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We present the first numerical implementation of the minimal Landau background gauge for Yang-

Mills theory on the lattice. Our approach is a simple generalization of the usual minimal Landau gauge

and is formulated for the general SU(N) gauge group. We also report on preliminary tests of the method in

the four-dimensional SU(2) case, using different background fields. Our tests show that the convergence of

the numerical minimization process is comparable to the case of a null background. The uniqueness of the

minimizing functional employed is briefly discussed.
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In Ref. [1] Cornwall pleaded with the lattice community
for an answer to the following question: Can you find a way
of doing lattice simulations in the background-field
Feynman gauge?

The reason for this request is that one can show [2]—to
all orders in perturbation theory—that there is a simple
correspondence between the background-field method in
the Feynman gauge [3] and the so-called pinch technique
[4], which allows one to build gauge-invariant off-shell
Green functions in the continuum. Thus, lattice simulations
in background Feynman gauge could naturally provide a
fully nonperturbative realization of the pinch technique,
opening the possibility of extracting gauge-independent
features from (gauge-fixed) lattice studies [1].

As a first step in this direction, we present here the first
numerical implementation of the minimal Landau back-
ground gauge on the lattice. Our proposal is based on
Ref. [5], which considers this gauge in the continuum.
Let us mention that, until now, formulations of the
background-field method on the lattice were only devel-
oped in the perturbative context [3,6]. Our approach is a
simple generalization of the usual minimal Landau gauge,
for which the technical implementation of the numerical
gauge fixing is well understood [7,8].

The covariant background gauge condition is introduced
[9] by splitting the (continuum) Yang-Mills field A�ðxÞ into
a quantum fluctuation componentQ�ðxÞ and a background
field B�ðxÞ, i.e.,

A�ðxÞ ¼ Q�ðxÞ þ B�ðxÞ; (1)

where A�ðxÞ is given in terms of the generators Tb of the

SU(N) gauge group by A�ðxÞ ¼ Ab
�ðxÞTb [and similarly for

Q�ðxÞ and B�ðxÞ]. Note that B�ðxÞ is in principle arbitrary
[6,10]. Then, the usual covariant gauge condition

@�A�ðxÞ ¼ �ðxÞ ¼ �bðxÞTb (2)

becomes

@�Q�ðxÞþ i½B�ðxÞ;Q�ðxÞ��D�½B�Q�ðxÞ¼�ðxÞ: (3)

Here,D�½B� is the background-field covariant derivative and
�bðxÞ is a Gaussian-distributed real variable. Clearly, for a
null background field B�ðxÞ ¼ 0, one has Q�ðxÞ ¼ A�ðxÞ
and the usual covariant gauge condition (2) is recovered. For
�ðxÞ ¼ 0 the gauge condition (3) is the Landau background
gauge condition.
Let us recall that the continuum gauge transformation of

the Yang-Mills field, i.e.,

AðgÞ
� ðxÞ ¼ gðxÞA�ðxÞgyðxÞ � igðxÞ@�gyðxÞ; (4)

becomes

AðgÞ
� ðxÞ � A�ðxÞ þD�½A��ðxÞ (5)

if an infinitesimal gauge transformation

gðxÞ ¼ exp½�i�ðxÞ� � 1� i�ðxÞ (6)

is considered, where �ðxÞ ¼ �bðxÞTb. [Note that, with our
notation, the generators Tb are Hermitian. In what follows,
wewill also employ the relations TrTb ¼ 0 and TrfTbTcg /
�bc]. Then, using the splitting in Eq. (1), there is clearly no
unique way of defining the infinitesimal gauge transforma-

tions QðgÞ
� ðxÞ and BðgÞ

� ðxÞ for the quantum fluctuation and
the background fields. Indeed, depending on which of the
three terms @��ðxÞ, i½Q�ðxÞ; �ðxÞ� and i½B�ðxÞ; �ðxÞ� [see
Eq. (5)] are included in QðgÞ

� ðxÞ and BðgÞ
� ðxÞ, eight different

sets of gauge transformations arise naturally. Among these,
two common choices are

QðgÞ
� ðxÞ ¼ Q�ðxÞ þD�½B��ðxÞ þ i½Q�ðxÞ; �ðxÞ�; (7)

BðgÞ
� ðxÞ ¼ B�ðxÞ; (8)

and

QðgÞ
� ðxÞ ¼ Q�ðxÞ þ i½Q�ðxÞ; �ðxÞ�; (9)

BðgÞ
� ðxÞ ¼ B�ðxÞ þD�½B��ðxÞ: (10)
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These two transformations are referred to [11] as the
quantum transformation and the background transforma-
tion, respectively.

