only deviate from a free,
linear behavior in the regime of large occupancies at low
momenta, where the spectral function develops peaks other
than the peak of the free theory.

As mentioned above, we want to study the time evolu-
tion starting from initial overpopulation. This means that at
early times the distribution has a nonperturbatively large
occupancy npðQsÞ � 1=g2 at the characteristic momentum

scale Qs. We use Gaussian initial conditions such that all
the relevant information about the initial state is contained
in the (equal-time) two-point correlation functions. In
Fig. 1 we show the occupation number distribution in
Coulomb gauge as a function of spatial momentum for
different times in units of Qs. The (red) dashed-dotted line
shows the approximate initial distribution as it is shortly
after the electric field components built up, since we start
from Ea

i ¼ � _Aa
i ¼ 0 at t ¼ 0 to fulfill the Gauss con-

straint. Relatively quickly we observe the evolution to-
wards a distribution, which for an intermediate time
range can be well described by a power law for momenta
jpj & 2Qs. The shown (blue) dashed curve at tQs ¼ 315
and the (black) solid one at tQs ¼ 730 indicate that the
power-law behavior is rather well described by the dashed-

dotted fit curve �jpj�3=2.
Once this power-law behavior is established, the subse-

quent evolution becomes rather slow or quasistationary. As
time proceeds, at some point deviations from a simple
power become visible. The (gray) dotted curve for

tQs ¼ 1575 shows already a somewhat steeper behavior
at lower momenta and a diminished slope at higher mo-
menta. At tQs ¼ 4410 the curve is clearly not described by
a simple power. In order to characterize the transition to

and the evolution away from the �jpj�3=2 behavior, we fit
a power-law dependence. The resulting exponent as a
function of time is shown in Fig. 2. The error bars corre-
spond to the change of the power as the fitting region is
varied by choosing the lower bound from ð0:3–0:6ÞQs and
the upper bound from ð0:9–1:3ÞQs. The results indicate that
initially the system evolves rapidly to 3=2 (long-dashed
curve) and spends a relatively long time around that value,
before it slowly evolves to lower values. Of course, this
evolution towards lower values is expected since the sys-
tem will thermalize classically to a distribution �jpj�1 at
sufficiently late times (which in general happens rather
quickly when the occupied high-momentum modes reach
the highest available momenta on the lattice). However, the
observation that the intermediate evolution is very slow
and stays also a significant time around the value 4=3 is
consistent with earlier investigations starting from initial
conditions featuring plasma instabilities [21]. This adds to
our observation that the observed apparent scaling behav-
ior happens for a wide range of initial conditions.
Before we analyze the power-law behavior in more detail

in Sec. III below, we present in Fig. 3 the dispersion. For
sufficiently high momenta the considered quantity is always
close to the free expression !p ¼ jpj as it should. We find

that discrepancies from the massless dispersion are present
only below p2 & 0:1Q2

s , with decreasing amplitude as the
time grows. Abovewe explained that the occupation number
distribution iswell describedby a power-law for intermediate
momenta at not too late times. Figure 1 shows that the UV
part of the spectrum is very slowly filled up, moving the
breakdown of the power-law dependence in the direction of
high momenta. In the IR, the breakdown of the power-law
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FIG. 1 (color online). Occupation number distribution as a
function of momentum for different times.
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FIG. 2 (color online). The exponent of a fitted power law to the
occupation number distribution displayed in Fig. 1 as a function
of time. The error bars correspond to the fluctuation of the power
as the fitting region is varied as explained in the main text.
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dependence is roughly at the same momenta where the
dispersion starts to deviate from the free dispersion.

