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We show that there are two reasons why the partial width for the transition �1ð�ð3SÞ ! �þ �b1ð1PÞÞ
is suppressed. First, the spin-averaged matrix element Ið3Sjrj1PJÞ is small, being equal to 0:023 GeV�1 in

our relativistic calculations. Secondly, the spin-orbit splittings produce relatively large contributions,

giving Ið3Sjrj1P2Þ ¼ 0:066 GeV�1, while due to a large cancellation the matrix element Ið3Sjrj1P1Þ ¼
�0:020 GeV�1 is small and negative; at the same time the magnitude of Ið3Sjrj1P0Þ ¼ �0:063 GeV�1

is relatively large. These matrix elements give rise to the following partial widths: �2ð�ð3SÞ ! �þ
�b2ð1PÞÞ ¼ 212 eV, �0ð�ð3SÞ ! �þ �b0ð1PÞÞ ¼ 54 eV, which are in good agreement with the CLEO

and BABAR data, and also to �1ð�ð3SÞ ! �þ �b1ð1PÞÞ ¼ 13 eV, which satisfies the BABAR limit,

�1ðexpÞ< 22 eV.

DOI: 10.1103/PhysRevD.86.074001 PACS numbers: 13.25.Gv

I. INTRODUCTION

In recent years, several new bottomonium states were
discovered due to studies of radiative decays [1–4]. In [1]
CLEO has observed the �ð1DÞ in the four-photon decay
cascade, �ð3SÞ ! �þ �bð2PÞ, �bð2PÞ ! �þ�ð1DÞ,
�ð1DÞ ! �þ �bð1PÞ, �bð1PÞ ! �þ�ð1SÞ, and later
this state was observed by BABAR in another four-photon
cascade [2]. In 2008 a new state, �bð1PÞ, was discovered
by BABAR, first in radiative decay �ð3SÞ ! �þ �bð1SÞ
[3] and then in �ð2SÞ ! �þ �bð1SÞ [4]; later �bð1SÞ
was confirmed by CLEO [5]. Moreover, new or
more precise data on different radiative transitions,
like �ð3SÞ ! �þ �bðn3PJÞ (n ¼ 1, 2), �bð1P; 2PÞ !
�þ�ð1SÞ, and �bð2PÞ ! �þ�ð2SÞ, were presented in
Refs. [6–9].

This new experimental information is of a special
importance for the theory to provide a better understanding
of the role of relativistic and spin-dependent effects in
bottomonium, and may be used as a test of different models
and approximations. There are a large number of papers
devoted to radiative decays in bottomonium [10–14], and a
comparison of different results was already presented in
Refs. [12–14], where the predicted partial widths are
shown to be rather close to each other for most radiative
E1 transitions and to agree with the existing experimental
data. The only exception is the radiative decays �ð3SÞ !
�þ �bð1PJÞ (J ¼ 0, 1, 2), which are discussed in detail in
Ref. [14]. Their partial widths are defined by the matrix
element (m.e.) Ið3Sjrj1PJÞ � h�ð3SÞjrj13PJi (J ¼ 0; 1; 2)
and below we shall also use the spin-averaged m.e.,

denoted as Ið3Sjrj1PÞ.

These m.e. strongly differ in the nonrelativistic (NR) and
relativistic cases, even within the same model. The pre-
dicted transition rate �1ð�ð3SÞ ! �þ �b1ð1PÞÞ varies in a
wide range, (3–110) eV [14] and is in many cases larger
than the experimental width: �1 ¼ ð33� 10Þ eV from the
CLEO data [8]; a smaller value �1 ¼ ð10þ8

�6Þ eV was mea-

sured by BABAR [9]. Moreover, even in the models which
predict a small partial width �1, their other two rates,
�JðJ ¼ 0; 2Þ, do not agree with the experimental values

[15]. Therefore, the ratio of the transition rates, r1;0 ¼
�1ð�ð3SÞ!�þ�b1ð1PÞÞ
�0ð�ð3SÞ!�þ�b0ð1PÞÞ , must be considered an important

characteristic, which is small in experiments: r1;0 � 0:5
from the CLEO [8] and r1;0 � 0:2 from the BABAR

data [9].
The m.e. Ið3Sjrj1PJÞmay differ several times in NR and

relativistic calculations, even within the same model or
while different static potentials are used [11,16]. In
Ref. [17] the suppression of this m.e. was shown to be
quite strong in the NR limit for the power-law potentials
VðrÞ � r� with �1<�< 2. Since in bottomonium,
even for �ð3SÞ, the relativistic corrections are not large,
p2

