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We present a comprehensive analysis of the light condensates in QCD with 1þ 1þ 1 sea quark flavors

(with mass-degenerate light quarks of different electric charges) at zero and nonzero temperatures of up to

190 MeVand external magnetic fields B < 1 GeV2=e. We employ stout smeared staggered fermions with

physical quark masses and extrapolate the results to the continuum limit. At low temperatures we confirm

the magnetic catalysis scenario predicted by many model calculations while around the crossover the

condensate develops a complex dependence on the external magnetic field, resulting in a decrease of the

transition temperature.
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I. INTRODUCTION

Strong (electro)magnetic fields prominently feature in
various physical systems. They play an essential role in
cosmology, where magnetic fields of 1014 T and 1019 T
may have been present [1,2] during the strong and electro-
weak phase transitions of the universe, respectively.
Magnetic fields with strengths up to B� 1014–16 T

(
ffiffiffiffiffiffi
eB

p � 0:1–1:0 GeV) are also generated in noncentral
heavy ion collisions [3–6] at the Relativistic Heavy Ion
Collider (RHIC) or the Large Hadron Collider (LHC).
Furthermore, for certain classes of neutron stars like mag-
netars, magnetic fields of the order of 1010 T have been
deduced [7]. In addition to this phenomenological rele-
vance, external (electro)magnetic fields can be used to
probe the dynamics of strongly interacting matter,
i.e., the vacuum structure of quantum chromodynamics
(QCD).

One of the most important aspects of QCD is chiral
symmetry breaking. At zero quark masses the chiral con-
densate �c c is an order parameter. It vanishes at high
temperatures where chiral symmetry is restored but devel-
ops a nonzero expectation value in the hadronic phase. In
nature, quark masses are nonzero and the corresponding
quark condensates, though only approximate order pa-
rameters, still exhibit this characteristic behavior around
the transition temperature between the hadronic and the
quark-gluon plasma phases. Lattice simulations revealed
that for physical quark masses this transition is an analytic
crossover [8], leading to a transition temperature Tc which
may depend on the observable used for its definition.

In the response of QCD to external magnetic fields,
‘‘magnetic catalysis’’ refers to an increase of the conden-
sate with B. This implies a B dependence of Tc as well.
Almost all low-energy models and approximations to QCD
[9–35] as well as lattice simulations in quenched theories
[36,37] and at larger than physical pion masses in Nf ¼ 2

QCD [38,39] and in the Nf ¼ 4 SU(2) theory [40] found
�c c ðBÞ and TcðBÞ to increase with B. Exceptions in this
respect with a decreasing TcðBÞ function are the results
obtained within two-flavor chiral perturbation theory [41],
in the linear sigma model without vacuum corrections [42]
and in the bag model [43].
In contrast to the majority of the above results, our large-

scale study of QCD in external magnetic fields with physi-
cal pion mass M� ¼ 135 MeV and results extrapolated to
the continuum limit [44] has revealed the transition tem-
perature to decrease as a function of the external magnetic
field. This applies to the Tc’s defined from the quark
condensate, the strange quark number susceptibility and
the chiral susceptibility. In particular, we found the con-
densate to depend on B in a nonmonotonous way in the
crossover region.
In Ref. [44] we have already pointed out two rationales

why former lattice studies are at variance with these recent
findings: coarser lattices and larger quark masses.
Obviously, it is also very important to address the differ-
ences between our QCD results and many model and chiral
perturbation theory (�PT) predictions, especially since the
latter methods can be used to investigate regions that are
not easily accessible to lattice simulations, e.g., QCD at a
nonvanishing baryon density.
In this paper, we present a detailed analysis of the

dependence of the light quark condensates on B and on
the temperature T, based on the T > 0 simulations de-
scribed in Ref. [44] and new simulations at T ¼ 0. The
data—all continuum extrapolated—are presented in ways
that will enable one to refine model assumptions and
parameters. We also perform a first comparison to �PT
and to Polyakov–Nambu–Jona-Lasinio (PNJL) model pre-
dictions. We aim at a better understanding of the physical
mechanisms behind the differences. This in turn should be
of phenomenological relevance.
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Below we introduce our notations and the simulation
setup. We then present our results and compare them to
�PT and PNJL predictions, both at zero and nonzero
temperatures.

