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A generalized CP symmetry for leptons is presented where CP transformations are part of an S4
symmetry that connects different families. We study its implications for lepton mixings in a gauge model

realization of the idea using a type II seesaw for neutrino masses. The model predicts maximal

atmospheric mixing, nonzero �13 and maximal Dirac phase �D ¼ � �
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I. INTRODUCTION

The recent measurement of the leptonic mixing angle
�13 in experiments searching for the oscillations of electron
antineutrinos emitted from reactors [1] and from the
accelerator-based experiments with muon neutrino beams
[2] has generated considerable excitement in the field of
neutrino physics. Taken together with already measured
solar angle �12 and atmospheric angle �23, this almost
completes the CP-conserving part of the lepton mixing
matrix, under the assumption that there are no sterile
neutrinos. This narrows the focus of the field to three
remaining unknowns of neutrino flavor physics: (i) Dirac
versus Majorana nature of the neutrino masses, (ii) mass
hierarchy among them—namely, normal versus inverted—
and (iii) leptonic CP-violating phases. The last item has
two parts to it: Dirac phase, which is analogous to the
Cabibbo-Kobayashi-Maskawa phase in the quark sector,
and Majorana phases, which are exclusive to the neutrino
sector for Majorana neutrinos. The former can be measured
in oscillation experiments, whereas the latter may play a
role in neutrinoless double beta decay searches. All these
phases may play a role in understanding the origin of
matter.

On the theoretical side, despite such a vast amount of
information, the nature of beyond the standard model
physics responsible for neutrino flavor properties remains
largely unknown and is the subject of extensive investi-
gation. There are two generic approaches: one based on
symmetries in the lepton sector, leaving the quarks aside,
and a second one based on grand unified theories, where
both quarks and leptons are considered together.

The quark-lepton unified grand unification–based ap-
proach not only provides a very natural embedding of the
seesaw mechanism to explain small neutrino masses but
also, in a very economical class of renormalizable SO(10)
models, turns out to be very predictive. Indeed, the recently

measured value of �13 agrees with predictions made for this
parameter in a minimal model of this type in 2003–2005 [3].
While this agreement is impressive, until there is some other
evidence directly connecting the grand unification proper-
ties to seesaw physics (e.g., B-L violation as in Ref. [4]), one
cannot test the grand unified theory seesaw approach.
The symmetry approach, on the other hand, derives its

appeal from the fact that two of the observed neutrino
mixing angles, �23 (atmospheric) and �12 (solar), are close
to values that look like group theoretical numbers, and find
easy explanation in terms of simple discrete family
symmetry-based models. For example, the observed near-
maximal atmospheric mixing can be easily understood if,
in a basis where charged lepton masses are diagonal (to be
called ‘‘flavor basis’’ from here on), the Majorana neutrino
mass matrix satisfies the Z2 �-� symmetry [5]. The simple
versions of this symmetry, however, predict vanishing �13,
a result which is contradicted by recent reactor [1] and
accelerator experiments [2]. There is vast literature on the
corrections to �-� symmetry that come either from allow-
ing general forms for the charged lepton matrix or from
changing the neutrino mass matrix itself or combining
simple �-� symmetry with simultaneous CP conjugation
[6,7]. All these cases lead to nonzero �13. Many such
models are also now ruled out since they predict values
of �13 much smaller than the measured value. If, in addi-
tion to maximal atmospheric mixing, we consider the value
of the solar angle tan�12 ’ 1ffiffi

2
p , we obtain the so-called

tribimaximal mixing [8], and it suggests more complicated
groups such as Z2 � Z2 [9] or S3 [10] or A4 [11], but some
of them also imply that �13 is zero or small after charged
lepton corrections are taken into account and are not any-
more phenomenologically viable. Thus, the measurement
of �13 has had a great impact on neutrino model building.
The discovery of large �13, however, does not rule out the

generic symmetry approach, and many examples have been
discussed where new symmetries do allow for a large non-
zero �13 [12–15]. We discuss one such approach in this
paper which not only has the virtue of allowing large �13
but also predicts all the leptonicCP phases. The approach is
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somewhat different from many papers in the sense that we
use a generalized definition of CP transformation among
leptons [16] embedded in an S4 lepton family symmetry.