m2
b

& 0:1, one may assume that this fact occurs because of

the different asymptotics of the wave function (w.f.) of the
Schrödinger and relativistic equations.
An interesting result was obtained in Ref. [16], where

for the NR Hamiltonian the partial width �2 ¼ �ð�ð3SÞ !
�þ �b2ð1PÞÞ decreases ten times, if instead of the Cornell
potential with �ðstaticÞ ¼ constant, the Wisconsin poten-
tial which takes into account the asymptotic freedom
behavior of the vector strong coupling, is used. This result
reminds of the situation with the dielectron widths of
�ðnSÞ (n ¼ 1, 2, 3), where agreement with the experiment
is reached only for the potential with the asymptotic free-
dom behavior of the strong coupling [18].
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However, even for this kind of potentials the spin-

averaged m.e. Ið3Sjrj1PÞ appears to depend on the freez-
ing (critical) value of the vector strong coupling used. In
this paper we consider gluon-exchange (GE) potentials
with two different values of �crit.

It is also evident that since the m.e. Ið3Sjrj1PJÞ is small,
it may strongly depend on other small effects, in particular,
on the spin-orbit interaction used. Here we show that due to
the spin-orbit splittings the m.e. Ið3Sjrj1PJÞ acquire cor-
rections of the same order as the value of the spin-averaged

m.e. Ið3Sjrj1PÞ, and a large cancellation takes place in the
m.e. with J ¼ 1. Here in our calculations we use the
relativistic string Hamiltonian (RSH) [19], which was
already tested in a number of papers, devoted to different
bottomonium properties [20].

II. RADIATIVE DECAYS

Electric dipole transitions between an initial state
i ¼ 33S1, and a final state f ¼ 13PJ, are defined by the
partial width [10–14],

�ði!E1�þ fÞ ¼ 4

3
�e2QE

3
�ð2J0 þ 1ÞSEifjEifj2; (1)

where J0 ¼ Jf, l
0 ¼ lf, and the statistical factor SEif ¼ SEfi

is given by

SEif ¼ maxðl; l0Þ
�
J 1 J0

l0 s l

�
2

(2)

and for the transitions between the n3S1 and m3PJ states
with the same spin S ¼ 1 this coefficient SEif ¼ 1=9.

In Eq. (1) eQ is the electric charge of the heavy quark

Q (eb ¼ �1=3); � is the fine structure constant; E� ¼
M2

i�M2
f

2Mi
is the photon energy, where Mi and Mf are the

masses of the initial- and final-quarkonium states. The
value Eif is the electric overlap integral,

E if ¼
Z 1

0
dr’nlðrÞr’n0l0 ðrÞ; (3)

where ’nlðrÞð’n0l0 ðrÞÞ is the radial w.f. of the initial (final)
state. Our definition of the partial width does not include
possible relativistic corrections to the leading order of the
multiple E1 expansion, which are discussed in Ref. [11],
and relativity is taken into account in our calculations only
via the relativistic radial w.f., calculated here with the use
of the RSH.

The RSH is simplified in the case of bottomonium,
where in the Hamiltonian the string and self-energy cor-
rections can be neglected because they are very small,
� 1 MeV. Then the original form of the RSH with the
static potential

VBðrÞ ¼ �r� 4

3

�BðrÞ
r

(4)

is

H ¼ p2 þm2
b

!
þ!þ VBðrÞ: (5)

Here mb is the b-quark pole mass, while the value of ! is
determined from the extremum condition @H

@! ¼ 0, which

gives ! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

b

q
, being equal to the kinetic energy of

a b quark. Substituting this! into Eq. (5) one arrives at the
spinless Salpeter equation (SSE):

H0 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

b

q
þ VBðrÞ: (6)

The kinetic term occurring in (6) is widely used in relativ-
istic potential models [21–23], however, as compared to
constituent potential models, the RSH has several impor-
tant differences.
(1) By derivation, the mass of the b quark in the kinetic

term cannot be chosen arbitrarily: it must be equal to
the pole mass of a b quark, which takes into account
perturbative in �sðmbÞ corrections. In two-loop ap-
proximationsmbðpoleÞ ¼ �mbð �mbÞð1þ 0:09þ 0:05Þ
[24], where the second and third numbers come
from the �s and �2

s corrections, respectively. In
our calculations mbðpoleÞ ¼ 4:83 GeV is used,
which corresponds to the conventional current
mass �mbð �mbÞ ’ 4:24 GeV.

(2) H0, as well as the mass MðnlÞ, does not contain an
overall additive (fitting) constant.