II. CONDENSATE ON THE LATTICE
AT NONZERO B

We study QCD coupled to a constant external magnetic
field B, pointing in the positive z direction. Such a field can
be implemented by multiplying theU 2 SUð3Þ links of the
lattice by complex phases. The specific choice of these
phases and our setup are detailed in Ref. [44]. The external
field couples only to the quark electric charges qf with f

labeling the different flavors. Thus, the magnetic field only
appears in combinations qfB.

In a finite periodic volume, the magnetic flux is quan-
tized [45,46]. This quantization on a lattice with spacing a
amounts to

ðNsaÞ2 � qdB ¼ 2�Nb; Nb 2 Z; (1)

where the smallest quark charge (that of the down quark),
jqdj ¼ e=3 enters, with e > 0 being the elementary charge.
Here Ns is the number of lattice sites in a spatial direction
(our lattices are symmetric in space). Similarly, Nt counts
the lattice points in the temporal direction. The spatial
volume of the system is given by V ¼ ðNsaÞ3 and the
temperature is related to the inverse temporal extent of
the lattice as T ¼ ðNtaÞ�1.

The quark condensate can be derived from the partition
function, which in the staggered formulation of QCD with
three flavors (f ¼ u, d, s) is given by the functional
integral,

Z ¼
Z

DUe��Sg
Y

f¼u;d;s

½detMðU; qfB;mfÞ�1=4; (2)

where � � 6=g2 is the inverse gauge coupling, Sg the

gauge action and MðU; qB;mÞ ¼ 6DðU; qBÞ þm1 the fer-
mion matrix. For Sg we use the tree-level improved

Symanzik action, while in the fermionic sector we employ
a stout smeared staggered Dirac operator 6D. The details of
the lattice action can be found in Refs. [44,47]. The lattice
sizes range from 243 � 32 to 403 � 48 for the zero tem-
perature simulations, while at nonvanishing T we inves-
tigate 243 � 6, 243 � 8 and 283 � 10 lattices. We set the
quark masses to their physical values, with mass-
degenerate light quarks: mu ¼ md � mud. The electric
charges of the quarks are qd ¼ qs ¼ �qu=2 ¼ �e=3;
therefore we need to treat each flavor separately. The
line of constant physics (LCP) ½mudð�Þ; msð�Þ� was
determined by fixing the ratios M�=fK and MK=fK to
the experimental values. The lattice spacing að�Þ is
defined by keeping fK ¼ flatK ð�Þ=að�Þ fixed; for details
see Ref. [48]. At T ¼ 0 the continuum limit a ! 0
corresponds to � ! 1. At nonzero temperature, it is

convenient to define the continuum limit as Nt ! 1,
keeping T fixed.
The quark condensate is defined as the derivative of

lnZ with respect to the lattice mass parameter

�c c fðB; TÞ � T

V

@ lnZðB; TÞ
@mf

: (3)

To carry out the continuum limit, the lattice condensate
�c c needs to be renormalized since it contains additive
(for m> 0) and multiplicative divergences. These cancel
[44] in the following combination:

�u;dðB;TÞ¼ 2mud

M2
�F

2
½ �c c u;dðB;TÞ� �c c u;dð0;0Þ�þ1; (4)

where, to obtain a dimensionless quantity, we divided by
the combination M2

�F
2 which contains the zero-field pion

mass M� ¼ 135 MeV and (the chiral limit of the) pion
decay constant F ¼ 86 MeV [49]. This specific combina-
tion enters the Gell-Mann-Oakes-Renner relation,

2mud � �c c ð0; 0Þ ¼ M2
�F

2 þ � � � : (5)

Note that the normalization in definition (4) can easily be
converted into the slightly different one employed in for-
mer studies by the Budapest-Wuppertal collaboration (e.g.,
Refs. [8,50]) and in Ref. [44]. We define the change of the
condensate due to the magnetic field as