We will call this new symmetry ‘‘~S4 symmetry.’’ We present
a gauge model for leptons invariant under this symmetry
which not only accommodates a large �13 but also predicts
a maximal �23 and a maximal Dirac CP phase, i.e.,
�D ¼ � �

2 . The maximal �23 is still consistent with the

latest global analysis [17,18], although there are indications
that it may be smaller [17].

This paper is organized as follows: In Sec. II, we present

the ~S4 model and the generalized CP transformation used
in it; in Sec. III we present the various predictions of the
model. In Sec. IV, we give some comments and conclude
with a summary of the results. In an appendix, we discuss

the representations of the ~S4 symmetry that we use in
the paper.

II. MODEL

Our model is based on the standard model gauge group
SUð2ÞL �Uð1ÞY with the usual assignment for leptons.
Namely, the left-handed leptons Li transform as SUð2ÞL
doublets with Y ¼ �1, and the right-handed charged
leptons lið¼ liRÞ transform as singlets with Y ¼ �2. The
charged leptons gain masses through the Yukawa interac-
tions with three Higgs doublets �i � ð2; 1Þ, i ¼ 1, 2, 3.
Neutrino masses and mixing are generated through a type
II seesaw mechanism [19], which requires the introduction
of Y ¼ 2 SUð2ÞL triplets. In order to implement the sym-
metry in our model, we introduce four SM triplets, �0 and
�i � ð3; 2Þ, i ¼ 1, 2, 3, whose neutral members acquire
small vacuum expectation values (VEVs), induced by tri-
linear couplings of the form ���y. We assume only three
families of leptons and no singlet sterile neutrinos.

We assume the theory to be invariant under a flavor
symmetry acting in the horizontal space of the replicated
fields. The chosen group is isomorphic toS4, but will contain
generalized CP transformations (GCP) defined below; we

denote this group by ~S4. Note that the group S4 has been
pointed out as the group for tribimaximal mixing [20],
although some subgroup of it may turn out to be just acci-

dental [9,21]. The action of ~S4 on complex fields will be
nontrivial. It is constructed as a subgroup of S4 � hCPi as
follows.We remind the reader that S4 has generators S and T
which satisfy the properties S4 ¼ T3 ¼ 1 and ST2S ¼ T.

Let us consider the (faithful) three-dimensional repre-
sentation 3 of S4 generated by [22]

3: S ¼
�1 0 0

0 0 �1

0 1 0

0
BB@

1
CCA; T ¼

0 0 1

1 0 0

0 1 0

0
BB@

1
CCA: (1)

For complex fields, we can adjoin the usual CP transforma-
tion, denoted by the operatorCP, to obtain S4 � hCPi. Note
that S4 transformations and theCP transformation commute

because all representations of S4 are real. We then extract
the subgroup of S4 � hCPi generated by

3: ~S¼
�1 0 0

0 0 �1

0 1 0

0
BB@

1
CCA �CP; T¼

0 0 1

1 0 0

0 1 0

0
BB@

1
CCA: (2)

Notice that the charge conjugation part in ~S is trivial for real
fields. This group is isomorphic to S4 after we factor the
subgroup generated by CP2 ¼ �1 for fermions. Such a

factor group is ~S4. We keep the notation 3 for the represen-
tation generated by Eq. (2). The other representations of
~S4 should be constructed in a similar manner from the
representations 30, 2, 10, 1 of S4. It is important to point

out that ~S is a nontrivial GCP transformation that does not
reduce to the usual CP transformation by basis change [16].

Let us list the irreducible representations (irreps) of ~S4,
constructed from the irreps 1, 10, 2, 3, 30 of S4. They are led
to peculiar representations of ~S4 when complex fields are
considered: the real irreps 1 and 10 (3 and 30) are interwoven
in one equivalent (complex) representation 1 (3), whereas
2 splits into two inequivalent complex one-dimensional
representations, which we denote by 1! and 1!2 ; see the
Appendix for an explanation. They are quite similar to the
representations 10, 100 of A4.

