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We investigate the parton-distribution functions (PDFs) for the positively charged pion and kaon at a

low renormalization scale �1 GeV. To this end, we employ the gauge-invariant effective chiral action

from the nonlocal chiral-quark model, resulting in the vector currents being conserved. All the model

parameters are determined phenomenologically with the normalization condition for PDF and the

empirical values for the pseudoscalar meson weak-decay constants. We consider the momentum

dependence of the effective quark mass properly within the model calculations. It turns out that the

leading local contribution provides about 70% of the total strength for PDF, whereas the nonlocal one,

which is newly taken into account in this work for the gauge invariance, does the rest. High-Q2 evolution

to 27 GeV2 is performed for the valance-quark distribution function, using the Dokshitzer-Gribov-

Lipatov-Altarelli-Parisi equation. The moments for the pion and kaon valance-quark distribution functions

are also computed. The numerical results are compared with the empirical data and theoretical

estimations, and show qualitatively agreement with them.
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I. INTRODUCTION

It has been well-known that the high-energy scattering
processes, such as the inclusive or exclusive production
ones, are very useful tools for studying quantum chromo-
dynamics (QCD) [1–11]. In such processes, the Drell-Yan
(DY) one for instance, the scattering amplitudes consist of
short- and long-range QCD interactions simultaneously.
By virtue of the factorization theorem, the first can be
studied via perturbative QCD, whereas one is able to
investigate the second, which signals the nontrivial struc-
tures of the hadrons involved, by various nonperturbative
approaches. Note that those nonperturbative quantities
can be defined by the parton-distribution amplitude,
parton-distribution function (PDF), fragmentation function
(FF), generalized parton-distribution function, and so on,
depending on different scattering processes. Among them,
PDFs for the pseudoscalar (PS) mesons,� ¼ ð�;KÞ, are of
importance to understand the nonperturbative structure of
the mesons, which play a crucial role in the low-energy
QCD. In Ref. [12], employing the Nambu–Jona-Lasinio
(NJL) model, PDF and valance-quark distribution function
(VQDF) for the pion and kaon were derived from the
forward scattering amplitude of a virtual photon from a
pion target in the Bjorken limit. The obtained results at
a low renormalization scale �1 GeV were evolved to a
high-Q2 by using the Altarelli-Parisi equation. Similarly, in
Ref. [13], the SU(3) NJL model was applied for PDF for
the pion, kaon and eta mesons with scalar and pseudoscalar
couplings. They obtained, in the chiral limit, the simple
result f�ðxÞ ¼ f�ðxÞ ¼ �ðxÞ�ð1� xÞ for the structure

functions, satisfying the gauge invariance for the vector

current. In Ref. [14], the chiral-quark model was used for
the pion PDF, resulting in the discovery that the Pauli-
Villars regularization scheme is most suitable for both the
anomaly structure of QCD and the leading scaling behavior
of PDF in the Bjorken limit. The pion PDF was computed
using the instanton-liquid model, suggesting an analytic
expression for a general vertex function and satisfying, in a
gauge-invariant approach [15]. The NJL-jet model was
also employed to compute PDF as well as FF by the cut
diagrams in Ref. [16]. A parameter-free prediction for the
ratio uKðxÞ=u�ðxÞwas given in Ref. [17] using the rainbow
ladder truncation for the Dyson-Schwinger equations,
reproducing the DY data. Extraction of the pion PDF was
performed in a next-to-leading-order (NLO) analysis from
Fermilab E-615 pionic DY data, observing that the high-x
dependence is different from that of the leading-order
analysis, whereas it does not match with the perturbative
QCD and Dyson-Schwinger calculations [18]. The lowest
three nontrivial moments, calculated by the lattice QCD
(LQCD) simulation, were in good agreement with existing
data at the physical pion mass [19]. In Ref. [20], the two-
flavor Wilson fermion was used for LQCD simulation,
observing smallness of relevant moments in comparison
with other theoretical models. Using QCD sum rules, the
pion PDF was investigated taking into account the nonlocal
condensates, paying attention on the bilocal power correc-
tions [21]. In Refs. [22,23], the authors employed the
statistical and valon models to compute the ratio of the
kaon and pion valence quark distributions. In the previous
works Refs. [24,25], we also computed unpolarized FF
first, then converted it into PDF by using the Drell-Levi-
Yan (DLY) relation [26], employing the simplified non-
local chiral-quark model (NLChQM), although this duality
or analytic continuation according to the DLY relation is*sinam@kias.re.kr

PHYSICAL REVIEW D 86, 074005 (2012)

1550-7998=2012=86(7)=074005(11) 074005-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.86.074005


not generally satisfied, especially for T-odd PDFs. The
numerical results turned out to be compatible with avail-
able empirical data after the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) evolution for high-Q2 values.

We note that, although the previous works showed
qualitatively reasonable results for PDF and FF [24,25],
from a theoretical point of view, there were some issues
to be improved: 1) The vector-current conservation (or
gauge invariance) of the matrix element for PDF was not
taken into account, i.e., only the simple local contribution
was computed. 2) Moreover, the numerical calculations
were simplified to a certain extent by assuming that the
constituent-quark masses inside the relevant matrix ele-
ment for PDF are constant, not momentum-dependent,
except for the quark-PS-meson couplings, although this
simplification helps us to understand the analytic structure
of PDF in the model and greatly reduces the difficulties in
the numerical calculations. 3) Above all, PDF was con-
verted from FF via the DLY, not a direct calculation.
Hence, in the present work, we would like to improve all
the issues mentioned above in the same model. Our strat-
egy in the present work is as follows:

(1) PDF is directly computed by the gauge-invariant
effective chiral action (EChA) of NLChQM, satisfy-
ing the vector current conservation. This is a similar
approach as in Refs. [15,27].

