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Determinants for the lightcone worldsheet
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The evaluation of the determinant of the Laplacian defined on two dimensional regions of various
shapes is an essential ingredient in calculating the scattering amplitudes of strings. In lightcone
parameterization the regions are rectangular in shape with several slits of different length and location
cut parallel to the 7 axis of the rectangle. This paper offers a compendium of applications of the methods
of Kac and McKean and Singer to the calculation of such worldsheet determinants. Particular attention is
paid to the effect of corners on the determinants. The effect of corners joining edges with like boundary
conditions is implicit in Kac’s results. We discuss the generalization to a corner joining a Dirichlet edge to
a Neumann edge, and apply it to a scattering amplitude involving D-branes.
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I. INTRODUCTION

The lightcone quantization of string [1,2] was employed
by Mandelstam [3,4] to describe interacting string theory
via the sum over path histories in which interactions
between strings are interpreted simply as breaking and
joining processes as depicted in Fig. 1. The lightcone
worldsheet is parameterized by taking the evolution pa-
rameter 7 to be ixt, where the i reflects a Wick rotation
to imaginary x*; and by labeling points on the string by a
parameter o defined so that density of P* momentum is
unity. Then the dimensions of the worldsheet are

T=ix"=i(t+2/v2 Pt =0+ p)/v2 (1)

where x* and p* are the spacetime coordinates and total
four momentum of the string. The diagram in Fig. 1
describes the time evolution of a system of open strings,
breaking and rejoining as shown by the horizontal lines.

For the critical open bosonic string (i.e., the spacetime
dimension D = 26), the worldsheet path history integrates
over the transverse coordinates x(o, 7) and uses the light-
cone action for the free open string:

_ Ly P 9x)2 o[ 9%)2
NS —2[0 dT/O da[(aT) + TO(GO') ] 2)

The transverse coordinates, defined on the domain of the
lightcone diagram, are discontinuous across horizontal
lines. For each beginning and end of a horizontal line there
is a factor of string coupling g. Then the sum over all
planar open string loops is simply the sum over the number,
lengths and locations of those horizontal lines.

It is a remarkable fact that the normalization of diagrams
implied by this simple prescription, defined concretely by
introducing a rectangular grid in o, 7, correctly reproduces
all of the multi-string tree amplitudes of the dual resonance
model. This means in particular that the continuum limit of
the worldsheet lattice, introduced by Giles and Thorn [5],
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is Lorentz covariant (in the critical dimension. The sim-
plest process which reflects this is the three string vertex
described by Fig. 2.

Since lightcone diagrams are properly normalized
probability amplitudes, Lorentz covariance dictates the
P* dependence

1
Vertex ~ , (3
VPIP; (P + P))

for the vertex involving spin O states. This factor must
come from the determinant factor arising from the
Gaussian integral over x. So under P;" — AP, which is
just a scaling of the size of the diagram, the above diagram
should scale as A~3/2. A lightcone worldsheet lattice

p+

FIG. 1. Mandelstam interacting string diagram.
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FIG. 2. The lightcone diagram for the three-string vertex.
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calculation gives A~?~2/16 which makes clear the need
for the critical dimension D =26 to obtain Lorentz
covariance [5].

More generally the complete evaluation of a lightcone
interacting string diagram proceeds in two steps. First the
dependence on the initial and final data is extracted by
shifting the x(o, 7) by a solution of the classical equations
of motion. The Gaussian integral that remains is then
expressed in terms of the determinant of the Laplacian
defined on the lightcone worldsheet. In this article we bring
together in one place results on worldsheet determinants
scattered throughout the literature with the addition of
some new results and applications.”