The minimal Landau gauge (in the continuum) is ob-
tained [12] by considering stationary points of the mini-
mizing functional

E ½A; g� ¼
Z

ddxTrfAðgÞ
� ðxÞAðgÞ

� ðxÞg: (11)

Indeed, the first variation with respect to the gauge trans-
formation gðxÞ gives

E½A; g� � E½A; 1� þ 2
Z

ddxTrfA�ðxÞD�½A��ðxÞg

¼ E½A; 1� � 2
Z

ddxTrf�ðxÞ@�A�ðxÞg; (12)

where we used Eq. (5), the relation

Tr fA�ðxÞ½A�ðxÞ; �ðxÞ�g ¼ 0 (13)

and integration by parts. (As is usually done, we make the
assumption that the boundary term in the integration by
parts gives a null contribution.) Thus, a stationary point of
the functional (11) satisfies the condition

Tr fTb@�A�ðxÞg ¼ 0; (14)

which is equivalent to Eq. (2) for �ðxÞ ¼ 0.
Working in a similar way, one can also obtain the minimal

Landau background gauge. Indeed, the minimization of the
functional [5]

E ½Q; g� ¼
Z

ddxTrfQðgÞ
� ðxÞQðgÞ

� ðxÞg (15)

yields the variation

E½Q; g� � E½Q; 1� þ 2
Z

ddxTrfQ�ðxÞD�½B��ðxÞ
þ iQ�ðxÞ½Q�ðxÞ; �ðxÞ�g (16)

if we use the gauge transformation (7). The above expression
may be written as

E ½Q;g��E½Q;1��2
Z
ddxTrf�ðxÞD�½B�Q�ðxÞg (17)

if we again integrate by parts, use Eq. (13) and note the
relation

TrfQ�ðxÞ½B�ðxÞ;�ðxÞ�g¼�Trf�ðxÞ½B�ðxÞ;Q�ðxÞ�g: (18)

Thus, in this case, the stationarity condition implies the
gauge-fixing relation

Tr fTbD�½B�Q�ðxÞg ¼ 0; (19)

which is equivalent to Eq. (3) for �ðxÞ ¼ 0. Clearly, for a
null background, i.e., B�ðxÞ ¼ 0, the minimizing functional

(15) coincides with the usual Landau-gauge functional (11)
and the gauge condition (14) is recovered.

More in general one should note that, by considering
quadratic terms in Q�ðxÞ and B�ðxÞ, there are only three

terms that can contribute to the minimizing functional of
the minimal Landau background gauge, i.e., Q�ðxÞQ�ðxÞ,
Q�ðxÞB�ðxÞ and B�ðxÞB�ðxÞ. However, if one wants to

obtain the minimal Landau-gauge functional (11) in the
limit B�ðxÞ ! 0, then the minimizing functional E½Q; g� in
Eq. (15) is the only choice at our disposal. In this sense, the
minimizing functional E½Q; g� is unique. Moreover, of the
eight natural sets of gauge transformations for the quantum
field and the background field (see discussion above), one
can verify that only the quantum transformation (7) and (8)
and the set

QðgÞ
� ðxÞ ¼ Q�ðxÞ þD�½B��ðxÞ; (20)

BðgÞ
� ðxÞ ¼ B�ðxÞ þ i½Q�ðxÞ; �ðxÞ� (21)

yield the gauge condition (19). Of course, if one lifts
the requirement of recovering the functional (11) for
B�ðxÞ¼0, then the minimal background Landau gauge

can also be implemented by considering, for example,

the minimizing functional
R
ddxTrfQðgÞ

� ðxÞBðgÞ
� ðxÞg with

the gauge transformation QðgÞ
� ðxÞ ¼ Q�ðxÞ and BðgÞ

� ðxÞ¼
B�ðxÞþD�½B��ðxÞþi½Q�ðxÞ;�ðxÞ�.
The above results may be easily extended to the lattice

formulation of Yang-Mills theories. To this end, we write
the link variables entering the lattice action as [13]