(2) All the momentum dependences in the constituent-
quark massesMf, in which the subscript f stands for

the quark flavor, are strictly taken into account:
Mf � Mfðk2Þ. One can refer for more details to

Refs. [28,29].
(3) Relevant model parameters are determined by sat-

isfying the theoretical condition and experimental
information, i.e., the PDF normalization condition,
and empirical values for the pion and kaon weak-
decay constants.

As already observed in Ref. [27], it turns out from the
numerical results in the present work that the nonlocal
contribution, which is newly considered here and neces-
sary to preserve the gauge invariance, provides about 30%
of the total strength for PDF. A similar tendency was also
observed in Refs. [15,30] in the single-instanton model.
Moreover, those contributions play the role of broadening
PDF. Interestingly, careful treatment of the momentum
dependences in the effective quark masses does make
noticeable changes in the numerical results in comparison
to those with the simplification, i.e., MfðkÞ ! constant,

if we compare them with the previous calculations.
Considering the normalization condition for PDF and
F� ¼ 93:2 MeV as an input, we determine one of the
model parameters, the constituent-quark mass at zero vir-
tuality, to be M0 � 300 MeV, once we choose the model
renormalization scale as � � 1 GeV phenomenologically
as in Ref. [27]. From this parameter set, the kaon weak-
decay constant is obtained as FK � 121:7 MeV, which is

only about 7% larger than its empirical value, 113:4 MeV.
From the computed PDF for the pion ð�þÞ and kaon ðKþÞ,
we parametrize them into a simple analytic form, which
was suggested in various works for extracting empirical
PDF from the experimental data [31,32]. Employing the
DGLAP equation for high-Q2 evolutions for them, we
compare our results with empirical data, showing consid-
erable agreement with them. We also present the numerical
results for the ratio of uK=u� and the moments of the pion
and kaon VQDFs in comparison with the data [32–34] to
verify the relevance of the present theoretical work.
The present work is organized as follows: In Sec. II, we

briefly introduce the present theoretical framework, defin-
ing PDF and VQDF for the PS mesons. The numerical
results and related discussions will be given in Sec. III. The
last section is devoted to summary, conclusion, and future
perspectives.

II. THEORETICAL FRAMEWORK

In this section, we explain briefly the definition for PDF
for the PS mesons, i.e., pion and kaon. For definiteness, we
choose only positively charged pions and kaons, and assign
them as �þ � u �d � � and Kþ � u�s � K hereafter for
simplicity. For other isospin states, it is straightforward
to compute the multiplicable factor considering the isospin
symmetry. In what follows, we want to explain how to
define and calculate PDF. In general, information for the
parton-distribution function can be extracted from the
(� or K)-N scattering using the DY process or deeply
inelastic scattering for the prompt neutron production of
the PS mesons. The information of the PS meson PDF can
be represented by the hadronic tensor W�� as depicted in

the left of Fig. 1, which is the so-called handbag diagram in
the forward Compton scattering, and it is defined as a
function of the Bjorken x by [12,35]

W�� ¼ �
�
g�� �

q�q�

q2

�
F1ðxÞ þ 1

m��

�
p� � p � q

q2
q�

�

�
�
p� � p � q

q2
q�

�
F2ðxÞ;

x ¼ � q2

2m��
; (1)

where the four momenta p and q stand for those of the PS
meson and virtual photon as shown in the left of Fig. 1.m�

and � denote the PS meson mass and ðp � qÞ=m�, respec-

tively. The structure functions in Eq. (1) read

F1ðxÞ¼x
X
f

e2f½f�ðxÞþ �f�ðxÞ�; F2ðxÞ¼F1ðxÞ
2x

: (2)

Here, f�ðxÞ and �f�ðxÞ indicate PDF for the quark and

antiquark, while ef denotes the electric charge for the

quark. Thus, by measuring F1ðxÞ by experiments, one
can extract PDF at a certain Q2 value. There can be two
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ways to compute PDF, based on nonperturbative QCD
techniques. By defining the interaction vertices in the
handbag diagram, i.e., the qq� and qq� vertices, from
effective models manifesting the spontaneous breakdown
of chiral symmetry, such as the NJL model [12], light-front
formalism [35] and so on, one can compute directly the
handbag diagram in the left of Fig. 1, using the optical
theorem and the Bjorken limit Q2 ! 1, then determine
F1ðxÞ and PDF via Eqs. (1) and (2) [12,35]. It turned out
that this method for computing PDF is equivalent to the
operator-product-expansion (OPE) method, which will be
explained below [36].

The other way is to extract the soft part for PDF from the
hadron tensor W�� in terms of the OPE technique consid-

ering the factorization theorem [15,16]. Due to the OPE,
the handbag diagram can be separated by the convolution
of the hard and soft parts, and the separated diagrams are
depicted in the right of Fig. 1. The hard one is represented
by Wilson coefficients, whereas the soft one by the matrix
elements of local operators in a nonperturbative manner. In
the present work, we employ this method with help of the
gauge-invariant NLChQM. Now, we want to focus on the
effective local operators for OPE, categorized by its twist
and denoted by the gray blob of the soft diagram in Fig. 1.
Since higher twists are suppressed at high-Q2, we will take
into account only the twist-2 operator for PDF. The rele-
vant matrix element of the local operator sandwiched by
the PS meson states can be related to the m-th moments of
PDF as follows [15]:

imþ1

2
h�ðpÞj �qfð0Þ6nðn �DÞmqfð0Þj�ðpÞi ¼

Z 1

0
dxxmf�ðxÞ

� hxmi�; (3)

whereD� and n� denote the covariant derivative and light-

like vector, which satisfies n2 ¼ 0, respectively. Note that
the soft part is characterized by a renormalization scale �,
at which nonperturbative natures are determined. Hence,

we will take � implicitly in PDF hereafter. The 0-th
moment with m ¼ 0 becomes for instance:

i

2
h�ðpÞj �qfð0Þ6nqfð0Þj�ðpÞi ¼

Z 1

0
dxf�ðxÞ ¼ 1: (4)