We assign the representations of ~S4 as follows:

Li � 3; l1 � 1; l2 � 1!; l3 � 1!2 ; �i � 3: (3)

The fields assigned to the triplet representation [Eq. (2)]
transform explicitly as

LiðxÞ!
~S
SijCL

�
j ðx̂Þ; LiðxÞ!T TijLjðxÞ;

�iðxÞ!
~S
Sij�

�
j ðx̂Þ; �iðxÞ!T Tij�jðxÞ;

(4)

where x̂ ¼ ðx0;�xÞ for x ¼ ðx0;xÞ arises because of space
inversion, and C is the charge conjugation matrix. On the
other hand, the right-handed lepton fields transform as

l1ðxÞ!
~S
Cl�1ðx̂Þ; l1ðxÞ!T l1ðxÞ;

l2ðxÞ!
~S
Cl�2ðx̂Þ; l2ðxÞ!T !l2ðxÞ;

l3ðxÞ!
~S
Cl�3ðx̂Þ; l3ðxÞ!T !2l3ðxÞ:

(5)

The Yukawa interactions for charged leptons invariant
under these transformations are given by

�Ll
Y ¼ y1ð �L1�1 þ �L2�2 þ �L3�3Þl1

þ y2ð �L1�1 þ!2 �L2�2 þ! �L3�3Þl2
þ y3ð �L1�1 þ! �L2�2 þ!2 �L3�3Þl3 þ H:c:; (6)

with the important restriction that all couplings yi are real

due to invariance by ~S.
When the neutral parts of the Higgs doublets acquire the

VEVs
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h�ii ¼ vffiffiffi
3

p ð1; 1; 1Þ; (7)

the Lagrangian of Eq. (6) gives rise to the charged lepton
mass matrix

Ml ¼ 1ffiffiffi
3

p
1 1 1

1 !2 !

1 ! !2

0
BB@

1
CCAdiagðme;m�;m�Þ: (8)

The correspondence is ðme;m�;m�Þ ¼ vðy1; y2; y3Þ, and
we identify U�

! in Eq. (8) by defining

U! � 1ffiffiffi
3

p
1 1 1

1 ! !2

1 !2 !

0
BB@

1
CCA: (9)

We can see that MlM
y
l has circulant form [8], and it is

invariant by T and any transposition of family indices
composed with complex conjugation (CP transformation);

i.e., an ~S3 subgroup of ~S4. The matrix in Eq. (8) is identical
to the one obtained in A4 models. The potential for �i is in
fact the same as the general A4 invariant potential [11],

implying that A4 invariance leads automatically to ~S4
invariance for the potential of three Higgs doublets. For
that potential, it has been shown that Eq. (7) is a possible
minimum [23].

To generate neutrino masses, we introduce four Higgs

triplets transforming under ~S4 as

�0 � 1; �i � 3: (10)

The ~S4-invariant Lagrangian is then

�L� ¼ 1

2
f0 �L

c
i ��0Li þ f1ð �Lc

2��1L3 þ �Lc
3��2L1

þ �Lc
1��3L2Þ þ H:c:; (11)

where f0, f1 are also real due to ~S.
Given the large VEV hierarchy, we can assume the

potential allows arbitrary VEVs for the neutral components
of �0, �i,

h�ð0Þ
0 i ¼ u0; h�ð0Þ

i i ¼ ui: (12)

The Lagrangian of Eq. (11) then induces the neutrino mass
matrix

M� ¼
a f e

f a d

e d a

0
BB@

1
CCA; (13)

where a ¼ f0u0, d ¼ f1u1, e ¼ f1u2, f ¼ f1u3. Notice
that the tribimaximal limit corresponds to e ¼ f ¼ 0 [8].
For real a, d and complex e ¼ f�, the symmetry corre-
sponding to 23 transposition and complex conjugation

(corresponding to an element of ~S4) would remain unbro-

ken in the theory as symmetries of M� and MlM
y
l .

