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We study the possible constraints on nonstandard interaction (NSIs) in a model-independent way by

considering the recent results from the T2K and Daya Bay neutrino oscillations experiments. Using the

perturbation method we present generic formulas (suitable for T2K baseline and for large �13 as evident

from Daya Bay) for the probability of oscillation for �� ! �e, taking into account NSIs at the source (�
s),

the detector (�d), and during propagation (�m) of neutrinos through matter. Two separate cases of

perturbation with small (slightly large) NSI [�m�� � 0:03ð0:18Þ] are discussed in detail. Using various

possible presently allowed NSI values we reanalyze numerically the �13 � � allowed region given by

recent T2K experimental data. We obtain model-independent constraints on NSIs in the �� �m�� plane

using the �13 value as measured by Daya Bay, where � is the CP violating phase. Depending on � values,

significant constraints on �e� and ���, in particular, are possible for both hierarchies of neutrino masses.

Corresponding to T2K’s 66% confidence level result, the constraints on ��� are shown to be independent

of any � value.
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I. INTRODUCTION

Neutrino oscillations successfully describe neutrino
flavor transitions. The recent superbeam and reactor neu-
trino experiments have provided enormous insights to un-
ravel the exact value of the vacuum mixing angle �13. To
emphasize this point, the T2K [1] experiment observed
indications of �� ! �e appearance by producing a con-

ventional neutrino beam at J-PARC and directed 2.5� off
axis to a detector situated at 295 Km away. The bounds
on �13 that T2K came up with were 0:03ð0:04Þ<
sin22�13 < 0:28ð0:34Þ for � ¼ 0 and normal (inverted)
hierarchy. The reactor neutrino experiments like Daya
Bay [2] and Reno [3] provided compelling evidence for a
relatively large angle �13, with 5:2	 and 4:9	 results,
respectively. These recent reactor neutrino results indicate
�13 very close to 8.8�.

In this work we considered nonstandard interactions
(NSIs), occurring from four-fermion operators. In addition
to the standard model Lagrangian density, we consider
the following nonstandard interactions in the low energy
effective theory during the propagation of neutrinos
through matter:

LM
NSI ¼ �2

ffiffiffi
2

p
GF�

fP
��½ �f
�Pf�½ ���
�PL���; (1)

where f ¼ e, u, d and P ¼ PL, PR where PL ¼
ð1� 
5Þ=2 and PR ¼ ð1þ 
5Þ=2. In our subsequent

sections these NSIs are related to �m�� as mentioned later.

In the neutrino oscillation experiments for the NSIs at the
source and the detector, the following Lagrangian densities
as low energy effective theory corresponding to charged
current interactions due to leptons and quarks may be
considered:

L S;D
NSI ¼ �2

ffiffiffi
2

p
GF�

�	P

� ½�l�
�Pl	�½ ��

�PL���; (2)

L S;D
NSI ¼ �2

ffiffiffi
2

p
GF�

udP

� Vud½ �u
�Pd�½�l

�PL��� þ H:c:

(3)

In our subsequent sections both these NSIs—��	P
� and

�udP
� contribute to �s�� and �d�� corresponding to the

appropriate interactions at the source and the detector
for the neutrinos, respectively. From the Lagrangian,
we observe that the NSI parameters do not possess any
mass dimension. However, if NSIs are related to the
underlying new physics, then they should be consid-
ered as a first-order term in the perturbation series and
not in the zeroth order [4]. To reiterate this, we know
the NSI parameters are related to the new physics
scale in the form �� ðMW=MNSIÞ2, where MNSI signi-
fies the new physics scale. So if we consider the new
physics scale to be around a few TeV, then the NSI
parameters should not be greater than a few percent. In
general the NSI parameters can be categorized into
two different parts. One is the NSI during propagation,
and the other being NSI at the source and at the
detector. It is worthwhile to note that the present
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bounds on the NSI parameters during propagation are
not very stringent [5].

Nonstandard interaction and its implications in a model-
independent way, as well as in different models, have
already been studied very extensively in the literature
[6–18]. Many authors have studied their impact on solar
neutrinos [19–22], atmospheric neutrinos [23–28], conven-
tional and upgraded neutrino beams [7,9,17,18,29,30],
neutrino factories [7,8,10–12,14,31–33], beta beams [34],
supernova neutrinos [35–37], cosmological relic neu-
trinos [38], and the neutrino-instability problem [39].
Also in some cases similarity of such effective inter-
actions with CPT violations [40] and probing such
interactions at LHC [41] have been discussed. In the
context of solar neutrinos, possible confusion of nonzero
mixing angle �13 in the presence of NSI and a hint of
NSI have been mentioned [42]. One of the most striking
features of NSI parameters is to cloud the sensitivity of
�13 by orders of magnitude, which was shown very
explicitly in Refs. [13,43], for neutrino factories and
reactor neutrino experiments, respectively.