Note that Eq. (4) must be unity to satisfy the normalization
condition for VQDF (or PDF). Readers can refer to
Eqs. (6) and (7) for the relations between various PDFs
and VQDFs for � and K. Alternatively, PDF can be also
defined by [17,37,38]:

f�ðxÞ ¼ i

4�

Z
d�eiðxpÞ�ð�nÞh�ðpÞj �qfð�nÞ6nqfð0Þj�ðpÞi:

(5)

One can easily show that Eq. (5) is equivalent to Eq. (4).
The displacement was assigned by � in Eq. (4). It can be
understood by comparing the handbag and soft diagrams in
Fig. 1, the loop momentum k must satisfy the following
condition, xp � n ¼ k � n, after the factorization. This con-
dition can be expressed in terms of a delta function in the
loop integral over k, i.e., �ðk � n� xp � nÞ, which corre-
sponds to the effective composite local operator. At the
same time, the momentum fraction x is also defined by
x ¼ ðk � nÞ=ðp � nÞ. Here, the light-like vector n picks up
the momentum (spatial) component of a vector, i.e., n �
v ¼ vþ in the light-cone coordinate. In our theoretical
framework, the following relations are satisfied for the
positively charged pion and kaon:

u�ðxÞ ¼ �d�ðxÞ;
�u�ðxÞ ¼ d�ðxÞ ¼ s�ðxÞ ¼ �s�ðxÞ ¼ 0;

�uKðxÞ ¼ �dKðxÞ ¼ dKðxÞ ¼ sKðxÞ ¼ 0:

(6)

Here, the first relation in Eq. (6) comes from the isospin
symmetry, mu ¼ md, assumed in the present work.
According to Eq. (6), we have the following relations
between PDFs and VQDFs:

*(q) *(q)

+

Soft

Hard

xp xp k k

FIG. 1. The left diagram for the hadronic tensor W�� in Eq. (1) for the PS meson � with its on-shell momentum p, satisfying
p2 ¼ m2

�. The solid, dashed, and wavy lines indicate the PS mesons, quarks, and virtual photon, respectively. x stands for the

momentum fraction. The thin slashes denote the discontinuity for the imaginary parts. The right diagrams show the factorized ones as
the hard and soft contributions. The soft part represents PDF with the loop momentum k. The black blobs stand for the nonlocal quark-
PS-meson vertex, whereas the gray one in the soft diagram for the local operator for PDF in Eq. (3).
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uV�ðxÞ ¼ u�ðxÞ; dV�ðxÞ ¼ � �d�ðxÞ ¼ �u�ðxÞ;
sV�ðxÞ ¼ 0; uVKðxÞ ¼ uKðxÞ;
dVKðxÞ ¼ 0; sVKðxÞ ¼ ��sKðxÞ:

(7)

Now, we are in a position to compute the soft diagram
representing PDF using an effective model. For that end,
we employ NLChQM [27,28], being motivated by the
instanton physics, which is properly defined in Euclidean
space [39,40]. The dilute instanton-liquid model is charac-
terized by the nontrivial interactions between the quarks
and (anti)instantons, which represents the nonperturbative
QCD configuration, being characterized by the average
inter-(anti)instanton distance �R� 1 fm and (anti)instanton
size �	� 1=3 fm. According to the nontrivial interactions,
the quarks acquire their effective masses, resulting in the
spontaneous breakdown of chiral symmetry. The effective
action of the instanton model can be bosonized, resulting
in an effective chiral model with the quark and PS meson
degrees of freedom [40]. This effective chiral model
possesses very interesting features: As mentioned, the
dynamically generated effective quark mass becomes
ð300� 400Þ MeV to satisfy phenomenology and becomes
a decreasing function of the momentum transfer. Hence, it
plays the role of a UV regulator by construction, and the
interaction strengths between the quarks and PS mesons
becomes nonlocal, i.e., momentum-dependent. Since we
are interested in the physical quantities in Minkowski
space, we perform the Wick rotation for the instanton
model, i.e., t ! i
, then we obtain NLChQM, which
resembles the nonlocal NJL model in many aspects.
Although there is no firm theoretical proof for the validity
of this analytic continuation between the instanton model
and NLChQM, from a practical point of view, we employ
NLChQM in the present work, keeping the typical features
of the instanton model.

Taking into account all the ingredients discussed above,
the effective chiral action of NLChQM can be written in a
neat form

Seff½�;mf;��¼�iSpln

�
i6@�m̂f�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mfði6@Þ

q
U5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mfði6@Þ

q �
;

(8)

where Sp stands for the functional trace, Trc;f;�hxj � � � jxi,
in which ðc; f; �Þ denote the color, flavor, and Lorentz
indices, respectively, whereas m̂f indicates the current-

quark mass matrix, diagðmu;md;msÞ. Throughout the
present work, we will make use of the following numerical
values for each mass: ðmu;md;msÞ ¼ ð5; 5; 100Þ MeV
[41], taking into account isospin symmetry and explicit
SU(3) flavor symmetry breaking. Mf is assigned for the

nonlocal (momentum-dependent) effective quark mass.
The nonlinear expression for the PS-meson fields,U5 reads

U5¼ exp

�
i�5� ��ffiffiffi

2
p

F�

�
;

� ��¼

1ffiffi
2

p �0þ 1ffiffi
6

p � �þ Kþ

�� � 1ffiffi
2

p �0þ 1ffiffi
6

p � K0

K� �K0 � 2ffiffi
6

p �

0
BBBB@

1
CCCCA:

(9)