This would lead to CP invariance and nonzero �13. In
contrast, if e ¼ f, we would obtain �13 ¼ 0. In our case,
CP violation and �13 � 0 are allowed because there is no
relation between e and f.
If we assume the VEVs in Eq. (12) are real, the neutrino

mass matrix, in the basis where the charged lepton mass
matrix is diagonal, is given by

Uy
!M�U

�
! ¼

x z z�

z �2z� y

z� y �2z

0
BB@

1
CCA; (14)

where x, y are real while z is in general complex; they are
independent combinations of the four parameters a, d, e, f
in Eq. (13). This matrix has the same form as in Ref. [24],
invariant by �� exchange composed with complex con-
jugation (called �� reflection in Ref. [6]), with additional
constraints so that it depends only on four real parameters.
It has been shown that this form of the mass matrix leads to
maximal �23 and maximal CP violation [7], with �13 � 0.
The lepton mixing matrix VMNS will be the matrix that

diagonalizes Eq. (14). It is experimentally known that
VMNS is close to the tribimaximal mixing matrix,

UTB ¼

ffiffi
2
3

q
1ffiffi
3

p 0

� 1ffiffi
6

p 1ffiffi
3

p � 1ffiffi
2

p

� 1ffiffi
6

p 1ffiffi
3

p 1ffiffi
2

p

0
BBBB@

1
CCCCA: (15)

Therefore, we parametrize

VMNS ¼ UTB diagð1; 1; iÞU�; (16)

where U� is the matrix that diagonalizes

M0
� ¼ UTM�U ¼

aþ d b 0

b a c

0 c a� d

0
BB@

1
CCA (17)

forU ¼ U�
!UTBð1; 1; iÞ, b ¼ eþfffiffi

2
p and c ¼ e�fffiffi

2
p , with a, d, e,

f being the original real parameters in Eq. (13). This mass
matrix has the same form as in the A4 model of Ref. [12],
but our definition differs from Ref. [12] in that Eq. (16)
includes an additional factor of i in ð1; 1; iÞ. Therefore, our
case corresponds to taking c to be purely imaginary in
Ref. [12]. However, this case was not considered there,
because it was focused on nonmaximal �23 and both real
and imaginary parts were allowed to vary. In contrast, real
a, d, e, f in the matrix of Eq. (13) and, consequently,
maximal �23, are natural consequences of our choice of
symmetry.
We can assume c > 0 and consider the case c < 0 by

replacing i with�i in Eq. (16). This means that the sign of
the Dirac phase �D ¼ � �

2 is not predicted in this model.

Note that c controls �13 � 0 (and CP violation), and there-
fore it must be nonzero.
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The limit b, c ! 0 leads to the tribimaximal form as
U� ¼ 1. As c � 0 to guarantee �13 � 0, U� should deviate
from the identity. That means M0

� must be nearly diagonal,
i.e., jbj; jcj 	 jaj; jdj. Having four parameters to describe
nine quantities, we have five predictions, some of which are
independent of the values of a, b, c, d. This is a consequence
of the specific form of the mass matrix [Eq. (14)], i.e.,
maximal �23 and maximal CP violation [7]. In our specific
model, the Majorana phases are also fixed: one is maximal
and the other is zero. Only normal mass hierarchy for neu-
trinos is allowed. The remaining five physical quantities—
the two angles �12, �13 and three neutrino masses m1, m2,
m3—are correlated, as they depend only on the four parame-
ters a, b, c, d as discussed in the next section.

A few comments are in order before we proceed to
present the detailed numerical analysis of the model.

(i) It is worth noting that in our model, the lightest two
neutrino eigenstates are almost degenerate in mass
and are about a factor of 3 lighter than the third
eigenstate, unlike most normal hierarchy models,
where m2=m3 � 0:2 or so.