��u;dðB; TÞ ¼ �u;dðB; TÞ � �u;dð0; TÞ: (6)

Note that the �c c ð0; 0Þ term cancels from this difference.
In our normalization, Eq. (6) defines the change of the
condensate caused by a nonzero B, in units of the chiral
condensate at B ¼ 0 and T ¼ 0. This normalization will be
advantageous when comparing the lattice results to �PT
and model predictions, which are usually given in units of
�c c ð0; 0Þ. The þ1 is included in Eq. (4) so that the chiral
limit of the condensate is fixed to 1 at T ¼ B ¼ 0, and
approaches 0 as T ! 1. At nonzero quark mass �u;d will

still start from 1 at T ¼ B ¼ 0. At very high temperatures,
however, it is well known from the free case [51,52] that
the condensate receives a contribution�mT2. This term is
negligible for the temperatures under study and it cancels
exactly from ��u;d.

III. RESULTS

In Fig. 1 we display the renormalized difference
�ð�u þ�dÞ=2 as a function of B at T ¼ 0, for five differ-
ent lattice spacings. We carry out the continuum limit by
fitting the results to a lattice spacing-dependent spline
function (for a similar fit in two dimensions see
Ref. [53]). This function is defined on a set of points and
is parametrized by two values at each such node, in
the form ck þ a2dk, to reflect the a2 scaling of our action.
The parameters ck and dk are obtained by minimizing the
corresponding �2. The systematic error of the a ! 0 limit
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is determined by varying the node positions. We find that
lattice discretization errors become large at high magnetic
fields due to saturation of the lattice magnetic flux [44],
therefore we only include points with Nb=N

2
s < 0:1. In

Fig. 1 we also show the continuum limit of the difference
�ð�u þ�dÞ=2.

Next, we address the condensate at nonzero temperature,
carrying out a similar continuum extrapolation for�� as at
T ¼ 0, using three lattice spacings with Nt ¼ 6, 8 and 10.
The increase of the difference ��ðBÞ is qualitatively simi-
lar for zero and nonzero temperatures in �PT and in the
PNJL model (see below). In QCD, however, the situation is
quite different: in Fig. 2 we plot the continuum extrapo-
lated lattice results for �ð�u þ�dÞ=2 as functions of B
for several temperatures, ranging from T ¼ 0 up to T ¼
176 MeV. Note that the transition temperature varies
from TcðeB ¼ 0Þ � 158 MeV down to Tcð0:9 GeV2Þ �
138 MeV [44]. The increasing behavior of ��ðBÞ at low
temperatures (T � 130 MeV) corresponding to magnetic

catalysis continuously transforms into a humplike structure
in the crossover region (T¼148MeV, 153MeV) and then on
to a monotonously decreasing dependence (T	163MeV).
We remark that—although in the high temperature limit
the condensate and its dependence on B are suppressed—at
T * 190 MeV ��ðBÞ again starts to increase. Furthermore,
we note that the strange condensate ��s [with a definition
similar to that in Eq. (4)] does not exhibit this complex
dependence on B and T but simply increases with growing
B for all temperatures. This shows that the partly decreasing
behavior near the crossover region only appears for quark
masses below a certain thresholdmthr, in between the physi-
cal light and strange quark masses, mud < mthr <ms.

IV. COMPARISON TO EFFECTIVE
THEORIES/MODELS

In Fig. 3 we compare our zero temperature QCD result
for�ð�u þ �dÞ=2 as a function of B to the �PT prediction
[13–15,54] and to that of the PNJL model [18,55], both at
physical pion mass. We see that the �PT prediction de-
scribes the lattice results well up to eB ¼ 0:1 GeV2, while
the PNJL model works quantitatively well up to eB ¼
0:3 GeV2. Note that, since the Polyakov loop at zero
temperature vanishes, in the limit T ! 0 the PNJL model
becomes indistinguishable from the NJL model with the
same couplings.
In Fig. 4, the condensate Eq. (4) as a function of T is

compared to �PT and to the PNJL model for different
magnetic fields. At B ¼ 0 we use the continuum extrapo-
lation for the condensate presented in Ref. [50] (where
lattices up to Nt ¼ 16 were employed), and complement
this with the differences��ðBÞ shown in Fig. 2. In addition
to the continuum extrapolated lattice data we plot the �PT
curves for B ¼ 0 [35] and for B> 0 [14,15,54], together
with the PNJL model predictions [18,55]. The results
indicate that �PT is reliable for small temperatures and