Here, F� and � are the weak-decay constant for the PS

meson as a normalization constant and the Gell-Mann
matrix. One can easily see from Eq. (8) that the nonlinear
PS meson fields and the quarks interact with the nonlocal
(derivative) strength / Mf. For instance, the effective

Lagrangian density for the qq� vertex can be obtained
from EChA as follows:

Lnonlocal
qq� � i

F�

�q

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
Mfð@Þ

q
�5ð� ��Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Mfð@Þ

q �
q: (10)

If we turn off the momentum dependence in Mf, it

becomes a positive constant, and one can easily obtain
the usual local PS-type effective Lagrangian density,

Llocal
qq� � iCqq�

F�

�q½�5ð� ��Þ�q� igqq� �q½�5ð� ��Þ�q; (11)

where Cqq� stands for a massive constant. Since EChA in

Eq. (8) contains derivatives for the quark kinetic part as
well as the quark effective mass, as suggested in Ref. [27],
the gauge-invariant EChA can be easily obtained by
imposing the minimal substitution in Eq. (8), @� ! D� �
@� � iV�, in which V indicates a local vector field

Seff½�;mf; V�;��
¼ �iSp ln

�
i 6D� m̂f �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mfði 6DÞ

q
U5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mfði 6DÞ

q �
: (12)

In this way, one ensures the gauge invariance of relevant
physical quantities, extracted from Eq. (12). We also note
that this gauging procedure is similar to that given in
Ref. [15], in which the single-instanton model was
employed. Here is one theoretical caveat: When our writ-
ing the gauge-invariant EChA as in Eq. (12), we assumed
the gauge connection in a straight-line path, which is most
convenient and practical [42].
Considering the effective local vertex for m ¼ 0 in

Eq. (3), the matrix element in the right-hand side of
Eq. (5) for PDF can be evaluated by the three-point func-
tional derivative with respect to the � and V in Eq. (12)
with the delta function,

�3Seff½�;mf; V�;��
���ðxÞ��ðyÞ�V�ð0Þ

����������;;V¼0
; (13)

where the superscripts ð�;Þ denote the isospin indices for
the PS mesons. Simultaneously, we expand the nonlinear
PS meson field U5 in EChA up to Oð�2Þ, since we are
interested in the two PSmeson fields for the initial and final
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states as in Eq. (5). After performing these procedures, the
analytical result for PDF via NLChQM reads

f�ðxÞ ¼ � iNc

2F2
�

Z d4k

ð2�Þ4 �ðka � n� xp � nÞTr�

�
h ffiffiffiffiffiffiffi

Mb

p
�5

ffiffiffiffiffiffiffi
Ma

p
Sa 6nSa

ffiffiffiffiffiffiffi
Ma

p
�5

ffiffiffiffiffiffiffi
Mb

p
Sb

þ ð ffiffiffiffiffiffiffi
Mb

p � nÞ�5

ffiffiffiffiffiffiffi
Ma

p
Sf

ffiffiffiffiffiffiffi
Ma

p
�5

ffiffiffiffiffiffiffi
Mb

p
Sb

� ffiffiffiffiffiffiffi
Mb

p
�5ð

ffiffiffiffiffiffiffi
Ma

p � nÞSa
ffiffiffiffiffiffiffi
Ma

p
�5

ffiffiffiffiffiffiffi
Mb

p
Sb
i
: (14)

The subscripts ða; bÞ indicate two different flavors inside
the PS meson with the momenta ðka; kbÞ � ðk; k� pÞ as
defined in Fig. 1. We note that the delta function,
�ðka � n� xp � nÞ has been convoluted in the integral
over k as mentioned above. It is also emphasized that the
second and third terms in the square bracket in the right-
hand side of Eq. (14) exist only when we consider the
momentum-dependent effective quark mass, since those
terms are obtained from the functional derivative of the
gauge-invariant EChA in Eq. (12) with respect to V�,

which is a special feature of the present nonlocal interac-
tion model. In other words, these derivative or nonlocal
contributions ensure the gauge invariance for PDF by
construction [27]. The quark propagator for the flavor a
is denoted by

Sa �
½6ka þ ðma þMfÞ�

k2a � ðma þMaÞ2 þ i�
¼ ½6ka þ �Mf�

k2a � �M2
a þ i�

: (15)

In the above equation, we introduced a notation �Ma and
indicated the Feynman � explicitly. The relevant mass
functions in Eq. (14) read

Ma ¼ M0

�
�2

k2a ��2 þ i�

�
2
;

ffiffiffiffiffiffiffiffiffi
Ma�

q
¼ � ffiffiffiffiffiffiffi

Ma

p 2ka�

ðk2a ��2 þ i�Þ :
(16)

Note that we employ the Lorentzian-type structure
function for the effective quark mass, as motivated by
the instanton physics [40] as well as employed in
Refs. [27–29]. Here, M0 indicates the constituent-quark
mass at zero virtuality, which is the model parameter to be
determined phenomenologically in the next section.
Evaluating the trace over each spin index and employing
the light-cone coordinate vector manipulations [27–29],

k � n ¼ kþ ¼ xpþ; k2 ¼ kþk� � k2T; p2 ¼ m2
�;

k � p ¼ pþk� þ kþp�

2
; p� ¼ m2

�

pþ ; (17)

we are left with the contour and polar integrals for k� and
kT , after the delta function integral over kþ in Eq. (14)

f�ðxÞ ¼ � iNc

4F2
�

Z dk�d2kT
ð2�Þ3 ½F Lðk�; k2TÞ þF NL;aðk�; k2TÞ

þF NL;bðk�; k2TÞ� þ ðx $ �xÞ; (18)

where the relevant functions F L;NL;ða;bÞ in the square

bracket are explicitly defined in the Appendix. We have
also used a notation �x � ð1� xÞ here. The integral in
Eq. (18), however, is not simple in comparison to those
of usual local models. Since Ma;b in Eq. (16), which can

have poles in the denominator during the integrals over k�,
appear in the denominator as well as the numerator in the
integrand of Eq. (18) simultaneously. For instance, we have
to solve the septic equation of k� in the present work to
find the poles in performing a contour integral over k� with
an appropriate cut. The choice of the cut is discussed in
detail in Ref. [28], and we follow their cut scheme. It is
worth mentioning that the numbers of the poles appearing
in the calculation of PDF relates to the power of Mf in