III. PERTURBATIVE SCALING EXPONENTS

For quantum fields Aa
�ðxÞ one can define two indepen-

dent connected two-point correlation functions out of equi-
librium, which may be associated to the anticommutator
and the commutator,

Fab
��ðx; yÞ ¼ 1

2
hfAa

�ðxÞ; Ab
�ðyÞgi �Aa

�ðxÞAb
�ðyÞ;

�ab
��ðx; yÞ ¼ ih½Aa

�ðxÞ; Ab
�ðyÞ�i;

(5)

respectively. The brackets h. . .i denote the trace over the
density matrix [9] and we took into account a possible
expectation value or ‘‘background field’’

A a
�ðxÞ ¼ hAa

�ðxÞi: (6)

Loosely speaking, the spectral function � determines
which states are available, while the statistical propagator
F contains the information about how often a state is
occupied. The spectral function is related to the retarded
propagator GðRÞ and the advanced one GðAÞ as � ¼ GðRÞ �
GðAÞ. A tremendous simplification of thermal equilibrium

is that the spectral and statistical functions are related by
the fluctuation-dissipation relation, which is not assumed
here [9].

For instance, the one-loop self-energy correction to two-
point correlation functions in the presence of a background
gauge potential is diagrammatically given in Fig. 4. To
avoid problems of secularity in standard perturbation the-
ory, here the lines are meant in the two-particle irreducible
effective action scheme, where self-energies are expressed
in terms of self-consistently dressed propagators [9]. This
includes also the background-field dependence of the
propagators. The crossed circles indicate an effective

three-gluon vertex gVabc
���, which is appearing at one loop

in the presence of the background gauge field potential (6)
[25]. This effective three-vertex consists of the conven-
tional tree-level vertex and an A-dependent term:

Vabc
��� ¼ Vabc

0;��� þ Vabc
A;���: (7)

The standard tree-level part reads in Fourier space

Vabc
0;���ðp; q; kÞ ¼ fabcðg��ðp� qÞ� þ g��ðq� kÞ�

þ g��ðk� pÞ�Þ; (8)

where fabc are the structure constants of the non-Abelian
gauge group. Finally, we will be interested in a situation
where the background field has a residual (space-)time
dependence. Then the corresponding part of the interaction
(7) reads in configuration space

Vabc
A;���ðx; y; zÞ ¼ ðCac;bdg��Ad

�ðxÞ þ Cab;dcg��Ad
�ðxÞ

þ Cab;cdg��Ad
�ðxÞÞg

� �dþ1ðx� yÞ�dþ1ðx� zÞ (9)

with

Cab;cd ¼ fabefcde þ fadefcbe: (10)

In order to understand the importance of a nonconstant
background field, it is instructive to consider first the case

of a homogeneous field Ai
�ðxÞ ¼ �Ai

�, with �Ai
� �

Oð1=gÞ. For the case of time and space translation invariant
correlators (5) we consider their Fourier transform ~FðpÞ
and ~�ðpÞ.1 Similar to (5) we introduce statistical, ~�ðFÞ, and
spectral, ~�ð�Þ, components of self-energies defined as [9]

~�
��
ðFÞabðpÞ ¼ ~G

�1��
ðRÞac ðpÞ ~Fcd

��ðpÞ ~G�1��
ðAÞdb ðpÞ;

~���
ð�ÞabðpÞ ¼ ~G�1��

ðRÞab ðpÞ � ~G�1��
ðAÞab ðpÞ;

(11)

where summation over repeated Lorentz and color indices
is implied. The translation invariant propagators (5) and
self-energies (11) obey the identity [15]
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FIG. 3 (color online). Dispersion as a function of momentum
for different times.

FIG. 4. Gluon part of the one-loop contribution to the self-
energy with (two-particle irreducible) resummed propagator
lines. The crossed circles indicate an effective three-vertex in
the presence of a background gauge field potential.

1We introduce a �i in Fourier transforms of the spectral (�-)
and retarded and advanced components, such as ~�ðpÞ ¼
�i

R
d4xeip�x

�
�ðxÞ, while ~FðpÞ ¼ R

d4xeip�x
�
FðxÞ.
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~�
��
ðFÞabðpÞ~�ba