Central to our discussion will be an insightful paper by
Mark Kac studying what he called ‘“Hearing the Shape of
a Drum” [6]. His idea was to connect the distribution
of allowed normal mode frequencies A;, which are the
eigenvalues of the Laplacian —V?2/2, to the shape of a
two dimensional membrane. Technically, he considered a
general polygonal shape and demonstrated the small ¢
behavior of

V32 = Ze, At Area - Perimeter
42t

+224(

corners

W) + o(1), @)

where the minus sign is valid for Dirichlet and the plus sign
for Neumann boundary conditions on all edges. Kac de-
rived this formula for Dirichlet boundary conditions on all
polygon edges, but it also applies to Neumann boundary
conditions on all edges. If some edges have Dirichlet and
others Neumann boundary conditions, the perimeter is
replaced by Ly, — Ly. The contribution of each DD and
NN corner is as above but DN and ND corners are differ-
ent. The suitable generalization is given, for example in
Ref. [7]:

TreV'/2 ~ Area _Lp Ly, i(z - &)
2t 4~2 7t S5 24\0;,  w
| (7 20,
- +220) + o1 5
218 (0 )+ ©)

corners

In Appendix A we confirm the ND contribution in
an elementary way for the special cases 6 = 7/2M,
M =1,2,3..., for which the method of images can be
successfully applied to the solutions of the diffusion equa-
tion. Later on we show that the general # case is also a

"For example, some of the Dirichlet boundary condition
choices for the lattice determinants and their duality properties
calculated in Sec. II, have not been previously discussed in this
context. As far as I know, the derivation in Sec. III of the
previously known result for ND corners is new, as are the
scattering applications discussed in Sec. IV and much of
the work described in the appendices.
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consequence of the 90° case (which can be inferred from
the exact calculations for a rectangle in the next section and
the conformal transformation formula inferred from
Ref. [8] and discussed in Sec. III).

For the case of 90° corners a DD, NN corner contributes
+1/16 whereas a DN corner contributes —1/16. The
lightcone open string vertex is a 360° NN corner. Putting
0 = 2,

(E-9--L ©
24\0 16

For 24 transverse dimensions the scaling power is thus
24/16 = 3/2, explaining the scaling law required by
Lorentz covariance. By taking an n sided polygon with
angles §; = 7 — €; and the limit n — oo with Y ;e; = 27,
Kac showed that a smooth closed curve will contribute a
term to the above expression of 1/6. In particular a semi-
circular arc subtending an angle # would contribute a term
0/12.

In Sec. II we quote or derive expressions for the
Gaussian path integrals defined on a rectangular lattice.
Most of these results are known: see for example Ref. [5].
We obtain the results with all possible choices of Dirichlet
(D) and Neumann (N) boundary conditions. Each determi-
nant can be expressed as a single infinite product corre-
sponding to diagonalizing the transfer matrix in either the
horizontal or vertical directions. The equality of the two
representations is a lattice analog of the Jacobi imaginary
transformation in the theory of elliptic functions.

In Sec. III we discuss some applications of the McKean-
Singer result for the relation of the determinants of the
Laplacian on two regions related by a conformal trans-
formation. In Sec. IV we review Mandelstam’s evaluation
of the determinant for bosonic tree diagrams and then
discuss some possible interpretations for the case of sub-
critical dimensions D < 26, when some aspect of Lorentz
invariance fails. Also in Sec. IV we discuss two applica-
tions for string scattering. Technical details are relegated to
two appendices.

II. RECTANGLES: LATTICE RESULTS

Recall that by virtue of lightcone parametrization (1),
the lightcone worldsheet is a rectangle of dimensions
P* X T, and only the transverse coordinates participate
in the worldsheet path integral. In the following we shall
impose Dirichlet and Neumann boundary conditions on the
transverse coordinates, in all possible permutations and
combinations, at the edges of the rectangle. Dirichlet
boundary conditions are appropriate when open strings
end on Dp-branes. Notice that with lightcone parametri-
zation the x* = 7 and x~/ = x' - X coordinates of the
string automatically satisfy Neumann boundary conditions
when x satisfies either Dirichlet or Neumann conditions, so
that the Dp-branes allowed for here always have p = 1.
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An application involving D1-branes will be discussed in
Sec. IV.

A brute force way to calculate lightcone worldsheet
determinants is to explicitly evaluate Gaussian path inte-
grals on a lattice [5]. So take an M X N finite rectangular
lattice, with a (transverse) coordinate x at each point on the
lattice. Then we have

1
det ~1/2(=V?) — [dxkz exp{‘iZ[(W )’
kl

+ (X1 — xk,l)z]}' @)

In each case N, M, K are the number of integration
variables in a row or column of the lattice.