To elaborate the plan of our paper, in Sec. II we
present a generalized prescription (suitable for relatively
short baseline of T2K) by following the works of
Refs. [44–46], which in the literature is also known as

the ‘‘
ffiffiffi
�

p
method of perturbation theory,’’ where � �

�m2
21

�m2
31

� 0:03, and we represent a mathematical formula-

tion by considering a relatively large sin�13�
ffiffiffi
�

p �0:18.
We divide the Hamiltonian, consisting of the
standard matter interaction and NSI during propagation,
into zeroth order part and a perturbative part, where

ffiffiffi
�

p
is the perturbation parameter. Our next task is to com-
pute the S-matrix elements from these Hamiltonians. In
Sec. III, we invoke the idea of NSI parameters at the
source and the detector. Previous bounds on these pa-
rameters were constrained by lepton and pion decays
[10,24], which were of the order of Oð0:1Þ. However,
the present bounds on NSI parameters at the source
and at the detector are very strong [5]. Because
of this reason, we assume the NSI parameters present at
the source and the detector are of the order of �. In
Secs. IV and V we have considered two different cases,
one with the consideration of �m�� � ffiffiffi

�
p

and the other

case with �m�� � �, where �m�� is the NSI parameter

during propagation. We have presented the expression
of the probability up to second order in � by taking into
consideration all these effects, such as the standard
matter interaction, NSI during propagation, and NSI at
the source and at the detector. We were able to match the
results obtained from the analytical expressions with that
of the full numerical study. This also shows the remark-
able power of this perturbation method. We show that
because of the presence of NSIs at the source and at the
detector, one can have a nonzero oscillation probability

at the source itself without the neutrino traversing any
length. This is coined as the zero distance effect [47–50]
or the near detector effect [51] in the literature. This
effect is a manifestation of the nonunitarity of the mix-
ing matrix by considering NSIs at the source and at the
detector.
It is also important to note that, in principle, one can also

follow the method of matrix perturbation to obtain the
expression for the probability. In that case one has to
compute the modification of the Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) matrix [52,53], due to the in-
clusion of the standard matter interaction and NSI during
propagation. The modified PMNS matrix has to be diago-
nalized; the eigenvectors and the eigenvalues are to be
extracted from the modified PMNS matrix. After that
NSI at the source and at the detector are to be included,
to compute the overall expression of the oscillation proba-
bility. Similar approaches were followed by the authors of
Refs. [54,55]
In Sec. VI, using Daya Bay and T2K experimental

results, we have discussed numerical analysis in obtaining
the constraints in the �-NSI plane. Here, the larger model-
independent allowed values of NSI (not considered in our
perturbative approach) have been considered for the
analysis.

II. MATHEMATICAL FORMULATION FOR
LARGE �13 PERTURBATION THEORY

The recent reactor-based neutrino experiments have
provided substantial proof for a relatively larger �13.
Based on the works of Refs. [44–46], we describe a mathe-
matical prescription to show the effects of the nonstandard
interactions during propagation in neutrino oscillations.
We consider the channel �� ! �e, as followed by the

recently concluded T2K experiment. Using the present
experimental values of �13 and the mass squared differ-
ences, we formulate

sin�13 ¼ s13 �
ffiffiffi
�

p
; � � �m2

21

�m2
31

� 0:03: (4)

This section elaborates the basic principles of our pertur-
bative approach. In the Shrödinger picture, a neutrino with
flavor � obeys the evolution equation [56]

i
dj��ðtÞi

dt
¼ H j��ðtÞi; j��ð0Þi ¼ j��i; (5)

where the Hamiltonian (after extracting constant diagonal
matrix irrelevant for flavor transition as it generates a phase
common to all flavors) is given as
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H ¼ 1

2E

2
6664U

0 0 0

0 �m2
21 0

0 0 �m2
31

0
BB@

1
CCAUy þ A

1 0 0

0 0 0

0 0 0

0
BB@

1
CCA
3
7775:

(6)

The inclusion of the standard matter effect to the
Hamiltonian is commonly known as the Mikheyev-
Smirnov-Wolfenstein effect [57,58]. Here

U ¼ U23U13U12

¼
1 0 0

0 c23 s23

0 �s23 c23

2
664

3
775

c13 0 s13e
�i�

0 1 0

�s13e
i� 0 c13

2
664

3
775

�
c12 s12 0

�s12 c12 0

0 0 1

2
664

3
775; (7)

is the PMNS [52,53] matrix in vacuum. A ¼ 2EVcc

represents the interaction of the neutrino with matter,
more precisely with electrons. E is the energy of the
neutrino, Vcc represents the charge current interaction

and given by Vcc ¼
ffiffiffi
2

p
GFNe, where GF is the Fermi

coupling constant and Ne is the electron number density.