FIG. 2 (color online). Continuum extrapolated lattice results
for the change of the condensate as a function of B, at six
different temperatures.

FIG. 1 (color online). The change of the renormalized con-
densate due to the magnetic field at T ¼ 0 as measured on five
lattice spacings and the continuum limit.

FIG. 3 (color online). Comparison of the continuum limit of
the change of the condensate to the �PT [13–15,54] and the (P)
NJL model [18,55] predictions.
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small magnetic fields, eB & 0:1 GeV2, T & 100 MeV.
(We remark that the inclusion of the hadron resonance
gas contribution to the condensate in �PT [35] improves
the agreement with lattice results, as was shown at B ¼ 0
in Ref. [50]. One would expect a similar improvement at
B> 0.) Since the PNJL model condensate is calculated
using a Polyakov loop effective potential that was obtained
from Nf ¼ 2 lattice results [18], differences between the

model and our Nf ¼ 1þ 1þ 1 results at T > 0 are ex-

pected to be large, as both the transition temperature and
the transition strength (the slope of the condensate at Tc)
strongly depend on the number of flavors. To enable a
comparison, we linearly rescaled the temperature axis
(only for the PNJL curves) to match our lattice inflection
point at B ¼ 0. Nevertheless, the B dependence of the
condensate for the PNJL model also reveals qualitative
differences in comparison to the QCD results.

Finally, in Fig. 5 we plot ��u ���d ¼ �u � �d as a
function of the temperature for several magnetic field

strengths. At zero magnetic field isospin symmetry is exact
since we employed mass-degenerate light quarks. As B
increases, due to the difference between the electric
charges, �u � �d develops a temperature dependence
similar to that of ð�u þ�dÞ=2, see Fig. 4. The results for
�u 
 �d are also listed in Table I.

V. SUMMARY

We determined the QCD light quark condensates at
nonzero external magnetic field strengths for physical
quark masses in the continuum limit. Our results are in
quantitative agreement with chiral perturbation theory and
PNJL model predictions for small magnetic fields and at
small temperatures. Note that the constants within these
parametrizations have not been adjusted to our data but
were taken from the literature where they have been ob-
tained at vanishing magnetic field. Unsurprisingly, �PT
fails in regions where pions cease to be the essential low
energy degrees of freedom. While in the hadronic phase
low energy models qualitatively reproduce the B depen-
dence of the lattice data, they miss an important feature
which becomes dominant for light quark masses and for
temperatures around Tc (see Fig. 2). Clearly, the coupling
between the magnetic field and the gauge background is

FIG. 5 (color online). Continuum extrapolated results for the
difference of the up and the down quark condensates.

FIG. 4 (color online). Comparison of the continuum extrapo-
lated lattice results (points) to �PT [14,15,54] (dashed lines) and
the PNJL model [18,55] (dotted lines) at different magnetic
fields.

TABLE I. Continuum extrapolated lattice results for the light
condensates, as functions of T and eB. Columns labeled ‘‘þ=2’’
contain the average ð�u þ�dÞ=2, while those with ‘‘�’’ contain
the difference �u ��d. Note that the uncertainty of the lattice
scale gives rise to errors of about 2% in the temperatures.