Eq. (16). For instance, if we take Mf ¼ M0½� � ��1or3, it is
necessary to solve a quintic or nonic equation to find the
poles in the present nonlocal model. As shown in Ref. [27],
the change of the power can make effects on the shape of
the curves. We will, however, only consider the case with
Eq. (16) in the present work for simplicity, since the
changes of the shapes due to the different power appear
only around the end points, x ¼ 0 and x ¼ 1, [27] and the
changes can be absorbed in the DGLAP evolution qualita-
tively. After the contour integral over k�, the polar inte-
grals over kT can be done easily numerically, and one is led
to the final result for PDF (or VQDF).

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we provide the numerical results with
relevant discussions. First, we would like to explain how to
determine the model parameters, say, the model renormal-
ization scale � and the constituent-quark mass at zero
virtuality M0 in Eq. (16). For this purpose, we make use
of the PDF normalization condition in Eq. (4) and the
empirical values for the PS meson weak-decay constants,
F�;K ¼ ð93:2; 113:4Þ MeV. Note that F� appears in

Eq. (18) as a normalization constant in the denominator.
Considering the phenomenological scale for the hadrons
around 1 GeV, first we try � ¼ ð0:8� 1:2Þ GeV to satisfy
the normalization condition with F� ¼ 92:3 MeV as an
input for the pion PDF, by varying the M0 value.
Corresponding numerical results for u�ðxÞ are shown in
the left panel of Fig. 2. As for the various renormalization
scales, M0 varies from 260 to 360 MeV to satisfy the
normalization condition. Moreover, depending on the
parameter set of ð�;M0Þ, the shape of PDF also changes
significantly. We observe a tendency that as � increases
(and vice versa for M0), PDF gets broadened. In order to
choose one parameter set out of the five as given in the left
panel of Fig. 2, we also consider the kaon case similarly.
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We compute FK � Fcomputed
K , using those parameter sets

and Eq. (4), then compare them with its empirical value.
One can choose the best parameter set, which minimize the
quantity, defined as

�FK ¼ jFcomputed
K � F

empirical
K j: (19)

We list the numerical results for FK in Table I. As shown
in the table, the parameter set ð�;M0Þ ¼ ð1; 0:3Þ GeV
presents the smallest deviation �7% from the empirical
value of FK. Although we note that the deviation can be
reduced by tuning the current-quark masses ðmu;d;msÞ,
being different from (5, 100) MeV, we do not perform
those tunings, since they only produce qualitatively negli-
gible changes in the numerical results. Thus, we will
choose this parameter set for all the numerical calculations
hereafter. Using the parameter set chosen, we show the
numerical results for u�ðxÞ for the total (solid), local
(dotted), and nonlocal (dashed) contributions separately
in the right panel of Fig. 2. We observe that the local
contribution has a peak x ¼ 0:5, whereas the nonlocal
one show bumps around x ¼ 0:3 and 0.7. By integrating
the local and nonlocal contributions over x, we have about
0.76 and 0.24, respectively. The ratio 0:24=0:76� 1=3 is a
typical value for each contributions in the NLChQM

calculations, when the gauge invariance is taken into
account explicitly.
In the left panel of Fig. 3, we draw the numerical results

for u�ðxÞ (solid), uKðxÞ (dotted), and �sKðxÞ (dashed). Due
to the far heavier mass of the strange-quark mass
�100 MeV, the curves for the kaon present obviously
asymmetric shapes, signaling the explicit flavor-SU(3)-
symmetry breaking, while that for the pion is clearly
symmetric with respect to x according to the isospin sym-
metry. Since, as in much of the literature investigating
PDFs, it is convenient to use the form xf�ðxÞ rather than
f�ðxÞ [16,24,25,43], and the numerical results for those

functions are given in the right panel of Fig. 3. We note that
all the results are qualitatively compatible with other theo-
retical results [12,15–17]. Moreover, the shapes of the
curves are different from the previous works [24,25], in-
dicating that the explicit considerations on the momentum-
dependent quark masses in the calculations are crucial, in
addition to the gauge invariance.
The parametrization of PDF in the following analytic

form is very useful for various applications in data analyses
and high-Q2 evolutions:

xf�ðxÞ ¼ a�x
b�ð1� xÞc� ; (20)

where the fitting parameters ða; b; cÞ� are certain positive-

real values. Using the numerical results shown in the right
panel of Fig. 3, those parameters can be fitted and are listed
in Table II for the low-renormalization scale � ¼ 1 GeV.
Using these parametrized PDFs in Eq. (20) and Table II
as inputs, we perform the high-Q2 evolution, using the
DGLAP equation, to compare our results with the empiri-
cal data and theoretical estimations in Refs. [31–34]. The
Fortran code QCDNUM is used to this end [44,45]. In the left
panel of Fig. 4, we show xuV�ðxÞ, evolved toQ2 ¼ 27 GeV2

using the LO (thin line) and NLO (thick line) DGLAP
evolutions. Here, the empirical data for the pion are taken
from the muon-pair production experiment by 252 GeV

µ=0.8GeV,  M =360MeV
µ=0.9GeV,  M =314MeV
µ=1.0GeV,  M =300MeV
µ=1.1GeV,  M =275MeV
µ=1.2GeV,  M =260MeV

Total (µ=1.0GeV,  M =300MeV)
Local (µ=1.0GeV,  M =300MeV)
Nonlocal (µ=1.0GeV,  M =300MeV)

FIG. 2 (color online). Left: PDF for the pion, u�ðxÞ for various renormalization scale � and constituent-quark mass at zero virtuality
M0, satisfying the PDF normalization condition Eq. (4) with F� ¼ 93:2 MeV. Right: u�ðxÞ is shown separately for the total (solid),
local (dotted), and nonlocal (dashed) contributions for ð�;M0Þ ¼ ð1; 0:3Þ GeV.