By taking �m2
31 outside the square brackets, from

Eq. (6), we redefine the matter interaction as Â ¼
A=�m2

31 and define � ¼ �m2
21

�m2
31

� �. For the T2K experi-

ment, Â ¼ 0:06 ’ �.
From Eq. (6), let us first consider the case where NSI

is absent. As a method to simplify calculations, it is
convenient to work in the tilde basis, which we define

as ~�� ¼ ðUy
23Þ����. In this basis the Hamiltonian, con-

sisting of only the standard matter interaction part, or
HM becomes

~H M ¼ Uy
23HMU23; (8)

where we have defined U23 in Eq. (7). This Hamiltonian
in the tilde basis can now be written as a sum of the

Hamiltonians of different orders ( ~HM ¼ ~H0 þ ~H1),
where the ordering is done with respect to

ffiffiffi
�

p
. For

example the zeroth order Hamiltonian, as a function of
standard matter interaction looks like,

~H0 ¼ �m2
31

2E

0 0 0

0 0 0

0 0 1

2
664

3
775; (9)

and similarly,

~H1 ¼ �m2
31

2E

0 0 s13e
�i�

0 0 0

s13e
i� 0 0

2
664

3
775þ �m2

31

2E

Âþ �s212 þ s213 �c12s12 0

�c12s12 �c212 0

0 0 �s213

2
664

3
775

� �m2
31

2E

0 0
�
�s212 þ 1

2 s
2
13

�
s13e

�i�

0 0 �c12s12s13e
�i��

�s212 þ 1
2 s

2
13

�
s13e

i� �c12s12s13e
i� 0

2
66664

3
77775

� �m2
31

2E
�

s212s
2
13

1
2 c12s12s

2
13 0

1
2 c12s12s

2
13 0 0

0 0 �s212s
2
13

2
664

3
775: (10)

Here ~H1 is the perturbed part of the Hamiltonian in
standard matter. The different matrices in the perturbed
Hamiltonian in the tilde basis comprises four different
orders in

ffiffiffi
�

p
, which are

ffiffiffi
�

p
, �, �

3
2, and �2, respectively.

Now we include the NSI matrix during propagation. The
Hamiltonian consisting of these NSI parameters has the
form [4]

H NSI ¼ �m2
31

2E
Â

�mee �me� �me�

�m�
e� �m�� �m��

�m�
e� �m�

�� �m��

2
664

3
775; (11)

where,

�m�� ¼ X
f;P

�fP��
nf
ne

; (12)

where nf is the number density of the fermion f [5].

Here �m��, (�, � ¼ e, �, �) are nonstandard interaction

parameters of neutrinos, propagating through matter,
defined as �m�� ¼ j�m��jei��� . To include the H NSI matrix

in the perturbative part of the Hamiltonian, we have to first
rotate the H NSI matrix from its flavor basis to the tilde
basis by

~H NSI ¼ Uy
23H NSIU23: (13)
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Thus our total Hamiltonian ( ~H ¼ ~HM þ ~H NSI) in the
tilde basis can be written as a linear superposition of the
zeroth order Hamiltonian ( ~H0) with its perturbative parts in
that same basis. After the inclusion of the NSI matrix,
which has its effects at the subleading part, we now re-

define our Hamiltonian in the perturbative limit as ( ~H1 !
~H1 þ ~H NSI). Because the upper bounds of these NSI
parameters are quite high [5], we will consider two differ-
ent cases, one with �m�� � ffiffiffi

�
p

and the other with �m�� � �.

Once we write the Hamiltonian in the tilde basis in this
form, we would then look to evaluate the S matrix. The S
matrix in the tilde basis is related to the S matrix in the

flavor basis by SðLÞ ¼ U23
~SðLÞUy

23, where ~SðLÞ ¼
T exp½�i

R
L
0 dx

~H ðxÞ� and L is the distance traversed.

To evaluate ~SðLÞ perturbatively, we choose 
ðxÞ as


ðxÞ ¼ ei
~H0x ~SðxÞ, where 
ðxÞ obeys the evolution

equation,

i
d

dx

ðxÞ ¼ H1
ðxÞ; (14)

and H1 is written in the form

H1 � ei
~H0x ~H1e

�i ~H0x: (15)

From (14), we would like to deduce 
ðxÞ perturba-
tively. So the solution of the evolution equation fol-
lowed by 
ðxÞ, can be written in terms of the H1

matrices as


ðxÞ ¼ 1þ ð�iÞ
Z x

0
dx0H1ðx0Þ þ ð�iÞ2

Z x

0
dx0H1ðx0Þ

�
Z x0

0
dx00H1ðx00Þ þ ð�iÞ3

Z x

0
dx0H1ðx0Þ

�
Z x0

0
dx00H1ðx00Þ

Z x00

0
dx000H1ðx000Þ þOð�4Þ: (16)

From our previous definition of 
ðxÞ, we can now
write the S matrix as

~SðxÞ ¼ e�i ~H0x
ðxÞ: (17)

The S matrix in the flavor basis is obtained by rotat-

ing ~S in the (2–3) space as S ¼ U23
~SUy

23.

Since the S matrix changes the flavor of a neutrino
state after traversing a length L, which is given by the
expression

��ðLÞ ¼ S����ð0Þ; (18)

the oscillation probability of the neutrino, changing the
flavor from � ! �, is given as

Pð�� ! ��;LÞ ¼ jS��j2: (19)

This expression of the oscillation probability takes
into consideration the standard matter interaction and
the NSI during propagation only. In Sec. III we will
introduce the idea of NSI at the source and the detector.

It should be noted that since �12 and �23 are quite large,
compared to �13, they are considered to be in the zeroth
order.