��ðpÞ � ~�
��
ð�ÞabðpÞ ~Fba

��ðpÞ ¼ 0; (12)

which can be directly verified by plugging in
the above definitions. Equation (12) is well known in
nonequilibrium physics and will be the starting point for
our calculation. In the language of Boltzmann dynamics
it states that ‘‘gain terms’’ equal ‘‘loss terms’’ for which

stationarity is achieved [9]. Thermal equilibrium trivially
solves (12), which we do not consider in the following.
Instead, we will look for possible nonthermal scaling
solutions.
Decomposing the one-loop self-energy shown in Fig. 4

into its statistical (real) and spectral (imaginary) part, one
obtains

~�
��
ðFÞefðp; �AÞ¼g2

2

Z
qk
ð2	Þ4�ð4ÞðpþqþkÞV���

eac ðp;q;k; �AÞ
�
~Fba
��ðqÞ ~Fdc

��ðkÞþ
1

4
~�ba
��ðqÞ~�dc

��ðkÞ
�
V���
fbd ð�p;�q;�k; �AÞ;

~�
��
ð�Þefðp; �AÞ¼�g2

2

Z
qk
ð2	Þ4�ð4ÞðpþqþkÞV���

eac ðp;q;k; �AÞ½ ~Fba
��ðqÞ~�dc

��ðkÞþ ~�ba
��ðqÞ ~Fdc

��ðkÞ�V���
fbd ð�p;�q;�k; �AÞ

(13)

with the notation
R
q �

R
d4q=ð2	Þ4 and the symmetry

property of the anticommutator and commutator functions

~F ab
��ð�pÞ ¼ ~Fba

��ðpÞ; ~�ab
��ð�pÞ ¼ �~�ba

��ðpÞ: (14)

Following similar steps as in Refs. [12,21], scaling
solutions can be efficiently identified by integrating (12)
over external spatial momentum p and suitable scaling
transformations for coordinates. In this way the problem
can be reduced to simple algebraic conditions for scaling
exponents. Nonthermal scaling solutions may be obtained
in the classical regime, where expectation values of anti-
commutators are much larger than commutators, F2 � �2.
This is analogous to what is done in the context of weak
Kolmogorov wave turbulence using kinetic equations in
the regime of sufficiently large occupation numbers [26].
In contrast, for lower occupancies of order one, dissipative
or quantum corrections will obstruct scaling.

The stationarity condition then reads

0 ¼ g2

2

Z
pqk

ð2	Þ4�ð4Þðpþ qþ kÞV���
eac ðp; q; k; �AÞ

� V���
fbd ð�p;�q;�k; �AÞ

�
~Fba
��ðqÞ ~Fdc

��ðkÞ~�fe
��ðpÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðIÞ

þ ~Fba
��ðqÞ~�dc

��ðkÞ ~Ffe
��ðpÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðIIÞ

þ ~�ba
��ðqÞ ~Fdc

��ðkÞ ~Ffe
��ðpÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðIIIÞ

�
;

(15)

where
R
p � R

d3p=ð2	Þ3. We are looking for scaling

solutions which behave as

~Fab
��ðspÞ ¼ jsj�ð2þ
Þ ~Fab

��ðpÞ;
~�ab
��ðspÞ ¼ jsj�2sgnðsÞ~�ab

��ðpÞ
(16)

under rescaling with the real parameter s. This behavior
reflects the scaling of the spectral function with the
canonical dimension and takes into account a possible
occupation number exponent 
 for the statistical function.

This is equivalent to what is obtained from using a kinetic
approach. We emphasize that no explicit gauge fixing has
to be applied here and the calculation goes through for
all gauges which admit scaling solutions of the form (16).
The scaling properties of the three-gluon vertex (7) are
different for the standard tree-level part (8) and the
background-field part (9). To parametrize this behavior in
a compact way, we write

Vabc
���ðsp; sq; skÞ ¼ svVabc

���ðp; q; kÞ; (17)

where v ¼ 1 for the standard tree-level vertex and v ¼ 0
for the background field part.
We nowmap the terms (II) and (III) in (15) using scaling

transformations such that they have the same form as (I) up
to momentum dependent prefactors. First, we apply for (II)
the transformation

q ! p0

k0
q; k ! p0

k0
p; p ! p0

k0
k: (18)

The absolute value of the Jacobian for the frequency part of
this transformation is jp0=k0j3. The same procedure ap-
plies to the term (III) where the roles of ðk; �; �; c; dÞ and
ðq; �;�; a; bÞ are interchanged. Taking also into account
the symmetry of the three-gluon vertex under exchange of
combined momentum, color and Lorentz index leads us to