TABLE I. Computed FK with various parameter sets ð�;M0Þ,
which are determined by Eq. (4) and the input F� ¼ 93:2 MeV.
We also list the values for �FK in Eq. (19) and deviations from
its empirical value. We will use the third parameter set, written in
boldface, for all the numerical results.

� [GeV] 0.8 0.9 1:0 1.1 1.2

M0 [MeV] 360 314 300 275 260

F
computed
K [MeV] 126.1 122.3 121:7 122.3 123.0

�FK [MeV] 12.7 9.0 8:3 8.8 9.6

Deviation [%] 11.2 7.9 7:3 7.8 8.5
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pions on tungsten target [31]. Since it is rather uncertain to
choose the initial momentum scale Q0 in the DGLAP
evolution, we try three different values for it as Q2

0 ¼
ð0:15; 0:20; 0:25Þ GeV2. Note that these values are related
to the momentum scale about ð400� 500Þ MeV, which
are also compatible with typical nonperturbative scales
� ¼ ð0:5� 0:6Þ GeV in the instanton model [39,40] and
� � 0:4 GeV in the generic NJL model [46]. Again, these
values are very close to those used in Refs. [12,17,47] for
the same purpose. As shown in the left panel of Fig. 4, the
numerical results reproduce the empirical data qualita-
tively well for the NLO DGLAP evolution, whereas the
LO DGLAP evolution results in general show larger than
the empirical data. Since the NLO DGLAP results are
much more compatible with the data, we will present the
numerical results only for the NLO ones hereafter.
Similarly, we present the numerical results for xuVKðxÞ,
evolved to Q2 ¼ 27 GeV2, in the right panel of Fig. 4,
although there have been no empirical data to be compared
to. In comparison to xuV�ðxÞ, the peak positions are shifted
to the lower x region, due to the explicit flavor-SU(3)-
symmetry breaking, as understood in the right panel of
Fig. 3. Although there are strength differences in the VQDF
curves for each Q2

0 values, the curve shapes are qualita-

tively similar to each other.
Now, we present the numerical results for the ratio of

two different PDFs, i.e., u�ðxÞ=uKðxÞ atQ2 ¼ 27 GeV2 for

the three different initial values Q2
0 ¼ ð1:5; 2:0:2:5Þ GeV2

(solid, dotted, dashed) in the left panel of Fig. 5. They can
be compared with the data from the 150 GeV incident-
beam experiment for ðK�; ��Þ þ nucleus ! �þ��X
[48]. We also depict the fitted curve for the data:
uKðxÞ=u�ðxÞ ¼ 1:1ð1� xÞ0:22 (long dash) [49]. Although
the numerical results match with the data qualitatively well
in the region x * 0:5, we observe overshoots for the
smaller x by ð20� 30Þ%. Moreover, there are visible
deviations between the numerical results and the fitted
curve of Ref. [49]. We note that the curve shapes of our
results resemble those from the reduced Bethe-Salpeter
equation (BSE) vertex calculation [17], although the
strengths are slightly different. Except for the region
x & 0:2, the result given in Ref. [12] is also similar to
ours in shape. In the right panel of Fig. 5, the numerical
results for �sKðxÞ=uKðxÞ are given in the same manner with
the left one. Interestingly, the curve behavior is quite
different from that for uKðxÞ=u�ðxÞ. Again, this discrep-
ancy can be understood by the explicit flavor-SU(3)-
symmetry breaking effects. As observed by comparing
the curves in Figs. 3 and 4, fV�ðxÞ in the vicinity of x ¼ 1

is almost unaffected by the DGLAP evolution. Hence, as
discussed in Refs. [12,17], fV�ðx ! 1Þ can be considered to
represent the relatively pure nonperturbative QCD contri-
butions. In the previous work [25], the ratio of uK=u� was
approximated for the leading local contribution as

uKðxÞ
u�ðxÞ

jx!1 � F2
�

F2
K

�
1�ms �mu

M0

�
� 0:4; (21)

where we have used relevant quantities employed and
computed in the present work, i.e.,

ðF�; FK;M0; mu;msÞ ¼ ð93:2; 121:7; 300; 5; 100Þ MeV:

(22)

TABLE II. Parameters ða; b; cÞ� for the pion and kaon PDFs
multiplied by x in Eq. (21).

a� b� c�

u� 7.60 2.16 1.13

uK 18.90 2.43 2.00

�sK 35.67 3.47 1.83

FIG. 3 (color online). Left: Valance-quark parton distribution functions (VQDF), u�ðxÞ (solid), uKðxÞ (dotted), and �sKðxÞ (dashed)
from Eq. (18). The vertical lines indicate the position for the momentum fraction x ¼ 0:5. Here, we use ð�;M0; F�; FKÞ �
ð1000; 300; 93:2; 121:7Þ MeV and in order to satisfy the normalization condition for PDFs in Eq. (4). Right: Those multiplied by x,
i.e., xu�ðxÞ, xuKðxÞ, and x�sKðxÞ are also given in the same manner.
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Considering that the nonlocal contribution produces
ð20� 30Þ% additional strength, we have approximately
uKðx ! 1Þ=u�ðx ! 1Þ ¼ ð0:52� 0:53Þ, which is compa-
rable with the actual value 0.45. It is worth mentioning that
different forms for the ratio were suggested as ðMu=MsÞ2
from the NJL calculation [12] and ðF�=FKÞðMu=MsÞ4
from the BSE calculation [17].