(3) The string tension � ¼ 0:18 GeV2, used in the
RSH, cannot be considered a fitting parameter,
because it is fixed by the slope of the Regge trajec-
tories for light mesons.

(4) In the GE potential the asymptotic freedom behavior
of the vector strong coupling �BðrÞ is taken into
account, being expressed via the ‘‘vector’’ QCD
constant �B, which is not a fitting parameter but
defined by the conventional �MS according to the

relation: �Bðnf ¼ 3Þ ¼ 1:4753�MSðnf ¼ 3Þ and

�Bðnf ¼ 5Þ ¼ 1:3656�MSðnf ¼ 5Þ [25]. On the

other hand, the value of �MSðnf ¼ 5Þ is fixed by

the known value of �sðMZÞ at the scale MZ ¼
91:19 GeV. Here �sðMZÞ ¼ 0:1191 is used,
which in the two-loop approximation gives
�MSðnf ¼ 5Þ ¼ 240 MeV and correspondingly,

�Bðnf ¼ 5Þ ’ 330 MeV.

The relation between �BðnfÞ and �MSðnfÞ used above,

follows from the important relation between the strong cou-

pling �Bðq2Þ in the vector space and �MSðq2Þ in the MS
renormalization scheme, which was derived in Ref. [25]:

�Bðq2Þ ¼ �MSðq2Þ
�
1þ a1

�MSðq2Þ
4�

�
; (7)

where a1 ¼ 31
3 � 10

9 nf. In order to establish the connection

between �B and �MS it is sufficient to consider the case of
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very large momentum squared q2, where one can use
the one-loop approximation for both strong couplings:
�B ¼ 4�

�0

1
logðq2=�2

BÞ
(�0 ¼ 11� 2

3nf) and the analogous

expression for �MS. Then in the limit of large q2 and

introducing ~� ¼ �
4� one obtains the relation:

~�Bðq2Þ ¼ ~�MSðq2Þð1þ a1 ~�MSðq2ÞÞ �
~�MS

1� a1 ~�MS

: (8)

Then from Eq. (8) in the one-loop approximation it follows

that logð q2
�2

B

Þ ¼ logð q2

�2

MS

Þ � a1
�0

and the solution of this equa-

tion just gives the relation,

�B ¼ �MS exp

�
a1
2�0

�
: (9)

The values of the factor expð a12�0
Þ grow for a smaller nf,

being equal to 1.3656 for nf ¼ 5 and 1.4753 for nf ¼ 3.

Thus our scheme of calculations appears to be very
restrictive in the case of bottomonium and only small
variations of the fundamental parameters are admissible.
However, some uncertainty comes from the value of the
freezing constant, �Bðr ! 1Þ � �crit, which properties
are discussed in Ref. [26]. Here we use the vector coupling
in the range 0:49 � �crit � 0:60. Then for a given multi-
plet nl the centroid mass McogðnlÞ coincides with the

eigenvalue MðnlÞ of the SSE:
h
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

b

q
þ VBðrÞ

i
’nl ¼ MðnlÞ’nl: (10)

For this relativistic equation the NR limit and the so-called
einbein approximation may also be used and in both
approximations a good description of the bottomonium
spectrum is obtained, even for the higher states [20]. For
most radiative decays (in bottomonium) the m.e. like
IðmSjrjnPJÞ and IðnPJjrjmSÞ differ only by 10%–20%
between the NR and relativistic cases, with the exception
of the transitions �ð3SÞ ! �þ �bJð1PÞ. In this case

our calculations give Ið3Sjrj1PÞ ¼ 0:007 GeV�1 in the

NR case, being �3 times smaller than Ið3Sjrj1PÞ ¼
0:023 GeV�1 for the SSE (here �crit ¼ 0:49 was used).
Notice that for a stronger GE potential with �crit ¼ 0:60

these spin-averaged m.e. appear to be larger: Ið3Sjrj1PÞ ¼
0:011 GeV�1 in the NR case and 0:036 GeV�1 for
the SSE.

Since the same static potential is used for the SSE as in
the NR case, such a difference between the m.e. may be
explained by two factors: the different asymptotic behavior
of the w.f. of the SSE and Schrödinger equations, and also a
smaller value of the w.f. at the origin for the Schrödinger
equation as compared to that for the SSE. However, it is
known that the w.f. RnSðrÞ, as well as the derivative R0

1PðrÞ
for the 1P state, diverge near the origin for the SSE (these
divergences are discussed in details in Ref. [16]) and the
calculated values of the w.f. (or its derivative) at the origin

are obtained with the use of a regularization procedure.
This regularization introduces a theoretical error, which is
estimated to be & 10%.
In Table I we give the m.e. Ið3Sjrj1PJÞ, calculated here

for the SSE and in the NR limit, together with their values
from the second paper of Ref. [13] (Table 4.16) for the NR
and the relativistic variant (RA), where a scalar confining
potential, as in our calculations, is used.
Comparison of the m.e. presented in Table I shows the

following:
(1) In Ref. [13] for the relativistic variant RA the m.e.