T
ðMeVÞ

eB ¼ 0 eB ¼ 0:2 GeV2 eB ¼ 0:4 GeV2

þ=2 � þ=2 � þ=2 �
0 1 0 1.14(2) 0.09(2) 1.37(2) 0.28(2)

113 0.90(4) 0 1.01(6) 0.08(2) 1.21(5) 0.25(2)

122 0.84(4) 0 0.96(5) 0.08(2) 1.17(5) 0.24(3)

130 0.80(4) 0 0.93(5) 0.08(3) 1.09(5) 0.22(2)

142 0.68(2) 0 0.78(3) 0.07(2) 0.89(4) 0.19(3)

148 0.57(1) 0 0.65(3) 0.06(2) 0.76(6) 0.17(3)

153 0.49(1) 0 0.56(3) 0.06(2) 0.53(3) 0.14(3)

163 0.26(1) 0 0.25(3) 0.04(2) 0.22(3) 0.07(3)

176 0.08(1) 0 0.07(3) 0.01(2) 0.06(3) 0.03(2)

189 0.00(1) 0 0.01(3) 0.01(2) 0.00(3) 0.02(2)

T
ðMeVÞ

eB ¼ 0:6 GeV2 eB ¼ 0:8 GeV2 eB ¼ 1:0 GeV2

þ=2 � þ=2 � þ=2 �
0 1.63(3) 0.47(3) 1.90(3) 0.67(3) 2.16(3) 0.87(3)

113 1.48(6) 0.41(3) 1.73(6) 0.58(3) 1.95(4) 0.81(3)

122 1.40(5) 0.38(3) 1.63(5) 0.53(3) 1.86(6) 0.70(3)

130 1.23(5) 0.36(3) 1.36(5) 0.49(3) 1.46(5) 0.61(3)

142 0.94(4) 0.30(3) 0.85(4) 0.35(3) 0.68(4) 0.32(3)

148 0.66(5) 0.22(3) 0.50(4) 0.20(3) 0.38(4) 0.18(3)

153 0.43(3) 0.17(3) 0.34(3) 0.15(3) 0.26(3) 0.14(3)

163 0.17(3) 0.09(3) 0.12(3) 0.10(3) 0.09(3) 0.11(3)

176 0.05(3) 0.05(2) 0.04(3) 0.06(2) 0.03(3) 0.06(2)

189 �0:00ð3Þ 0.03(2)�0:01ð3Þ 0.03(2)�0:01ð3Þ 0.04(2)
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enhanced near the chiral limit: the smaller the quark mass,
the more the fluctuations of the gauge field influence the
quark determinant. Thus, for light quarks the indirect
interaction between the gluonic degrees of freedom and
the external field becomes more important. A possibility to
separate this indirect effect would be to consider the sea
and valence contributions to the condensate, as was
performed in Ref. [39], which we plan to discuss in a
forthcoming study.
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Collaboration), J. High Energy Phys. 09 (2010) 073.

QCD QUARK CONDENSATE IN EXTERNAL MAGNETIC FIELDS PHYSICAL REVIEW D 86, 071502(R) (2012)