(ii) The Higgs potential for doublet fields in our model
is the same as in the A4 models discussed in
Ref. [23], and it is easy to see from there that there
is a range of parameters in the scalar self-couplings
where the vacuum alignment of the doublet fields in
our model is justified.

III. PREDICTIONS

In the limit b, c ! 0, the neutrino masses, i.e., the
absolute values of the eigenvalues of Eq. (17), are given by

m1 ¼ jaþ dj; m2 ¼ jaj; m3 ¼ ja� dj: (18)

We can choose a > 0. From�m2
12 ¼ m2

2 �m2
1 > 0, we can

see that d < 0, hence normal hierarchy is the only possibil-
ity. The experimental information �m2

23 ¼ m2
3 �m2

2 

�m2

12 allows us to eliminate the modulus symbols in
Eq. (18) as

m1 ¼ jdj � a; m2 ¼ a; m3 ¼ aþ jdj: (19)

We then arrive at the sum rule

m3 � 2m2 �m1 ¼ 0; (20)

which commonly arises in models with discrete flavor sym-
metries [25]. The difference here is that the sum rule of
Eq. (20) applies to the neutrino masses themselves without
additional Majorana phases or signs.

When we allow b, c � 0, the sum rule [Eq. (20)] is still
exactly satisfied provided that b ¼ �c. This can be seen
from the eigenvalues of

�M0
� � M0

� � a13; (21)

which has the characteristic equation

�detð�M0
��	13Þ¼	3�ðd2þb2þc2Þ	�dðb2�c2Þ¼0:

(22)

The eigenvalues of M0
� can be obtained from the roots of

Eq. (22) by adding a.
For general b and c, the sum rule of Eq. (20) is only valid

approximately. The violation of the sum rule is quantified by

�b � �b

d
; �c � � c

d
; (23)

which controls the deviation of the PMNS matrix [Eq. (16)]
from the tribimaximal mixing [Eq. (15)]. The characteristic
equation [Eq. (22)] shows that neutrino masses depend,
apart from a, only on two combinations of d, c, b, which
can be chosen as

d0 � jdj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2b þ �2c

q
; � � �2c � �2b

½1þ �2b þ �2c�3=2
: (24)

We can see that � quantifies the violation of the sum rule.
We can seek approximate roots to Eq. (22) for j�j 	 1,

which leads to

�m1 ¼ a� d0
�
1� 1

2
�

�
;

m2 ¼ a� d0�;

m3 ¼ aþ d0
�
1þ 1

2
�

�
:

(25)

The result is valid up to terms of order �2 (order �4)
multiplied by d0. These relations can be inverted to write
a, d0, � in terms of the masses. In particular, the deviation
of the sum rule is given by

m3 � 2m2 �m1 ¼ 3

2
�ðm3 þm1Þ: (26)

The knowledge of �m2
23 and �m2

12 determines the parame-

tersa, d0 in terms of�. In turn,� depends on�b and�c, which
affect �12 and �13.
To see how the mixing angles �12 and �13 are affected by

�b, �c, we can perform an analysis similar to that of
Ref. [12], with the difference that we have real matrices
in our case. The matrix U� quantifies the deviations of the
lepton mixing matrix from the tribimaximal form. ForM0

�,
given the eigenvalues ð�m1; m2; m3Þ in Eq. (25), we can
calculate the eigenvectors which make up U�. The first
approximation leads to

U� �
1 �b 0

��b 1 �c

0 ��c 1

0
BB@

1
CCA; (27)

where the real parameters �b, �c were given in Eq. (23).
Notice that �c > 0 for c > 0 because d < 0.
To first order, �13 depends only on �c, while �12 depends

on �b, as
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sin2�13 � 1

3
�2c; sin2�12 � 1

3
þ 2

ffiffiffi
2

p
3

�b: (28)

We can then approximate

� � 3s213 �
9

8

�
s212 �

1

3

�
2
; (29)

where s213 � sin2�13 and s
2
12 � sin2�12 as usual. This is the

amount of deviation for the sum rule [Eq. (26)]. We can see
that the data [18] are compatible with �b � 0.