Ið3Sjrj1PJÞ is& 4 times larger than in the NR case;
a similar result is obtained here for the spin-

averaged m.e., where Ið3Sjrj1PÞ ¼ 0:023 GeV�1

for the SSE and has an � 3 times smaller value
0:007 GeV�1 in its NR limit.
From Table I one can see that in the NR case there
are large differences between our m.e. and those
from Ref. [13]. We suppose that it happens because
of different parameters being used in the GE poten-
tial and also different b-quark masses taken. At the
same time large difference in the values of the m.e.
in the NR and relativistic cases, which takes place
for any models, may occur because of the different
asymptotic behavior of their w.f.: in the NR case the
w.f. behaves as the Airy function, while in our case
the asymptotic behavior of the relativistic w.f. is
close to exponential.

(2) Corrections �IsoðJÞ ¼ Ið3Sjrj1PJÞ � Ið3Sjrj1PÞ,
due to the spin-orbit potential, have a relatively large
value, e.g., �IsoðJ ¼ 2Þ ¼ 0:043 GeV�1, being

almost two times larger than Ið3Sjrj1PÞ in the
spin-averaged case [see Eq. (13) below].

(3) In Ref. [13] the splittings between the m.e.
Ið3Sjrj1PJÞ with different J are much smaller than
in our calculations.

(4) In the spin-orbit potential we take the strong cou-
pling �soð	Þ ¼ 0:38, which is close to the value
�soð	ð2PÞÞ used for the �bJð2PÞ states (this value
was extracted in Ref. [23] from the experimental
masses of the members of the �bJð2PÞ multiplet).
Our calculations here show that the nondiagonal

TABLE I. The m.e. Ið3Sjrj1PJÞ (in GeV�1) in the relativistic
and NR cases.

Transition NR RAa NRb SSE

[13] [13] this paper this paper

h3Sjrj1P2i 0.016 0.063 0.047 0.066

h3Sjrj1P1i 0.011 0.063 �0:033 �0:020
h3Sjrj1P0i 0.004 0.063 �0:073 �0:063

aGiven numbers refer to the variant RA [13], where a scalar
linear potential is used.
bGiven numbers refer to the NR limit of the SSE Eq. (10) with
the same potential VBðrÞ and �crit ¼ 0:49.
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m.e., like hnPjVsojmPi (n � m, n ¼ 1, 2, 3), are of
the same order or have even larger values than the
diagonal m.e. h2PjVsoðrÞj2Pi.

The calculated E1 transition rates are presented in
Table II together with their values from Ref. [13]; they
correspond to the m.e. from Table I.

In the relativistic case our transition rates appear to be
very close to those from the BABAR data [9]. Even in the
NR case, due to large spin-orbit corrections, the calculated
partial widths do not contradict the CLEO data [8].

We make some remarks on the contribution �Iso to the

m.e. Ið3Sjrj1PJÞ from the spin-orbit potential, V̂soðrÞ ¼
L � SVsoðrÞ, for which the splittings asoðnPj1PÞ ¼
hnPjVsoj1Pi, (n ¼ 2, 3) are taken as for the one-gluon
exchange interaction, i.e., neglecting the second order
corrections in �sð	Þ (it may be shown that the second
order corrections are negative and small, �� 0:7 MeV).
In this approximation we find

asoðnP;1PÞ¼ 1

2!2
b

f4�sohr�3inP;1P��hr�1inP;1Pg; (11)

where we take �so ¼ 0:38, which provided a good descrip-
tion of the fine-structure splittings for the �bð2PJÞ multi-
plet. To determine the corrections to the w.f. of the �bJð1PÞ
states, the potential V̂so is considered as a perturbation and
the following mass differences between the centroid
masses are used:

Mcogð2PÞ �Mcogð1PÞ ¼ 360 MeV;

Mcogð3PÞ �Mcogð1PÞ ¼ 640 MeV:
(12)

Notice that the correction from the 3P state is not
small, while the value of the centroid mass Mcogð3PÞ,
Mð�bð3PÞÞ ’ 10:54 GeV, is taken from the recent
ATLAS experiment [27].