Finally, we would like to discuss the moments of the
pion and kaon VQDFs as defined in Eq. (4). For brevity,
we will take into account those only for the u quark.
They are very useful to analyze the data and determine
unknown parameters in models and the DGLAP evolu-
tions. In Refs. [32–34], the first two moments for the
pion, hxn¼1;2i� are given as follows:

2hxi� � 0:55; 2hx2i� � 0:18; ðfit1Þ : Q2 ¼ 4 GeV2 Aicher: 2010 cb;

2hxi� ¼ 0:40� 0:02; 2hx2i� ¼ 0:16� 0:01; : Q2 ¼ 4 GeV2 Sutton: 1991 ay;

2hxi� ¼ 0:46� 0:07; 2hx2i� ¼ 0:18� 0:05; : Q2 ¼ 49 GeV2 Martinelli: 1987 bh:

(23)

Q  = 0.15 GeV
Q  = 0.20 GeV
Q  = 0.25 GeV
Conway et al. (pion)

Q  = 0.15 GeV
Q  = 0.20 GeV
Q  = 0.25 GeV

FIG. 4 (color online). Left: Valance u-quark distribution function multiplied by x, xuV�ðxÞ evolved to Q2 ¼ 27 GeV2 for various
initial values Q2

0 ¼ ð0:15; 0:20; 0:25Þ GeV2 in (solid, dotted, dashed) lines, using the leading-order (LO) (thin line) and next-to-

leading-order (NLO) (thick line) DGLAP evolutions. Empirical data are taken from the muon-pair production experiment by 252 GeV
pions on tungsten target [31]. Right: The same for xuVKðxÞ with the NLO DGLAP evolution.

Q  = 0.15 GeV
Q  = 0.20 GeV
Q  = 0.25 GeV
Holt et al.
Badier et al.

Q  = 0.15 GeV
Q  = 0.20 GeV
Q  = 0.25 GeV

FIG. 5 (color online). Right: Ratio uK=u� at Q2 ¼ 27 GeV2 as a function of x for various initial values Q2
0 ¼ð0:15; 0:20; 0:25Þ GeV2 in (solid, dotted, dashed) lines. We also show the fitted curve in Ref. [49] (long dashed). Empirical data

taken from the 150GeV incident-beam experiment for ðK�; ��Þ þ nucleus ! �þ��X [48]. Right: The same for �sKðxÞ=uKðxÞj.
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The values in Ref. [33] were obtained by the NLO analysis
(fit 1) of the data for the Drell-Yan process ��N !
�þ��X of the experiments by E-615 [31] and NA10
[50] collaborations. Ref. [32] also analyzed the data of
the NA10 collaboration. On the contrary, the moments in
Ref. [34] were obtained by the LQCD simulation with the
Wilson fermions in the quenched approximation for the
pion structure functions. From our numerical results, we
have the following, using the curves depicted in Fig. 4:

2hxi� ¼ ð0:37� 0:46Þ;
2hx2i� ¼ ð0:14� 0:19Þ: Q2 ¼ 27 GeV2;

(24)

forQ2
0 ¼ ð0:15; 0:20; 0:25Þ GeV2 as shown in the left panel

of Fig. 6 in the (square, circle, triangle), respectively. We
note that, although the Q2 values are different from other
estimations, these values in Eq. (24) are well compatible
with those given in Eq. (23). The schematic comparison of
these moments from different works are given in the left
panel of Fig. 6. For clearance, we present the data of
Refs. [32] (diamond) and [34] (nabla), shifted by �0:5
and þ0:5 for n, respectively. Since, in Ref. [33], the
authors provided the parametrized VQDF as uV�ðxÞ ¼
0:077� x�0:85ð1� xÞ1:75ð1þ 89:4x2Þ at Q2 ¼ 4 GeV2,
we can compute other higher moments beyond the first

two as in the left panel of Fig. 6 (rhombus). As shown
there, the present numerical results for the moments are in
qualitatively good agreement with other analyses and
theories. In the right panel of Fig. 6, we also present the
moments for the kaon VQDF, as functions of n. Overall
behavior of the curve is very similar to that for the pion,
whereas visible differences are observed for small n val-
ues. This tendency can be understood clearly by seeing
Table III, in which we list all the moments for the pion and
kaon for those Q2

0 values at Q2 ¼ 27 GeV2. From the
numerics given in the table, we see that the higher
moments for n > 2 are very small and almost identical
for the two mesons. As a consequence, we have the follow-
ing observation:

hxn¼1;2iK
hxn¼1;2i�

� 1:1;
hxn>2iK
hxn>2i�

� 1: (25)

IV. SUMMARYAND CONCLUSION

We have investigated the pion and kaon PDFs employing
theOPE technique for the handbag diagramwith the twist-2
operator and the gauge-invariant NLChQM, which con-
serves the vector currents. All the model parameters were
determined by the empirical inputs and model-independent

Q  = 0.15 GeV
Q  = 0.20 GeV
Q  = 0.25 GeV
Aicher et al. 
Sutton et al. (n  n+0.5)
Martinelli et al. (n  n-0.5)

Q  = 0.15 GeV
Q  = 0.20 GeV
Q  = 0.25 GeV

FIG. 6 (color online). Left: nth moments for the pion VQDFs for Q2
0 ¼ ð0:15� 0:25Þ GeV2 at Q2 ¼ 27 GeV2. The data are taken

from Aicher et al. [33], Martinelli et al. [34], and Sutton et al. [32]. For clearance, we shift the data of Refs. [32,34] by�0:5 andþ0:5
for n, respectively. Right: The same for the kaon. For the numerics, see Table III.

TABLE III. nth moments for the pion and kaon VQDF for Q2
0 ¼ ð0:15� 0:25ÞGeV2 at Q2 ¼ 27GeV2.