III. NSI AT SOURCE, DETECTOR, AND
DURING PROPAGATION IN �� ! �e

OSCILLATION PROBABILITY

In the presence of NSI at the source and at the
detector, the neutrino states produced at the detector can
be treated as a superposition [43,59] of pure orthonormal
flavor states,

j�s
�i ¼ 1

Ns
�

�
j��i þ

X
�¼e;�;�

�s��j��i
�
; (20)

h�d
�j ¼

1

Nd
�

�
h��j þ

X
�¼e;�;�

�d��h��j
�
; (21)

where, �s�� and �d�� are NSI at the source and the

detector, respectively, and the normalization factors are
given by

Ns
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð1þ �sÞð1þ �syÞ���

q
;

Nd
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð1þ �dyÞð1þ �dÞ���

q
:

(22)

For example, �s�� describes a nonstandard admixture of

flavor � to the neutrino state that is produced in asso-
ciation with a charged lepton of flavor �. This means the
neutrino source does not produce a pure flavor neutrino
eigenstate j��i but rather a superposition of pure ortho-
normal flavor states [51]. To be consistent with the
literature the convention that we have chosen is in �s��,

the first index corresponds to the flavor of the charged
lepton, and the second to that of the neutrino, while in
�d��, the order is reversed. In general, as we can clearly

see from the definitions above, the matrices (1þ �s) and
(1þ �d) are nonunitary, i.e., the source and the detection
states do not require one to form a complete orthonormal
sets of basis vectors in the Hilbert space.
Since the coefficients �se� and �d�e both originate from

the ðV � AÞðV � AÞ coupling [51] to up and down quarks,
we have the constraint

�se� ¼ �d��e: (23)

Thus this condition reduces the number of independent
parameters and makes the model more predictive. But in
our paper we have presented the most general case.
Considering the NSI effects at the source and the detec-

tor, as well as during the propagation of neutrinos through
matter, the amplitude of the oscillation becomes
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P�s
�!�d

�
¼ jh�d

�jSðLÞj�s
�ij2

¼
��������

1

Ns
�N

d
�

ð1þ �dÞ
�ðSðLÞÞ
�ð1þ �sÞ��
��������

2

¼
��������

1

Ns
�N

d
�

½ð1þ �dÞTSðLÞð1þ �sÞT���
��������

2

; (24)

where the SðLÞ is defined earlier. Considering NSI at the
source and at the detector of the order of � [5], we can now
write the probability expression as a sum of the probabil-
ities of different order

ffiffiffi
�

p
terms. The total oscillation

probability would look like

Pð��!��Þ¼Pð0Þ
��þPð1=2Þ

�� þPð1Þ
��þPð3=2Þ

�� þPð2Þ
��: (25)

In our later analysis we would incorporate the results
from the reactor neutrino experiments along with the long
baseline superbeam experiment such as T2K. It is notable
that the nonstandard interaction parameters during propa-
gation do not play any substantial role in case of the reactor
neutrino experiments, due to its very short baseline.
Furthermore, the NSI parameters present both at the source
and at the detector of these two different kinds of neutrino
experiments, i.e., �s�� and �d��, are considered to be the

same. The oscillation probability Pð�� ! ��Þ is for a

neutrino, rather than an antineutrino. However, one can
relate the oscillation probabilities for antineutrinos to those
for neutrinos by

P �� �� ¼ P��ð�CP ! ��CP; Â ! �ÂÞ: (26)

In addition, we also have to replace �s, �d, �m�� with their

complex conjugates, in order to deduce the oscillation

probability for the antineutrino, if one considers nonstan-
dard interaction during propagation and at the source and
the detector of the experiment.
It should be noted that the expression (24) is also valid in

the minimal unitarity violation model and is very instruc-
tive for analyzing the CP violating effects in the minimal
unitarity violation model in future long baseline experi-
ments [47,48,60–64].

IV. PERTURBATION THEORY BY
CONSIDERING LARGE NSI PARAMETERS

DURING PROPAGATION

In our next two sections, we will consider two different
cases of these NSI parameters and present oscillation
probability for the channel �� ! �e, as was observed by

the T2K experiment. In this section, we will consider
�m�� � ffiffiffi

�
p � 0:18, and in the next section we will put

�m�� � �� 0:03.

Since Â is of the order of �, H NSI is in the perturbative

range �
3
2. Furthermore, we also have to transform H NSI

from its flavor basis to the tilde basis, e.g.,

~H NSI ¼ Uy
23H NSIU23: (27)

Our total Hamiltonian now looks like

~H ¼ ~H0 þ ½ ~H1 þ ~H NSI�: (28)

We include this ~H NSI in the perturbative part of the
Hamiltonian and follow the same calculations described

previously. The order �3=2 component of the Hamiltonian
now looks like

~H1ð�3=2Þ ¼ ��m2
31

2E
s13

0 0
�
�s212 þ 1

2 s
2
13

�
e�i�

0 0 �c12s12e
�i��

�s212 þ 1
2 s

2
13

�
ei� �c12s12e

i� 0

2
66664

3
77775

þ�m2
31

2E
ÂUy

23

�mee �me� �me�

�m�
e� �m�� �m��

�m�
e� �m�

�� �m��

2
664

3
775U23: (29)