0 ¼ g2

2

Z
pqk

ð2	Þ4�ð4Þðpþ qþ kÞV���
eac ðp; q; k; �AÞ

� V���
fbd ð�p;�q;�k; �AÞ ~Fba

��ðqÞ ~Fdc
��ðkÞ~�fe

��ðpÞ

�
�
1þ

��������p
0

k0

���������

sgn

�
p0

k0

	
þ

��������p
0

q0

���������

sgn

�
p0

q0

	�
: (19)

Here

� ¼ 3 � 3þ 3|fflfflfflffl{zfflfflfflffl}
measure

�4|{z}
�;s

�2ð2þ 
Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
FF

�2|{z}
�

þvð1Þ þ vð2Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
VV

(20)
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and vð1Þ and vð2Þ are the scaling exponents of the respective
parts of the two vertex functions appearing in the one-loop
self-energy.

The above analysis in the presence of a homogeneous
background field is complicated by the fact that to order g2

the individual terms in (15) vanish, since the corresponding
processes are kinematically forbidden on-shell, i.e., for
p0 ¼ �jpj [27]. Only if the background field has a resid-
ual (space-)time dependence, AðtÞ, the phase space is
opened up by the associated characteristic low frequency
!A and it becomes kinematically allowed. This does not
change the scaling properties of correlation functions
~FðpÞ and ~�ðpÞ for jp0j; jpj � !A and the order g2 con-
tribution of Fig. 4 always dominates for small enough
coupling g in this regime. For the above scaling analysis
in the perturbative momentum regime, this amounts to

taking vð1Þ¼vð2Þ¼0 such that all contributions not in-
volving the background field vanish. After taking this
into account, the analysis is analogous to the discussion
in scalar field theory where the corresponding dynamics
has been analyzed in great detail [12,14,16].

Therefore, it is also not surprising that the gauge
theory in the presence of a time-varying background may
exhibit the same scaling exponents as a scalar field theory
with quartic self-interaction in the presence of a time-
dependent condensate [14]. Indeed, if we set � ¼ �1
in (19), then the �ðp0 þ q0 þ k0Þ in the integrand of
(19) ensures the vanishing of ð1þ k0=p0 þ q0=p0Þ, using
jk0=p0jsgnðp0=k0Þ ¼ k0=p0 with nonzero p0. From
this one can directly read off with (20) the scaling
solution

� ¼ �1 ) 
 ¼ 3

2
(21)

associated to an energy cascade towards higher momenta
[12,16,21,26].

IV. CONCLUSION

In this work we have studied the nonequilibrium time
evolution of SUð2Þ gauge theory starting from initial

overpopulation. The classical-statistical simulations
reveal a quick evolution towards an approximate scaling
behavior, with a subsequent quasistationary evolution well
described by the scaling exponent 
 ¼ 3=2 for a time
duration of hundreds in units of Qs. These lattice results
are compared to resummed perturbative estimates at not too
low momenta, where the occupancies allow for a kinetic
description. Remarkably, the value for the scaling exponent
may be understood as arising from the leading Oðg2Þ con-
tribution in the presence of a time-dependent background
field. The phenomenon is associated to weak wave turbu-
lence describing an energy cascade towards higher mo-
menta. This particular aspect is very similar to what is
observed for scalar theories, where an effective cubic inter-
action arises because of the presence of a time-dependent
Bose condensate.
Of course, there are important differences between

gauge theories and scalar theories. Competing elastic and
inelastic scattering processes are expected to prevent a
parametrically long time scale for the dominance of a
background field dependent contribution in gauge theories,
which is consistent with our findings. In particular, the
interpretation of the most infrared modes in terms of
distribution functions or even the notion of a Bose conden-
sate in gauge theories is nontrivial. The question of
whether an intermediate-time behavior is due to a conden-
sate or to very soft modes associated to some slowly
varying background field in time and space may not be
too critical after all in view of suggested potential signa-
tures [28]. For this one also has to consider these questions
in classical simulations including the relevant physics of
longitudinal expansion in the context of heavy-ion
collisions for sufficiently high Qs.
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