Given the experimentally known values of �m2
12, �m

2
23,

�12, �23, �13, we can determine the values of the neutrino
masses:

m1 � 13:3 meV; m2 � 15:9 meV; m3 � 52:1 meV:

(30)

We have used the best-fit values of Ref. [18]. A more
precise numerical study reveals that

11:8 meV  m1  13:6 meV (31)

when the 1
 range for the observables is allowed [18]; see
the figures below.

Analogously, we can see that the deviation for the sum
rule is small, as 3

2�� 0:1. In fact, our numerical study

quantifies the deviation as

m3 � 2m2 �m1

m3 þm1

¼ 11% to 15% (32)

at the 1
 interval.
The remaining numerical study is summarized in two

figures. In Fig. 1, we display the range of sin2�13 against
the lightest neutrino mass. In Fig. 2, we display the effec-
tive light neutrino contribution mee to neutrinoless double
beta decay. Even though the two light neutrinos are quite
degenerate in mass and have masses near 12 meV, due to
the Majorana phase, the effective mass is at most 3 meV.

For both graphics, the points are generated numerically
without the analytic approximations employed in the pre-
vious analyses. We only collect the points compatible with
the observables within 1
, as shown in Ref. [18].

IV. CONCLUSIONS

We have presented a model for leptons based on gen-
eralized CP symmetries which transform one family to
another, generating the non-Abelian S4 symmetry when
supplemented by some permutations of families. This flavor

symmetry, denoted by ~S4, represents a new implementation
of the S4 symmetry where generalized CP symmetries are
part of the group. This implementation shares some com-
mon features with the widely used group A4. For example,
~S4 also possesses three inequivalent one-dimensional repre-
sentations, similarly to A4 in model building. The presence
of CP transformations, however, further restricts the pa-
rameters of the Lagrangian to be real. The restrictions
imposed by the generalized CP transformations are such
that, with the addition of another Higgs doublet, we could
have easily built another variant of the model where left-
handed and right-handed leptons are assigned to the same

representation 3 of ~S4. This could help us to embed this type
of model in more symmetric theories, such as left-right
models. Therefore, this class of symmetries containing gen-
eralized CP transformations presents interesting features
which can be further explored for flavor model building.
Our specific model predicts a maximal atmospheric

mixing angle and accommodates the observed �13 without
any cancellation among the model parameters; it predicts
normal hierarchy and maximal Dirac phase of�90� in the
leptonic sector and should be testable in near-future long-
baseline neutrino oscillation experiments. An important
feature of the model is that the two light neutrino mass
eigenstates are nearly degenerate in mass. Although the
individual light eigenstates are ‘‘heavy,’’ i.e., near 12 meV

12.0 12.5 13.0 13.5

0.022

0.024

0.026

0.028

0.030

FIG. 1 (color online). Variation of �13 as a function of the
lightest neutrino mass. This scatter plot was generated using
�c > 0. There are points with �c < 0 as well, corresponding to
flipping the sign of the Dirac phase. However, they do not
introduce any perceptible change.

12.0 12.5 13.0 13.5

1.5

2.0

2.5

3.0

FIG. 2 (color online). The effective neutrino mass measured in
neutrinoless double beta decay as a function of the lightest
neutrino mass. As in Fig. 1, we have chosen �c > 0 here.
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or so, due to maximal Majorana phase, their net contribu-
tion to neutrinoless double beta decay amplitude is very
small. The model also predicts an approximate sum rule
relation valid for the three neutrino masses, without any
Majorana phase or sign. The validity of the approximate
sum rule is around 12%.
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APPENDIX: OTHER REPRESENTATIONS OF ~S4

We show here how to obtain the representations 1! and

1!2 of ~S4 from the irreducible representation (irrep) 2 of S4.

The irreps of ~S4 are constructed from the irreps of S4 by the
procedure explained in Sec. II for the representation 3:

extract the subgroup of S4 � hCPi generated by ~S and T in
Eq. (2), instead of S, T, CP that generate S4 � hCPi.