By computing the S matrix, which comprises the
standard matter interaction and NSI during propaga-
tion of the neutrino, we then include the NSI parame-
ters at the source and the detector, which are of the
order of �, as per the present bounds on these para-
meters suggest. Finally we write down the oscillation
probability for the muon neutrino going to electron
neutrino up to second order in �. It is noteworthy that
due to the nonunitarity of the nonstandard inter-
action matrices at the source and at the detector, the

probability of neutrino oscillation is not normalized to
unity. So one has to include necessary normalization
factors as we have done in (22). In the context of
T2K, where we are observing muon neutrino oscilla-
tion to electron neutrino, these normalization factors
do not play a very significant role. To be precise, the
effects of these normalization terms are greater than
Oð�2Þ, which we are neglecting. Finally by consider-
ing all these effects, the oscillation probability in the
�� ! �e channel is,
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P��!�e ¼ j�de�j2 þ j�se�j2 þ 2j�de�jj�se�j cos½�d
e� ��s

e�� þ L2�2�m4
31c

2
23s

2
2�12

16E2
þ L��m2

31j�de�jc223
E

cos

�
L�m2

31

4E
þ�d

e�

�

� sin

�
L�m2

31

4E

�
s2�12s23 � 2j�de�jj�se�j cos½�d

e�� cos½�s
e��s223 þ 2j�de�jj�se�j cos

�
L�m2

31

2E

�
cos½�d

e�� cos½�s
e��s223

þ 8a3 cos½�þ�a3�sin2
�
L�m2

31

4E

�
s13s

2
23 þ 8j�deejsin2

�
L�m2

31

4E

�
s213s

2
23 þ 8j�s��jsin2

�
L�m2

31

4E

�
s213s

2
23 þ

s213s
2
23

E

� sin

�
L�m2

31

4E

��
�2AL�m2

31 cos

�
L�m2

31

4E

�
þ 2Eð1þ 4Aþ c2�13Þ sin

�
L�m2

31

4E

��
þ 4j�de�jc23sin2

�
L�m2

31

4E

�

� ðj�de�jc23 þ 2 cos½���d
e��s13Þs223 þ

L��m2
31s13s23
E

�
cos

�
�þ L�m2

31

4E

�
c23 sin

�
L�m2

31

4E

�
s2�12

� sin

�
L�m2

31

2E

�
s212s13s23

�
þ a2L�m

2
31

E
cos

�
�þ L�m2

31

4E
þ�a2

�
sin

�
L�m2

31

4E

�
s13s2�23 � 2j�de�jj�de�j

� sin

�
L�m2

31

4E

�
s2�23

�
c2�23 cos½�d

e� ��d
e�� sin

�
L�m2
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4E

�
þ cos

�
L�m2

31

4E

�
sin½�d

e� ��d
e��

�

� 2j�de�jj�se�j cos½�s
e�� sin

�
L�m2
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2E

�
s223 sin½�d

e�� � 2s23

�
j�de�j cos½�d

e�� sin½�� sin
�
L�m2

31

2E

�
s13

þ j�de�j cos½��s13
�
2c2�23 cos½�d

e��sin2
�
L�m2

31

4E

�
� sin

�
L�m2

31

2E

�
sin½�d

e��
�
þ 2sin2

�
L�m2

31

4E

�

� ð�2j�s��jc23 cos½�s
���s213 þ j�de�j2c223s23 þ j�de�jc2�23 sin½��s13 sin½�d

e��Þ
�
þ L��m2

31j�de�jc23s2�12

2E

�
�
c223 sin½�d

e�� þ s223 sin

�
L�m2

31

2E
þ�d

e�

��
� 4j�se�j sin

�
L�m2

31

4E

�
s13s23 sin

�
�þ L�m2

31

4E
��s

e�

�

� 2j�de�jj�se�j sin
�
L�m2

31

4E

�
s2�23 sin

�
L�m2

31

4E
þ�d

e� ��s
e�

�
þ L��m2

31j�se�jc12c23s12� sin½�s
e��

E

þ 2j�de�jj�se�j cos½�d
e�� sin

�
L�m2

31

2E

�
s223 sin½�s

e�� � 2j�de�jj�se�js223 sin½�d
e�� sin½�s

e��

þ 2j�de�jj�se�j cos
�
L�m2

31

2E

�
s223 sin½�d

e�� sin½�s
e��; (30)

where s2�ij ¼ sin2�ij and c2�ij ¼ cos2�ij and

a2 ¼ Affiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�me�j2 þ j�me�j2 þ ðj�me�j2 � j�me�j2Þc2�23 � 2j�me�jj�me�j cos½�m

e� ��m
e��s2�23

q
;

a3 ¼ Affiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�me�j2 þ j�me�j2 þ ð�j�me�j2 þ j�me�j2Þc2�23 þ 2j�me�jj�me�j cos½�m

e� ��m
e��s2�23

q
;

�a2 ¼ tan�1

�
�me�c23 sin½�m

e�� � �me�s23 sin½�m
e��

�me�c23 cos½�m
e�� � �me� cos½�m

e��s23
�
; �a3 ¼ tan�1

�
�me�s23 sin½�m

e�� þ �me�c23 sin½�m
e��

�me�c23 cos½�m
e�� þ �me� cos½�m

e��s23
�
: (31)

There are a few salient features of this expression of the probability. These are as follows:
(i) Considering the baseline length to be zero, we are left with the term

PND
��!�e

¼ j�de�j2 þ j�se�j2 þ 2j�de�jj�se�j cosð�d
e� ��s

e�Þ: (32)

This term is the manifestation of the nonunitarity of the source and detector matrices, more commonly known as the zero
distance effect.