U�ðxÞ ¼ W�ðxÞV�ðxÞ: (22)

We also set

U�ðxÞ ¼ exp½iaA�ðxÞ�; (23)

W�ðxÞ ¼ exp½iaQ�ðxÞ�; (24)

V�ðxÞ ¼ exp½iaB�ðxÞ�; (25)

where a is the lattice spacing. At the same time, we define
[14]

2iaA�ðxÞ ¼ U�ðxÞ �Uy
�ðxÞjtraceless; (26)

and similarly for Q�ðxÞ and B�ðxÞ. Then, Eq. (1) is imme-

diately recovered, modulo discretization effects.
The lattice gauge transformation

UðgÞ
� ðxÞ ¼ gðxÞU�ðxÞgyðxþ ae�Þ (27)

can also be split among the quantum link W�ðxÞ and the

background link V�ðxÞ. For example, the quantum trans-

formation (7) and (8) is obtained by considering

WðgÞ
� ðxÞ ¼ gðxÞW�ðxÞV�ðxÞgyðxþ ae�ÞVy

�ðxÞ (28)

VðgÞ
� ðxÞ ¼ V�ðxÞ; (29)
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while for the background transformation (9) and (10), we
have

WðgÞ
� ðxÞ ¼ gðxÞW�ðxÞgyðxÞ (30)

VðgÞ
� ðxÞ ¼ gðxÞV�ðxÞgyðxþ ae�Þ: (31)

Clearly, in both cases the link variable U�ðxÞ transforms as

in Eq. (27). Moreover, using Eqs. (23)–(25) and the lattice
definitions of the fields A�ðxÞ,Q�ðxÞ and B�ðxÞ in terms of

the link variables U�ðxÞ, W�ðxÞ and V�ðxÞ, one recovers

Eqs. (7)–(10) when an infinitesimal gauge transformation
(6) is considered. For example, Eq. (28) gives

WðgÞ
� ðxÞ � ½1� i�ðxÞ�½1þ iaQ�ðxÞ�½1þ iaB�ðxÞ�

� ½1þ i�ðxþ ae�Þ�½1� iaB�ðxÞ� (32)

� 1þ iaf@��ðxÞ þQ�ðxÞ þ i½Q�ðxÞ; �ðxÞ�
þ i½B�ðxÞ; �ðxÞ�g

¼ 1þ iaQðgÞ
� ðxÞ; (33)

in agreement with Eq. (7).
One can also define a minimizing functional for the

Landau background gauge on the lattice. Indeed, in the
limit of small lattice spacing a, the functional

E ½W; g� ¼ �X
x;�

<TrWðgÞ
� ðxÞ (34)

is equivalent to

E ½W; g� � a2
X
x;�

TrfQðgÞ
� ðxÞQðgÞ

� ðxÞg; (35)

modulo constant terms. (Here we use< to indicate the real

part.) At the same time, for V�ðxÞ ¼ 1 and WðgÞ
� ðxÞ ¼

UðgÞ
� ðxÞ, we recover the usual minimizing functional for

the Landau-gauge condition [7]

E ½U; g� ¼ �X
x;�

<TrfgðxÞU�ðxÞgðxþ ae�Þg: (36)

Also, if WðgÞ
� ðxÞ transforms as in Eq. (28) and we consider

an infinitesimal gauge transformation (6), we find

E½W;g� � E½W; 1� � i
X
x;�

=Trf�ðxÞ½U�ðxÞVy
�ðxÞ

� Vy
�ðx� ae�ÞU�ðx� ae�Þ�g; (37)

where = indicates the imaginary part. As a consequence, a
stationary point of the minimizing functional (34) implies
the gauge condition