Points on the boundary of the lattice can be fixed
(Dirichlet) or freely integrated (Neumann). The bilinear
forms can be diagonalized by expanding in normal modes,
for which the eigenvalues are:

niT

= 4sin? =1,2,...,N
@, = 4sin’ o n=12..,N (3
, M
=4 — =01....M—1, 9
B, sin? M m )
L k+1/2)7
= 27 = —
Vi = 4sin TETE k=01,...,K—1. (10)

The a’s are appropriate to a bilinear form with fixed ends
(DD), the B’s to a form with free ends (NN), and the y’s to
a form with one fixed and one free end. Then we are
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interested in the following determinants:

detDll){)zD l_[ l_[(a + am) 1/2

n=1m=

s N M-1 (1)
detpNpy = n n (a, + B2
n=1 m—=0
detD];{)zN l_[ l—[(a + oy,
n=1 k=
(12)
detDlll{\IZN n n(ﬁm +y) 12
m=0 k=
detDII){\IZN l_[ l_[(Y + oy 2 (13)
Jj=0 k=

In each of these formulas one of the products can be
evaluated exactly on the lattice. The following product
identities can be easily derived:

sin(N + l)K

l_[(a —7)= :

sink
l_[('}’k —2)=
k=0

where z and « are related by z = 4sin’[k/2]. Applying
these identities at z = 0, k = 0 shows immediately that

Dpnpn = DDDDD/VN + 1 and Dpynny = Dppp-

(14)
cos[(2K + 1)k /2]

cos[k/2] ’

A. DDDD
We then find
detml){)zn _ ﬁ [sinh(?(N +. l)siiilhl_l(sin(mw/Z(M + 1))))]1/2 _ M+ 1)1/4<sinh[2(M + l)sinh_ll])l/4
=1 sinh(2sinh ™! (sin(m7/2(M + 1)))) 2.2
M
X e~ W+ Y sinh™! sinmar/2(M+1) l_[{l — ¢ 4N+ Dsinh~ sinmar/2(M+1)1=1/2, (15)
m=1
|
where we used
M
2MM+1)G 1
M Z sinh~lsin—r o~ ( ) — —ginh 1 —— " ,
]'[(2 sinL) =M+ 1 (16)  m=i 2(M+1) 7 2 24(M+1)
M+ ’ s

ﬁ o+ a2 (sinh(2(M+ 1)sinh—11>1/z
sin = ,

2(M + 1) sinh(2sinh~'1)
(I7)
and sinh(2sinh~'1) = 24/2.
The continuum limit is M, N — oo with L = (M + 1)a,

and T = (N + 1)a fixed. For this we need

where G =Y (—)¥/(2k + 1)* is Catalan’s constant.
Then

_ L \1/4
detD]l)/gD — (za\/i) e—aLT+B(T+L)+7TT/24L
% l_[{l _ e*Zm‘;rT/L}fl/z’ (19)

m=1

with @ = 2G/ma* and B = (2a) 'sinh™'I.
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We see that, apart from the coefficient a~'/*, the diver-
gences associated with the continuum limit reside in the
terms in the exponent proportional to the area or perimeter
of the rectangle. These terms are inconsequential and
can be dropped in order to define a finite continuum
determinant

det];];{)zD,C = L1/4€77T/24L l_[{l _ e*Zmn'T/L}*I/Z_ (20)

m=1

The factor of L'/* accounts for the corner contribution in
the Kac formula, in this case 4 90° corners or 4 X (1/16).
The remaining factors depend on the shape T/L of the
rectangle. The symmetry 7 < L of the rectangle and
boundary conditions implies the equality

Ll/4e7rT/24L ﬁ{] _ e—2m77T/L}—l/2

m=1
— T1/4677L/24T l_[{l _ e—2m7TL/T}—1/2’ (21)
m=1

which is simply the Jacobi transform in the theory of
elliptic functions.”
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B. DNDN