(ii) Assuming the standard matter interaction and NSI during the propagation as well as at the source and at the detector
to be absent, we can obtain the expression of the probability, representing the vacuum oscillation probability
for a three-flavor neutrino scenario correct up to Oð�2Þ—particularly, the following leading term of vacuum
oscillation [65]
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PVacuum
��!�e ¼ s22�13s

2
23sin

2

�
�m2

31L

4E

�
; (33)

can be obtained from the eleventh term of (30) after considering A ! 0.
(iii) Since muon is produced at the source, we observe only �se�, �

s
��, �

s
�� NSI parameters, and the electron is obtained

at the detector, thus we observe �dee, �
d
e�, �

d
e� in our expression for the probability.

(iv) For the �� ! �e channel, only �me� and �me� appear as NSI parameters during the propagation of the neutrino. The

contribution from all the other NSI parameters during propagation are very much suppressed.
(v) As mentioned earlier, our expression of the probability is of the order of �2, by considering large angle �13. Similar

expressions are to be found in Ref. [51] where the authors considered small �13. But the recent reactor-based
experiments [2,3] compelled us to consider the regime of large sin�13 �

ffiffiffi
�

p
.

V. PERTURBATION THEORY BY CONSIDERING SMALL NSI PARAMETERS DURING PROPAGATION

In this section we will concentrate on the idea of small nonstandard interaction parameters during propagation. The
standard matter interaction is again considered to be of the order of �, and we now consider NSI during propagation
�m�� � �. Following the same argument, as done in the previous section, the zeroth order Hamiltonian in the tilde basis

remains the same. However the perturbative Hamiltonian gets rearranged. In this case ~H NSI would be of the order of �2.
The �2 part of the perturbed Hamiltonian (10) can now be written as

~H 1ð�2Þ ¼ ��m2
31

2E
�

s212s
2
13

1
2 c12s12s

2
13 0

1
2 c12s12s

2
13 0 0

0 0 �s212s
2
13

2
64

3
75þ �m2

31

2E
ÂUy

23

�mee �me� �me�
�m�
e� �m�� �m��

�m�
e� �m�

�� �m��

2
64

3
75U23: (34)

We again follow the same procedure as performed in the previous section. We computed the S matrix, after including the
standard matter interaction and NSI during propagation. Then we considered the source and the detector effect. Thus the
probability for a muon neutrino going to an electron neutrino for �m�� � � is given by

P��!�e ¼j�de�j2þj�se�j2þ2j�de�jj�se�jcos½�d
e���s

e��þL2�2�m4
31c

2
23s
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2�12

16E2
þL��m2

31j�de�jc223
E
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�
L�m2

31

4E
þ�d
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�
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31
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31
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�
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31

4E

�
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2
23þ8j�s��jsin2

�
L�m2

31

4E

�
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2
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2
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E
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�
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31
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�
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�
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�
L�m2

31

4E

�
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e���d
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�
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�
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e��

�sin2
�
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4E

�
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�
L�m2

31

2E

�
sin½�d

e��
�
þ2sin2

�
L�m2

31

4E

�
ð�2j�s��jc23 cos½�s

���s213þj�de�j2c223s23

þj�de�jc2�23 sin½��s13 sin½�d
e��Þ

�
þL��m2

31j�de�jc23s2�12
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�
c223 sin½�d
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�
L�m2
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þ�d

e�
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�4j�se�jsin
�
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�
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��s
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�
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�
s2�23 sin

�
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31

4E
þ�d

e���s
e�

�

þL��m2
31j�se�jc12c23s12 sin½�s

e��
E

þ2j�de�jj�se�jcos½�d
e��sin

�
L�m2

31

2E

�
s223 sin½�s

e���2j�de�jj�se�js223 sin½�d
e��
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�
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2E

�
s223 sin½�d

e��sin½�s
e��: (35)
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We would again try to emphasize some of the interesting
features about this oscillation probability expression.

(i) As expected, we get back the same expression for the
near detector effect, which was provided in the
expression (32).

(ii) Similar to the result of the previous section, assum-
ing the standard matter interaction and NSI during
the propagation as well as at the source and at the
detector to be absent, we can obtain the expression
of the probability, representing the vacuum oscilla-
tion probability for a three-flavor neutrino scenario
correct up toOð�2Þ. Particularly from the tenth term
in (35) considering A ! 0 one can get the leading
vacuum oscillation probability in (33).

(iii) It is very much interesting to note that due to the
choice of the NSI parameters during propagation
proportional to �, the probability expression up to
second order in � for this particular channel is
devoid of any terms containing this kind of NSI.
It shows that it is very difficult to constrain such
small NSIs in relatively short baseline neutrino
oscillation experiments like T2K.