Q2
0 [GeV2] n ¼ 1 2 3 4 5 6 7 8 9 10

hxni� 0.15 0.184 0.068 0.033 0.018 0.011 0.007 0.005 0.004 0.003 0.002

0.20 0.214 0.087 0.044 0.026 0.016 0.011 0.008 0.006 0.004 0.003

0.25 0.230 0.097 0.050 0.030 0.019 0.013 0.009 0.007 0.005 0.004

hxniK 0.15 0.207 0.072 0.032 0.017 0.010 0.006 0.004 0.003 0.002 0.002

0.20 0.242 0.091 0.043 0.024 0.014 0.009 0.006 0.004 0.003 0.002

0.25 0.261 0.102 0.050 0.028 0.017 0.011 0.007 0.005 0.004 0.003
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constraint, i.e., PS meson weak-decay constants and the
normalization condition for VQDF. Once all the parameters
were fixed, we performed the high-Q2 evolution by the
LO and/or NLO DGLAP equation for the different initial
momentum scales. In what follows, we summarize impor-
tant observations in the present work:

(i) In order to satisfy the gauge invariance, we include
the nonlocal contribution to PDF in addition to the
leading local one. The nonlocal contribution pro-
vides about 30% strength for PDF, as usual in the
similar approaches. Appropriate consideration for
the momentum dependence of the effective quark
mass changes the shapes of PDF, in comparison to
the simplified calculations as in the previous work.

(ii) Taking F� ¼ 93:2 MeV as an input, we determine
the renormalization scale � ¼ 1 GeV as well as the
constituent-quark mass at zero virtuality M0 ¼
300 MeV, together with the information FK ¼
113:4 MeV. These values give FK ¼ 121:7 MeV,
which is slightly larger than its empirical value by
about 7%. Computed PDFs for the pion and kaon at
the low-renormalization scale are compatible quali-
tatively with other theoretical results, such as the
single-instanton model, BSE approach, NJL model,
and so on.

(iii) After performing the DGLAP evolution up toQ2 ¼
27 GeV2 for three different initial momentum
scales Q2

0 ¼ ð0:15; 0:20; 0:25Þ GeV2, we compare

VQDFs for the pion and kaon with the empirical

data as well as theoretical calculations, resulting in
qualitatively good agreement with them. However,
we still observe sizable differences with the em-
pirical data for some specific x regions, especially
as shown in uKðxÞ=u�ðxÞ.

(iv) It turns out that the moments for the pion and kaon
VQDFs are well compatible with experimental
and theoretical estimations. We observe that the
differences between the higher moments for n > 2
are almost negligible, whereas the first two
moments, i.e., n ¼ ð1; 2Þ, show a tendency that
hxn¼1;2iK=hxn¼1;2i� � 1:1.

Sincewe are now equippedwith PDF in the gauge-invariant
manner, it must be interesting to apply this PDF to the
investigations for other physical quantities. For instance,
we can use the present result to compute the nucleon PDF
together with the PS meson FF, together with an ansatz for
the bare nucleon PDF, as studied in Refs. [51–53]. Related
works are under progress and appear elsewhere.
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APPENDIX

The relevant functions in Eq. (18) are defined as follows:

F L ¼ 4pþ�2D4
b½D4

aD
8
b½x̂k2T þ �x2k�pþ� þ 2�xD4

bðD4
bmb þ �ÞðD4

ama þ �Þ þ xD4
aðD4

bmb þ �Þ2�
½D8

að�a � �k�Þ þ 2ma�D
4
a þ �2�a½D8

b½�b � k� þ �Þ� þ 2mb�D
4
b þ �2�2b

;

F NL;a ¼
4pþ�2½�ðD4

bmb þ �Þ þD4
a½ma�þD4

bð2k2T þ ~xk�pþ þmamb þ xm2
�Þ��

½D8
að�a � �k�Þ þ 2ma�D

4
a þ �2�a½D8

b½�b � k� þ �Þ� þ 2mb�D
4
b þ �2�b

�
x

�� �k�

�
;

F NL;b ¼
4pþ�2½�ðD4

bmb þ �Þ þD4
a½ma�þD4

bð2k2T þ ~xk�pþ þmamb þ xm2
�Þ��

½D8
að�a � �k�Þ þ 2ma�D

4
a þ �2�a½D8

b½�b � k� þ �Þ� þ 2mb�D
4
b þ �2�b

�
�x

�� k� þ �

�
;

(A1)

where m� represents the PS meson mass and the various notations read

ð �x; x̂; ~xÞ ¼ ð1� x; 2� x; 1� 2xÞ;
ð�;; �; �; �; �a; �bÞ ¼ ðxpþ;� �xpþ; k2T þ�2;� �xm2

�;M0�
4; k2T þm2

a; k
2
T þm2

bÞ;
ðD2

a; D
2
bÞ ¼ ð�� �k�; �� k� þ �Þ:

(A2)

In deriving above equations, we have assumed that p2 ¼ m2
� ¼ pþp� � p2

T � pþp�, considering that the transverse
momentum for the meson is much smaller than the longitudinal ones. i.e., pT � 0.

In order to perform a contour integral for Eq. (A1) over k�, we pick the poles from the denominator. We have ½� � ��a ¼P
5
i¼0 aiðk�Þi in the denominator of Eq. (A1). The coefficients ai are written as

a5 ¼ �5; a4 ¼ ��4ð4�þ �aÞ; a3 ¼ �3ð6�2 þ 4��aÞ; a2 ¼ ��2ð4�3 þ 6�2�a þ 2ma�Þ;
a1 ¼ �1ð�4 þ 4�3�a þ 4ma��Þ; a0 ¼ ��0ð�4�a þ 2ma�

2�þ �2Þ: (A3)

The poles can be obtained by solving this quintic equation with respect to k� numerically.
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