From the identity det];;IgN = det];]lD/SD /<N + 1 we can
immediately write down

detgé/.?N,c = [-1/4 /L/TevrT/24L l—[{l _ e—2m7-rT/L}—1/2_

m=1

(23)

The scaling power is now —1/4 corresponding to 4 90°
ND corners in the Kac formula. Because the boundary
conditions break the symmetry 7 < L the determinant
doesn’t have the symmetry:

L71/4 /L/TeWT/24L ﬁ{l _ e*2mﬂ'T/L}*1/2
m=1

— T*1/4e7rL/24T ﬁ{l _ e*ZmﬁL/T}*l/Z’

m=1

(24)

The factor 4/L/T on the left reflects the propagation in T of
the zero mode of an NN string. The right shows the
propagation in L which is that of a DD string with no
zero mode.

C. DDDN and DNNN

Next we turn to the DDDN determinant. Doing the product over n, we find

detpppy =

S ’i_ll[sinh(z(N + 1)sinh~'(sin((k + 1/2)7/(2K + 1))))]1/2 _ (cosh[(ZK + 1)sinh—11])1/4

k=0

K—1
% ef(NH)ZkK:‘O‘ sinh ™! sin(k+1/2)7/(2K+1) l—[{l _ e*4(N+l)sinh’]sin(k+1/2)7r/(2[(+l)}71/2’

k=0
where we used

M (k+1/2)m\
H(z smw) =1, (26)

Ii:[l 4+ 4s; o (k+1/2)ar (cosh((ZK + l)sinh_ll)l/2
sin = ,
k=0

2K +1 cosh(sinh~'1)
(27)
and cosh(sinh~!1) = /2. For the continuum limit we need

’In standard notation with ¢ = /™" = ¢~ 271/L

this identity reads

148 T - —iT\l/4 s T =
g V*] |1(1 g = (72 ) | |1(1 g
(22)

and g =-e

sinh(2sinh ™' (sin((k + 1/2)7/(2K + 1))))

V2

(25)
[

& . (k+1/2m 2K+ 1)G
Zsmh sin ~
= 2K + 1 T

1 T

——sinh "1 4+———. 2
P 48(K + 1/2) 28)

With the understanding that the ’length” of an ND string is
L = a(K + 1/2) we see the bulk and boundary terms are
identical to the DDDD and DNDN cases. So the continuum
limit is

detlgll)gN — 273/8p—aLT+B(L+T)—7T/48L

X l‘[{l _ 672(k+1/2)7rT/L}71/2’ (29)
k=0

with @« = 2G/ma® and B = (2a)'sinh~'1 as before. The
corresponding continuum determinant can be taken to be

detl;]l){)zN,C — o~ 7T/48L l‘[{l _ e*2(k+l/2)rrT/L}*1/2. (30)
k=0
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This determinant is scale invariant in accord with the fact
that this rectangle has two ND 90° corners and 2 DD 90°
corners which contribute with cancelling signs. In this form
the determinant displays the propagation of a DN string in
T. A Jacobi transform displays the propagation of a DD
string in L>:

o T/48L ﬁ{l — ¢ 2kF1/)aT/LYy=1/2

k=0

— 2*1/4677'L/24T l_[(l + e*2n7rL/T)*1/2' (32)

n=1

PHYSICAL REVIEW D 86, 066010 (2012)

We have already noted that the determinant for the
NNND case is identical to the DDDN case we just
discussed.

D. DDNN

Finally for completeness we analyze the DDNN
rectangle, which reflects a DN string propagating in
both 7 and L. Like the DDDD case the result should
possess the symmetry 7 < L. Doing the product over j
gives

det 12, — ’i:ll[cosh((zj + 1)sinh ' (sin((k + 1/2)7/(2K + 1))))]—1/2

k=0

cosh(sinh ™' (sin((k + 1/2)7/(2K + 1))))

S | K—-1
_ (COSh[(zK + Dsinh 1])'/46—(”1/2)250‘ sinh~! sin(k+1/2)7/ (2K +1) [Ti1 + 2@ Dsion sinke1 2/ 2K -1y =172,