0¼Tr

�
Tb

X
�

½W�ðxÞ�Wy
�ðxÞ�Vy

�ðx�ae�ÞU�ðx�ae�Þ

þUy
�ðx�ae�ÞV�ðx�ae�Þ�

�
; (38)

wherewe used the Hermiticity of the generators Tb. Finally,
by adding and subtracting TrfTb

P
�½W�ðx�ae�Þ�

Wy
�ðx�ae�Þ�g, we find that the null quantity in the above

equation can be written conveniently as the sum of two
terms. The first one is taken asTrfTb

P
�½W�ðxÞ �Wy

�ðxÞ �
W�ðx� ae�Þ þWy

�ðx� ae�Þ�g and is equal (at leading

order in the lattice spacing a) to

2iaTr

�
Tb

X
�

½Q�ðxÞ �Q�ðx� ae�Þ�
�

� 2ia2 Tr

�
Tb

X
�

@�Q�ðxÞ
�
: (39)

The second term is then given by

Tr

�
Tb

X
�

½U�ðx� ae�ÞVy
�ðx� ae�Þ

þUy
�ðx� ae�ÞV�ðx� ae�Þ

� Vy
�ðx� ae�ÞU�ðx� ae�Þ

� V�ðx� ae�ÞUy
�ðx� ae�Þ�

�
: (40)

Note that for a null background field, i.e., B�ðxÞ ¼ 0 and

V�ðxÞ ¼ 1, the quantity above is identically zero. In this

case, we have Q�ðxÞ ¼ A�ðxÞ [i.e., W�ðxÞ ¼ U�ðxÞ] and
the gauge condition (38) becomes [see also Eq. (39)] the
usual lattice Landau-gauge condition TrfTb

P
�½A�ðxÞ �

A�ðx� ae�Þ�g ¼ 0. In the B�ðxÞ � 0 case and in the limit

of small lattice spacing a, one can check that the quantity
(40) is, at leading order, equal to the expression

� 2a2 Tr

�
Tb

X
�

½B�ðxÞ; Q�ðxÞ�
�
: (41)

Thus, the stationarity condition (38) implies (again at lead-
ing order in a)

Tr

�
Tb

X
�

@�Q�ðxÞ þ i½B�ðxÞ; Q�ðxÞ�
�
¼ 0; (42)

in agreement with Eq. (19).
As discussed above, given a fixed lattice configuration

fU�ðxÞg, the usual minimal Landau gauge may be imposed

by numerically minimizing the functional (36). In particu-
lar, by considering local updates for the gauge-fixing trans-
formation fgðxÞg, it is easy to verify that, for a given site y,
the contribution of gðyÞ to the minimizing functional may
be written as [15]

E ½U; g� ¼ constantþ<TrfgðyÞhðxÞg (43)

with hðxÞ ¼ P
�½U�ðxÞ þ Uy

�ðx � ae�Þ þ Uy
�ðxÞ þ

U�ðx � ae�Þ�. Then, different gauge-fixing algorithms

correspond to different choices for the iterative updates
of the gauge transformation gðyÞ in Eq. (43).
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In the case of the minimal Landau background gauge,
one can consider the minimizing functional E½W; g�,
defined in Eqs. (34) and e.g., (28), where fW�ðxÞg and

fV�ðxÞg are given (i.e., fixed) quantum and background

configurations, respectively. It is important to stress that,
also in this case, the contribution of gðyÞ to the minimizing
functional E½W; g� may be written as in Eq. (43). In this
case, the quantity hðxÞ is equal to
hðxÞ ¼ X

�

½W�ðxÞ þUy
�ðx� ae�ÞV�ðx� ae�Þ þWy

�ðxÞ

þ Vy
�ðx� ae�ÞU�ðx� ae�Þ�: (44)

Thus, the formulation of the minimal Landau background
gauge is a natural generalization of the usual minimal
Landau gauge. This implies that, at least for sufficiently
smooth background configurations fV�ðxÞg, we should ex-

pect similar convergence of the gauge-fixing algorithms for
these two gauge-fixing conditions.