(iv) It is conspicuous that the NSI parameters at the
source and at the detector carry the same flavor
indices, as in Eq. (30).

VI. NUMERICAL ANALYSIS

Here, we discuss the approach of our complete numerical
analysis in obtaining the results presented in this paper
giving constraints on NSIs. In our numerical analysis we
have considered even much higher values of NSI that have
not been considered in our perturbative approach but which
are allowed after considering model-independent constraints
[5]. Some of the NSIs like �ee, ���, ��� (for propagation)

etc. do not appear in our expression of P��!�e
in Secs. IV

and V as those have been assumed to be very small. In our
numerical analysis, however, we still have obtained some
constraints on those NSIs because of their presently allowed
higher model-independent values as discussed later.

For ultrarelativistic neutrinos, we have

Ek ’ Eþm2
kc

4

2E
; pc ’ E; ct ’ x; (36)

where k ¼ 1, 2, 3 corresponds to mass eigenstates and Ek

are the eigenenergies. The neutrino energy E is the average
energy after assuming the three momentum of different
components (1, 2, and 3) to be equal.

Therefore, for the numerical analysis the relevant tran-
sition evolution equation for the flavor transition is

iℏc
d

dx
S��ðxÞ ¼

X
�

H ��S��; (37)

with initial condition S��ð0Þ ¼ ���, and H is the total

Hamiltonian comprising of standard matter interaction and

NSI during propagation. However, here apart from NSI in
propagation we want to include the source and the detector
NSI interaction. So, to implement that we apply the source
and detector NSI matrices to the S�� that is already men-

tioned in (24) as

A �� ¼ 1

Ns
�N

d
�

½ð1þ �dÞTSð1þ �sÞT���:

The probability expression for the transition �� ! �� is

P�s
�!�d

�
¼ jA��j2: (38)

Although NSI is considered at the source, that at the
detector and that during propagation are in general differ-
ent. However, following Ref. [43] we have considered
�s�� ¼ �d���.
The recent T2K result [1] has obtained the constraint on

the �� sin22�13 plane at 90% confidence level based on
the events in the �� ! �e transition in the baseline of

295 Km. Furthermore, the Daya Bay reactor neutrino
experiment has recently measured the neutrino mixing
angle �13 with 5:2	 confidence level for which sin22�13 ¼
0:092� 0:016� 0:005ðsystÞ. Here, we analyze both of
these constraints considering real NSIs (one at a time) in
propagation. Somewhat conservative bounds on all NSIs at
the source and the detector have been considered and taken
to be of about 10�3. To tune with the experimental result of
T2K and Daya Bay, we shall use the same range of proba-
bility of oscillation as one obtains using the constraints on
�� sin22�13 given by T2K (without considering NSI) at
different confidence level for normal and inverted hierar-
chies (allowing the variation of �13 as in T2K paper). After
that we shall fix �13 at the Daya Bay value and find out the
allowed ranges in the parameters � and different NSIs in
matter (one at a time) subject to this constraint on the
probability of oscillation. For numerical analysis we use
the following values as considered by T2K [1]: �m2

12¼
7:6�10�5 eV2, �m2

23¼2:4�10�3 eV2, sin22�12¼0:8704,
sin22�23 ¼ 1:0, an average earth density � ¼ 3:2 g=cm3,
and central value of sin22�13 ¼ 0:092 as obtained from
Daya Bay. One may note here that in the presence of NSIs
particularly in matter (which are expected to be much
larger than those NSIs at the source and the detector) the
neutrino mixing parameters considered by T2K could
change [66,67]. However, it is found that only when several
NSIs are considered simultaneously small changes occur in
the best-fit values of these parameters. As for example,
considering solar and KamLAND data the change in best-
fit value of �12 and �m

2
12 can be seen in Fig. 2 in Ref. [66],

and considering atmospheric and K2K data the change in
best-fit value of �23 and �m2

23 can be seen in Fig. 5 in

Ref. [67] after considering NSIs like �ee, �e� and ���
simultaneously. However, in our analysis, we have ob-
tained a constraint on the �-NSI plane by considering
one of the NSIs at a time for which the changes in these
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mixing parameters are expected to be small, and in this
simple analysis we use the values of mixing parameters as
considered by T2K. For a very rigorous analysis in obtain-
ing these mixing parameters in the presence of NSIs, one is
required to fit the solar, KamLAND, atmospheric, and K2K
data simultaneously by considering NSIs one at a time or
altogether in the general three-flavor neutrino mixing sce-
nario that has not been done so far to the best of our
knowledge.