V2

~ 23/8,—aLT+B(L+T)~7T/43L ﬁ{l + e—z(k+1/2)7rr/L}—1/2

where the last line is the continuum limit with the identi-
fications L = K + 1/2 and T = J + 1/2. Just as in the
previous cases the continuum determinant can then be
chosen as

det];]l){\lzN,C — o~ 7T/48L l—[{l + e—2(k+1/2)7TT/L}—1/2 (35)

k=0

And the symmetry under 7 <« L is yet another Jacobi
relation

o~ 7T/48L ﬁ{l + o 2k+1/DaT/LY=1/2
k=0

— o~ 7L/48T ﬁ{l + e 20kF1/D7L/TY=1/2,
k=0

(36)

A noteworthy feature of the lattice definition of the various
determinants is that the bulk and boundary terms are
identical in all cases: —aLT + B(L + T) regardless of
how Dirichlet and Neumann conditions are assigned.
This contrasts with the diffusion equation method of Kac
and McKean-Singer. Of course this statement entails a
varying identification between the continuum lengths
and the number of degrees of freedom: L/a = M, N + 1,

*In terms of ¢, ¢ defined in the previous footnote this identity
reads

q1/96 l_[(l _ qk+l/2)fl/2 — 271/4[]71/48 l_[(l + qn)*l/Z. (31)
k=0 n=1

k=0
(33)

(34)
k=0
|

K +1/2 for NN, DD, DN conditions respectively,
and similarly for T. That is, there is an intrinsic ambiguity
in identifying a unique ‘“‘continuum’ length. If we ex-
press these three lengths in terms of the ND one
Ly = a(K + 1/2), they are Ly — a/2, Ly, and L, + a/2.
This is a variation that mirrors the results of the diffusion
equation continuum method.

E. NNNN

We end this section with a brief aside on the NNNN
case, which requires special handling because of the zero
mode. This zero mode is due to the translational invariance
of the Gaussian integral (7) that we have used to define
determinants. To interpret it add a source term iy ;;x;Jy; to
the exponent. Then insert (a la Fadeev-Popov)

1
1= [da(S(a - m%)ﬁd),
in the x integrand. A change of variables x;,; — x;; + a

transfers the a dependence to the exponent and then inte-
gration over a produces a delta function factor

ia) J
fdae % Y= 27T5<Z‘Ikl)'
kI

Since J is conjugate to x, we see that this factor simply
enforces momentum conservation. This interprets the infi-
nite factor due to translation invariance as 276(0) = oo,
The coefficient of the delta function has a finite zero source

(37)

(38)

limit J;; — 0. We define detﬁ,ﬁN as this coefficient at zero
source:
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— 1/2 _ 1
detynaw = [ dxid W%xkl
1
X exp{— EZ[(xk,H—l — X )* + (X1 — xk,l)z]}'
Kl

(39)

When we change variables to normal modes g¢,,,, normal-
ized so that the Jacobian is unity, we find that Goo/MN =
Y xw- Hence the effect of the delta function is to multiply
by VMN and delete the contribution of the zero mode:

(m,n)#(0,0)

N e
:VMNl_[,Bm l_[.Bn detpppp

m=1 n=1

= detg /2. (40)

This formula confirms that NN 90° corners have identical
effect to DD 90° corners.

III. CONFORMAL TRANSFORMATION

More generally, under a conformal scaling g, — 2> g,
the change in the determinant of the Laplacian is given
by [8]

| | ds d3
1 _U2)) = b= =
5 S8(TrIn(—V?)) A [dAg dz, dz,

1 1
+— +—
o [d€k2 Y /dARZ

P (ke

i
0,’ o

2'4-DD,NN
1 T 20,

- — —+ ). 41
18 2 <0i - )E(Z,) 41

corners

Here it is understood that the two determinants have the bulk
and boundary terms dropped. Actually this formula does not
explicitly appear in Ref. [8]. Rather the first three terms in
the asymptotic behavior as t — 0 of Tre'V" are explicitly
calculated in terms of the geometry of an arbitrary smooth
manifold endowed with a metric g,;,. The change formula
then follows after a straightforward evaluation of the differ-
ence of their results for two manifolds related by a confor-
mal transformation (see, for example [9]). When the
boundary is only piece-wise smooth, the corner terms that
appear can be inferred from Kac’s results, and their general-
ization to DN corners.