RAPID COMMUNICATIONS

071502-5

http://dx.doi.org/10.1016/0370-2693(91)90051-Q
http://dx.doi.org/10.1016/0370-2693(93)90799-N
http://dx.doi.org/10.1142/S0217751X09047570
http://dx.doi.org/10.1142/S0217751X09047570
http://dx.doi.org/10.1103/PhysRevC.83.054911
http://dx.doi.org/10.1103/PhysRevC.83.054911
http://dx.doi.org/10.1016/j.physletb.2012.02.065
http://dx.doi.org/10.1103/PhysRevC.85.044907
http://dx.doi.org/10.1103/PhysRevC.85.044907
http://dx.doi.org/10.1086/186413
http://dx.doi.org/10.1086/186413
http://dx.doi.org/10.1038/nature05120
http://dx.doi.org/10.1016/0550-3213(96)00021-1
http://dx.doi.org/10.1016/0550-3213(96)00021-1
http://dx.doi.org/10.1016/S0370-2693(97)00441-3
http://dx.doi.org/10.1016/S0370-2693(97)00441-3
http://dx.doi.org/10.1016/S0370-2693(99)01414-8
http://dx.doi.org/10.1016/S0370-2693(99)01414-8
http://dx.doi.org/10.1134/1.1358481
http://dx.doi.org/10.1103/PhysRevC.76.055201
http://dx.doi.org/10.1103/PhysRevC.76.055201
http://arXiv.org/abs/1202.2051
http://arXiv.org/abs/1205.6978
http://dx.doi.org/10.1103/PhysRevD.39.3478
http://dx.doi.org/10.1103/PhysRevD.39.3478
http://dx.doi.org/10.1103/PhysRevC.80.065805
http://dx.doi.org/10.1103/PhysRevD.83.034016
http://dx.doi.org/10.1103/PhysRevD.83.034016
http://dx.doi.org/10.1103/PhysRevD.82.054027
http://dx.doi.org/10.1103/PhysRevD.82.054027
http://dx.doi.org/10.1103/PhysRevD.83.117901
http://dx.doi.org/10.1103/PhysRevD.85.065026
http://dx.doi.org/10.1103/PhysRevD.85.065026
http://dx.doi.org/10.1103/PhysRevD.85.091901
http://arXiv.org/abs/1203.4330
http://dx.doi.org/10.1103/PhysRevD.82.105016
http://dx.doi.org/10.1103/PhysRevD.82.105016
http://dx.doi.org/10.1007/JHEP08(2012)002
http://dx.doi.org/10.1007/JHEP08(2012)002
http://dx.doi.org/10.1016/S0550-3213(97)00830-4
http://dx.doi.org/10.1016/S0550-3213(97)00830-4
http://dx.doi.org/10.1007/BF01018812
http://dx.doi.org/10.1103/PhysRevD.63.065015
http://dx.doi.org/10.1103/PhysRevD.63.065015
http://dx.doi.org/10.1103/PhysRevB.85.195417
http://dx.doi.org/10.1103/PhysRevB.85.195417
http://dx.doi.org/10.1088/1126-6708/2008/12/053
http://dx.doi.org/10.1088/1126-6708/2008/12/053
http://dx.doi.org/10.1007/JHEP03(2011)033
http://dx.doi.org/10.1007/JHEP03(2011)033
http://arXiv.org/abs/1103.0954
http://dx.doi.org/10.1016/0370-2693(87)90492-8
http://dx.doi.org/10.1016/0370-2693(87)91652-2
http://dx.doi.org/10.1016/0550-3213(89)90349-0
http://dx.doi.org/10.1016/0550-3213(89)90349-0
http://dx.doi.org/10.1016/j.physletb.2009.11.017
http://dx.doi.org/10.1103/PhysRevD.82.051501
http://dx.doi.org/10.1103/PhysRevD.82.051501
http://dx.doi.org/10.1103/PhysRevD.83.114028
http://dx.doi.org/10.1103/PhysRevD.85.114504
http://dx.doi.org/10.1103/PhysRevD.85.114504
http://dx.doi.org/10.1016/j.physletb.2008.04.050
http://dx.doi.org/10.1016/j.nuclphysa.2009.01.026
http://dx.doi.org/10.1016/j.nuclphysa.2009.01.026
http://dx.doi.org/10.1103/PhysRevD.86.016008
http://dx.doi.org/10.1103/PhysRevD.86.016008
http://dx.doi.org/10.1007/JHEP02(2012)044
http://dx.doi.org/10.1007/JHEP02(2012)044
http://dx.doi.org/10.1016/0550-3213(79)90595-9
http://dx.doi.org/10.1016/j.aop.2008.07.006
http://dx.doi.org/10.1016/j.aop.2008.07.006
http://dx.doi.org/10.1088/1126-6708/2006/01/089
http://dx.doi.org/10.1088/1126-6708/2006/01/089
http://dx.doi.org/10.1007/JHEP11(2010)077
http://dx.doi.org/10.1007/JHEP11(2010)077
http://dx.doi.org/10.1140/epjc/s2004-01593-y
http://dx.doi.org/10.1007/JHEP09(2010)073


[51] L. Dolan and R. Jackiw, Phys. Rev. D 9, 3320 (1974).
[52] S. Weinberg, Phys. Rev. D 9, 3357 (1974).
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