For the SSE, the splittings asoð2P; 1PÞ ¼ 12 MeV and
asoð3P; 1PÞ ¼ 10:2 MeV, were calculated and in the NR
limit their values are�10% smaller. Then the nondiagonal
m.e. Ið3Sjrj1PJÞ with the ‘‘spin-orbit’’ corrections can be
presented (in GeV�1) as

Ið3Sjrj1PJÞ ¼ Ið3Sjrj1PÞ þ �IsoðJÞ;
�IsoðJÞ ¼ 0:033
JIð3Sjrj2PÞ þ 0:016
JIð3Sjrj3PÞ;

(13)

where 
J ¼ �2;�1;þ1 for J ¼ 0, 1, 2 and Ið3Sjrj1PÞ ¼
0:023 GeV�1 for the SSE (relativistic case) and
0:007 GeV�1 in the NR limit. To obtain the m.e. presented
in Table I, we use also the spin-averaged nondiagonal m.e.:

Ið3Sjrj2PÞ¼�2:54GeV�1 and Ið3Sjrj3PÞ¼2:64GeV�1.
In our calculations [see Eq. (13)] we have neglected

possible contributions from nondiagonal m.e. of higher
P-wave states. These contributions are expected to be
small for two reasons. First, while the magnitudes of
the m.e. Ið3Sjrj2PÞ ¼ �2:54 GeV�1 and Ið3Sjrj3PÞ ¼
2:64 GeV�1 are large, the m.e. Ið3Sjrj4PÞ ¼
0:34 GeV�1 is �8 times smaller. Secondly, the 4P and
higher states lie above the open beauty threshold and
therefore their w.f. have larger sizes. Due to this fact their
w.f. at the origin and the m.e. like hr�3i are becoming
significantly smaller, although their exact values may be
calculated only within a multichannel approach. Indirectly,
experimental data on dielectron widths of �ðnSÞ with
n ¼ 4, 5, 6 (they are proportional to the squared w.f. at
the origin) support this statement, being two to three times
smaller than the dielectron width of �ð3SÞ.
We would like also to underline that the choice of the

strong coupling in the spin-orbit potential is also important
and here we have used the value close to that from the fine-
structure analysis in Ref. [23]; the different choice of �so

may give rise to different splittings �IsoðJÞ in Eq. (13).

III. CONCLUSIONS

For the E1 radiative transitions, �ð3SÞ ! �þ �bð1PJÞ
(J ¼ 0, 1, 2), the spin-averaged m.e. Ið3Sjrj1PJÞ are
shown to be small, as it was predicted in a number of
studies before.
However, due to spin-orbit effects the w.f. of the 13P1

state is mixed with the 2P, 3P states, for which the m.e.

Ið3Sjrj2PÞ and Ið3Sjrj3PÞ are large and have different
signs. Such a mixing is important, although the spin-orbit
splittings themselves are not large and their typical values
are �10–12 MeV. Due to this mixing, a strong cancella-
tion takes place in the m.e. Ið3Sjrj1P1Þ, which gives rise to
a suppression of the transition rate for the radiative decay
�ð3SÞ ! �þ �bð13P1Þ.
The following partial widths are predicted: �Jð�ð3SÞ !

�þ �bð13PJÞÞ ¼ 213 eV, 13 eV, and 54 eV for J ¼ 2, 1, 0,
which are in good agreement with the BABAR data,
�2ðexpÞ ¼ 216� 25 eV and �0ðexpÞ ¼ 55� 10 eV [9].

TABLE II. The partial widths �ð�ð3SÞ ! �þ �bð1PJÞÞ (in eV)

E� RA NR SSE Experiment Experiment

Transition (MeV) [13] This paper This paper CLEO [6] BABAR [8]

�2ð�ð3SÞ ! �þ �bð1P2ÞÞ 433.5 195 108 213 157� 30 216� 25

�1ð�ð3SÞ ! �þ �bð1P1ÞÞ 452.1 134 36 13 33� 10 <22

�0ð�ð3SÞ ! �þ �bð1P0ÞÞ 483.9 54 72 54 61� 23 55� 10
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Also for J ¼ 1 the calculated partial width �1 ¼ 13 eV
satisfies the upper limit, �1 < 22 eV, obtained in the
BABAR experiment.More precise measurements of the tran-
sition rate for �ð3SÞ ! �þ �b1ð1PÞ could give additional
restrictions on the spin-orbit effects in radiative decays.

We predict the following ratio of the partial widths:

r1;0 ¼ �1

�0
¼ 0:24, which should be considered as an

important feature of the transition rates where spin-orbit
dynamics dominate.
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