A. DD corners from conformal transform of a rectangle

We can use (41) to obtain the measure for the region
on the right of Fig. 3 from the measure for the figure on
the left, or, more fundamentally, from the measure for a

PHYSICAL REVIEW D 86, 066010 (2012)

- I

€ R

FIG. 3. Two geometries related by the conformal transforma-
tion y = z0/7.

rectangle, which we have explicitly evaluated in Sec. II by
introducing a rectangular lattice.
The shapes in Fig. 3 are related by the transformation

dy =(ﬁ— l)lnlzl. (42)
dz T

However, we begin by recalling a formula for the determi-
nant of an M X N rectangular grid [5].

a
y=529/”, 2=ln

det™1/2(=V2) = (M + 1)1/4<Sinh[2(M + 1)sinh'1])1/4

sinh[2sinh 1]
% e*(N+1)Zf‘::1 sinh™! sinmar/2(M+1)

M
X l_[{l _ e*4(N+1)sinh’lsinmw/Z(MJrl)}*l/Z_
m=1

(43)

In the continuum limit M, N — oo, with T/L =
(N + 1)/(M + 1) fixed, this reduces to:

det’l/z(—vz) ~ Ke@LT+BL+T) ] 1/4,7T/24L

X l_[{l _ e—ZmﬂT/L}—l/Z. (44)

m=1

The factor of L'/* reflects the scaling predicted by Kac for
the four 90° corners of the rectangle. We may therefore
choose a standard rectangle setting L = 7 and dropping
the divergent area and perimeter terms in the exponential
prefactor,

detppip rea(— V) ~ e TTHL — e 2T} 1V20 (45)

m=1

It is convenient to coordinatize the rectangle by the com-
plex variable p = 7 + io, with 0<o <7 and T, <7<T5,.
Then the conformal transformation, z = ee?p maps the rect-
angle onto a wedge of an annulus of angle # inner radius
€ = ¢''/7 and outer radius R = >/ To get the deter-
minant for this new region, we first compute

d o
= Eedv, 2= lnﬁ + — Rep,
dp T T
0/m =T, (46)
BHEZ{—G/W =T, ,
0 o=01
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0 6 R
—— ¢ dp2d,2 = T = _—In— 47
2477 20,3 = dar (=T = 241 ne (47)
From the 90° corners we need
1 176 6 1 7]
Thus we have
1 1 (7
— - Indetpp aunular wedge = — 5 Indetpppp reet T 57— In— + (lnR + Ine + 2 ln—)
2 2 e 8 T
T2 - Tl —2m(Ty—T)) 0 ( OR 06)
= — 7 m + ——In— + — + In—
5 Zln(l e )+ oy In_ o (In— + I
1 & 7 O0\. R 1/ 6R Oe
= —= Y In(1 — (¢/R)*"™%) + — ( +—)1—+ (1—+1—)
2 mz:: n( (€/R) ) 24\6 = ne 8 n7T n7T
1 /m 6\. R 6R Oe
In— In— + In— 49
24 (0 7T> ne 8 n T n 77) “49)

where the last line is valid for € < R. If we drop the € terms in this limit, the R terms that remain should give the

determinant for the wedge with the annular hole removed
1 (77
24\ 0

where we also dropped the scale independent term (1/4) X
In(@/7). The first term agrees with Kac’s formula for
corners: one corner of angle 6 and two corners of angle
ar/2. The last term is the contribution from the circular arc,
which we have seen follows from the Kac formula for a
limiting polygon with corner angles ~7r. In this way we
see that the conformal transformation formula embodies
Kac’s result as well as it’s McKean-Singer generalization.