In all the plots of NSI versus � the ��� corresponds to

�m�� that are NSIs in matter during propagation. Dark

shaded regions correspond to the allowed region. The
T2K constraint on the �� sin22�13 plane at 66% con-
fidence level (C.L.) together with Daya Bay result in �13
corresponding to the excluded region (whiteþ grey) and
only the white excluded region corresponds to the same
T2K constraint at 90% C.L. We have done the analysis

on NSI constraints keeping in view the allowed range of
NSIs for earthlike matters as mentioned in Ref. [5] and
have considered those for real values. The upper (lower)
panel in each plot corresponds to normal (inverted)
hierarchies. Out of various NSIs the significant con-
straints are obtained particularly for �me� and �m�� for
both the hierarchies of neutrino masses. Particularly
for ��� and ��� no constraint can be obtained for

normal hierarchy.
In Fig. 1 it is seen that in the upper panel for normal

hierarchy the constraints on �ee can be obtained for nega-
tive values only for certain values of � corresponding to
T2K’s 66% confidence level result whereas for inverted
hierarchy the constraint is mainly on positive �ee.
However, for inverted hierarchy there is also an excluded
white region corresponding to T2K’s 90% confidence level
result. In Fig. 2 the constraint on �e� is found mainly for
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FIG. 1. Plot of �ee � � for real NSI in matter. Excluded region
(white at 90% and greyþ white region at 66% confidence level).
Upper (lower) panel corresponds to normal (inverted) hierarchy.
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FIG. 2. Plot of �e� � � for real NSI in matter. Excluded region
(white at 90% and greyþ white region at 66% confidence level).
Upper (lower) panel corresponds to normal (inverted) hierarchy.
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positive values for both the hierarchies corresponding to
T2K’s 66% confidence level result only. In Fig. 3 �e� is
significantly constrained. For normal hierarchy the nega-
tive (positive) value could be constrained up to about
�0:2 (0.6) for certain values of � corresponding to T2K’s
66% confidence level result. For inverted hierarchy such
constraints are even more stringent and for certain values
of � all negative values could be excluded. In Fig. 4 no
constraint is obtained for ��� for normal hierarchy.

However, for inverted hierarchy around � ¼ �=2 all val-
ues are excluded corresponding to T2K’s 66% confidence
level result. In Fig. 5 for normal hierarchy no constraint is
obtained on ���. For inverted hierarchy all negative values

are excluded. In Fig. 6 there are stringent constraints on ���
particularly for positive values for normal hierarchy and
negative values for inverted hierarchy corresponding to
T2K’s result at both 66 and 90% confidence level. A
significant part of negative (positive) values of ��� are also
excluded for normal (inverted) hierarchy corresponding to

the 66% confidence level. Interestingly, corresponding to
T2K’s 66% confidence level result one may obtain some
constraints on ��� independent of � from Fig. 6.

VII. CONCLUSION

In this work, using perturbation theory, we obtained the
probability of oscillation P��!�e

(suitable for a relatively

short baseline of T2K and for large �13 as evident from the

Daya Bay experiment) up to order �2ð� � �m2
21

�m2
31

Þ by con-

sidering NSIs at the source and the detector as well as
during propagation of neutrinos through matter. We have
kept the standard matter interaction part in perturbed
Hamiltonian that is appropriate for the baseline considered
by T2K. In addition, we have considered two cases,
namely, �m�� � �� 0:03 and �m�� � ffiffiffi

�
p � 0:18—the latter
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FIG. 3. Plot of �e� � � for real NSI in matter. Excluded region
(white at 90% and greyþ white region at 66% confidence level).
Upper (lower) panel corresponds to normal (inverted) hierarchy.
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corresponding to slightly larger NSI. In the expression of
oscillation probability one can see that a flavor transition
takes place at the source even before the propagation of
neutrinos due to NSI at the source and the detector—which
is the so-called zero distance effect. However, due to
stringent constraints on these NSI parameters [5] we
have assumed all of them of about 10�3 in our numerical
analysis. Although there are good model-dependent
bounds on NSI in matter (earthlike), these are not so strong
if one likes to constrain them in a model-independent way
[5]. In our numerical analysis, we have obtained con-
straints on various NSIs in matter in a model-independent
way from neutrino oscillation experiments. Nevertheless,
one may note as mentioned at the end of Sec. V that it is
difficult to constrain very small NSIs in the relatively short
baseline oscillation experiment like T2K. The recent Daya
Bay result on mixing angle �13 has helped us to give
bounds on NSI depending on only one so far unknown

parameter � in neutrino mixing matrix. Once one knows
this phase from some short baseline neutrino oscillation
experiments, one may expect the better understanding
about the possible strength of NSI. Depending on the �
value, a significant constraint on �me� and �m�� could be
possible for both normal and inverted neutrino mass hier-
archies. One may note here that in Sec. IV �m�� has not
appeared in the expression of oscillation probability, but
still we have obtained a significant constraint on it because
of its very high presently allowed model-independent val-
ues [5]. Our studies indicate that while finding neutrino
oscillation parameters it might be important to search for
any possible evidence of NSIs even in the relatively shorter
baseline neutrino oscillation experiments although longer
ones are in general preferred. In the coming years the
precision measurement of neutrino oscillation parameters
and the NSI parameters in neutrino oscillation experiments
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FIG. 5. Plot of ��� � � for real NSI in matter. Excluded region
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FIG. 6. Plot of ��� � � for real NSI in matter. Excluded region
(white at 90% and greyþ white region at 66% confidence level).
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could be challenging and could even show the evidence
of NSIs.
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