In order to verify this, we have carried out some tests in
the SU(2) case, considering lattice volumes V ¼ 84 and
V ¼ 164 with a lattice coupling � ¼ 2:2, corresponding to
a lattice spacing a of about 0.210 fermi. This means that
the thermalized configurations fU�ðxÞg are reasonably

‘‘rough’’ and provide a good test for the gauge-fixing
algorithm employed. For the background field fV�ðxÞg,
we have considered three types of configurations with three
setups each, namely (here, �j are the three Pauli matrices,

with �3 being the diagonal one):
(a) random center configuration (RCC) V�ðxÞ ¼ �1,

which can be interpreted as a random configuration
of thin vortices [16], with, on average, 10, 30, or
50% of the links equal to �1;

(b) random Abelian configuration (RAC) V�ðxÞ ¼
exp½i�ðxÞ�3�, which may be interpreted as a random
configuration of Abelian monopoles [17], with the
angle �ðxÞ uniformly distributed in the interval
½0; 2�f� and f equal to 0.1, 0.3 or 0.5;

(c) super-instanton configuration (SIC) [18] given by

V2ðxÞ ¼ exp½icminðx1; N � x1ÞPj�j=
ffiffiffiffiffiffiffiffiffi
3N2

p � and

V�ðxÞ ¼ 0 otherwise, with c ¼ 0:01, 0.05 or 0.1,

where N is the number of lattice sites per direction.
For the two lattice volumes above, we consider ten

gauge-field configurations and, in each case, we fix the
minimal background Landau gauge, using the stochastic-
overrelaxation algorithm [15], for the nine choices of
background fields described above. The number of mini-
mizing sweeps necessary to achieve the prescribed accu-
racy was then compared to that used in the case of a null
background (i.e., Landau gauge). Here, we stop the gauge-
fixing algorithm when the average magnitude squared of

the quantity on the rhs of Eq. (38) is smaller than 10�14.
Note that we tuned the stochastic-overrelaxation algorithm
in the case of a null background, setting the parameter
p of the algorithm (see Ref. [15]) equal to 0.83 for V ¼ 84

and to 0.91 for V ¼ 164. The same setup was then used for
nonzero backgrounds. Results of these tests are shown in
Table I. One sees that the convergence of the gauge-fixing
algorithm for a nonzero background is indeed similar to the
case of the usual minimal Landau gauge. Of course, by
tuning the parameter p also in the general case, one can
improve the results. In fact, e.g., for V ¼ 84 and back-
ground RCC 30%, we find that with p ¼ 0:92 the number
of sweeps decreases considerably, being between 418 and
653, with an average value of about 460. Similarly, for
V ¼ 164 and the SIC background with c ¼ 0:01, we obtain
for p ¼ 0:96 that the number of sweeps is between 794 and
1934, with an average value of about 1001.
The above results indicate that numerical simulations in

the minimal Landau background gauge are indeed pos-
sible. One should also stress that the extension of the
method presented here to the case of the minimal covariant
background gauge—and in particular to the case of the
Feynman gauge—is, in principle, feasible [19]. This ex-
tension, as well as the numerical evaluation of Green
functions in the minimal Landau background gauge, is
postponed until future studies.

The authors thank Daniele Binosi, Mike Cornwall, and
Andrea Quadri for useful discussions. We also thank the
Brazilian funding agencies CNPq and Fapesp for partial
support.

TABLE I. Average, minimum and maximum number of
sweeps necessary to achieve the prescribed accuracy for the
two lattice volumes and for the nine different background fields
considered in our tests (see description in the text). For a
comparison, we also include the case of a null background.

B�ðxÞ 84 164

aver. min. max. aver. min. max.

null background 217 190 290 508 396 773

RCC 10% 348 190 685 976 503 1729

RCC 30% 624 342 1391 1344 818 1979

RCC 50% 647 444 1032 1711 1002 2714

RAC f ¼ 0:1 224 191 323 677 417 1226

RAC f ¼ 0:3 326 190 1112 582 436 967

RAC f ¼ 0:5 401 279 595 813 494 1495

SIC c ¼ 0:01 637 372 855 1852 1238 3503

SIC c ¼ 0:05 188 172 256 520 344 808

SIC c ¼ 0:1 177 170 203 365 343 430
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