Let us first explain why 1 and 10 of S4 generate the same

representation 1 of ~S4. We know that, for S4, 1 is trivial,
but 10 changes sign by S. If we follow the recipe and

construct the representation of ~S4 corresponding to 1 and
10, we would obtain

1: ~S ¼ S � CP ! 1 � CP; T ! 1;

10: ~S ¼ S � CP ! ð�1Þ � CP; T ! 1:
(A1)

We are using the generators [Eq. (2)] of 3 of ~S4 as the
group elements themselves, given that the representation is
faithful. The CP transformation denoted by CP acts as
usual. A fermion field c ðxÞ and a complex scalar field�ðxÞ
transform as

c ðxÞ!CPCc �ðx̂Þ; �ðxÞ!CP��ðx̂Þ: (A2)

Therefore, the representations in Eq. (A1) are equivalent,
because if c ðxÞ transforms as 1, then c 0ðxÞ ¼ ic ðxÞ trans-
forms as 10 (notice that the field must be complex). This
same reasoning leads to the equivalence of 3 and 30 when
we go from S4 to ~S4.

Let us see what happens to the representation 2 of S4,
which is equivalent to the S4 ! S3 homomorphism. To
preserve the structure of S4 � hCPi for which CP com-
mutes with the elements of S4, it is important to consider
real representations of 2. We adopt a slightly different
version of Eq. (640) in the second reference of Ref. [22]:

D2ðSÞ ¼
1 0

0 �1

 !
; D2ðTÞ ¼

� 1
2

ffiffi
3

p
2

�
ffiffi
3

p
2 � 1

2

0
@

1
A: (A3)

Then S4 � hCPi in this representation is generated by
D2ðSÞ, D2ðTÞ and CP acting as in Eq. (A2). The subgroup
~S4 would be generated by

D2ð~SÞ ¼
1 0

0 �1

 !
� CP; D2ðTÞ ¼

� 1
2

ffiffi
3

p
2

�
ffiffi
3

p
2 � 1

2

0
@

1
A:
(A4)

However, it is usually more convenient to work with the
complex basis where T is diagonal. We change basis to

D0
2ð~SÞ ¼

1 0

0 1

 !
� CP; D0

2ðTÞ ¼
! 0

0 !2

 !
; (A5)

where

D0
2ðTÞ ¼ XyD2ðTÞX (A6)

with the basis change matrix

X ¼ 1ffiffiffi
2

p 1 1

i �i

 !
: (A7)

Now, D0
2ð~SÞ in Eq. (A5) differs from

Xy 1 0

0 �1

 !
X � CP (A8)

because X is complex, and complex basis change acts
differently for CP transformations. The correct transfor-
mation is

D0
2ð~SÞ ¼ Xy 1 0

0 �1

 !
X� � CP; (A9)

which leads to Eq. (A5).

Equation (A5) defines the representation of ~S4, derived

from 2 of S4. Since both transformations which generate ~S4
do not mix the first and second components, they are
essentially one dimensional (complex). They correspond
to the representations which we denoted by 1! and 1!2 ,
corresponding to the action of Eq. (A5) to the first and
second components, respectively. Explicitly, for a fermion
field c ðxÞ (chiral or not), we have

1!: c ðxÞ!~S Cc �ðx̂Þ; c ðxÞ!T !c ðxÞ;
1!2 : c ðxÞ!~S Cc �ðx̂Þ; c ðxÞ!T !2c ðxÞ:

(A10)

If could ignore gauge quantum numbers, the representation
1! and 1!2 would be equivalent, because if c ðxÞ � 1!,
then Cc �ðxÞ � 1!2 . Its real representation space is two
dimensional. In particular, 1 and 10 would correspond to
CP-even and CP-odd combinations of fields which have
no definite transformation properties under the gauge
groups. It is important to emphasize that if we were con-
sidering the whole S4 � hCPi, the representation 2 would
remain two dimensional (complex).
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