- 5 lndetDD wedge

1
- 5 1ndetDNannularwedge == E lndetDDDNrect

241

]l & 1
=—-N"1n(1- R)@k+D)7/0y (_
3 21 = (/R £

Dropping the € terms produces the determinant for a wedge

of angle 6
1 1 T 0
—ElndetDNwedge =ﬂ(—ﬁ+;)lnR
1 /7 6 6
=——(—+—)InR + — InR.
24(29 w)“ 27 "

(52)

Again the last term accounts for the contribution from the
circular arc that closes the wedge, whence the first term
must be associated with the DN angle itself. (The corners at
the end of the arc contribute opposite signs and cancel.) It
is seen to agree with our generalized Kac formula.

0)lnR + - InR = i(z — g + 3)lnR + i InR,
T T 127

0 R
ln———

(50)

24\6

B. DN corners from conformal transform
of a rectangle

If we replace the DDDD rectangle used in the
previous subsection with a DDDN rectangle we learn
about DN corners. In that case the corner contributions
to the conformal transformation formula cancel and we
have

T,—T, 1& B B 0 R
P 1 1_ (2k+1)(T2 Ty) +71 _
43 2;)“( ¢ ) 2ar e
m 6\. R 1 m 6\. R €
T 0\t~ T 0nE, fo0 61
26 w)“e 24( 26 W)ne R S

I
IV. LIGHTCONE BOSONIC TREE

From Mandelstam’s work [10], the measure factor for an
N point tree is

|£ det~P-2/2(~2)
9Z
(26—D)/24
Z l_[ l-[ |xt - xrl
N—1 |a |N*3r<t—
|(D 2)/48 N 1-[|Z —z |
l m
m<l
(53)
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where a, = 2p;". The rest of the Koba-Nielsen integrand
is just the usual [T, ;1Z; — Z;|*"% (in units where o’ = 1)
and for which k5 = (D — 2)/24.

The quantmes Z,, withk=1---(N — 1), and x,, with
r=1---(N — 2) are determined from the map from the
upper-half Koba-Nielsen plane (z) to the lightcone world-
sheet (p = 7+ i0):

N—-1 dp
p=> alniz—Z), — =0, (54)
k=1 dz | o=y,
dp 2w - akﬂ(z—Zz)
d_z_,;z—zk_ l;l(z—zk)
l_l(Z - xr)
(55)

PHYSICAL REVIEW D 86, 066010 (2012)

so that the asymptotic strings at 7 = * o0 are mapped from
the Z;. In this notation Zy = oo, Z; = 0. A useful identity
follows by setting z = Z,, in the identity

—ay[le=x) = a]z-2) (56)

k=1 I#k

N—1

- aNl_[(Zm - xr) = Z akl_[(zm - Zl)

k=1 I#k

= a,[[Z. - 2). (57)

[#Fm

IaNINl_IIZ — x| = ]_[ [ 112k — (58)

1#k

Then the measure can be put in the more suggestive form

(26—D)/24
aT 0-2/2(_y2) = l_[ 1 [Mlx, = x| 1112, — Z,l
det™ = ZN 1 W |a/ |N73 r<t m<l
|( )/ N l-[ |Z[ — Zml
- m#l
(26—D)/24
l-lla'kl [Mlx, —xII11Z, - z,l
ZN 1 l—[ (D 2)/48 r<t m<l
il |0‘N|3 Mz, — xl
Lr
(26—D)/24
N l'llakI*/z [Mlx, —xII11Z, - Z,I
= 4N-1 l-[ r<t m<l , (59)
k=1l IaNP 1z, — x|
Lr
(26-D)/16 (26-D)/24
ﬁ 1| e Ml = 1112 - 2,
= ZN*l = r<t m< . (60)
=1Vl | layl 1z, — x|
Lr

A. Interpretation of D < 26

The factors in square brackets spoil Lorentz covariance
for D <26. However the x,, Z; dependence of these
factors is in a form that can be cancelled by inserting an
operator of the form e™¥#() at each x,, Z,. Here ¢(p) is
one of the transverse string coordinates. Take the D indices
of x*tobe 0,1,2, -+, (D — 1). Then x* = (x° + x!)/+/2
and the transverse components are 2,---(D —1). We
choose ¢(p) = xP~!. Clearly inserting such operators
sacrifices the full SO(D — 1, 1) Lorentz invariance. But if
the Lorentz violating measure can indeed be cancelled in
this way, the scattering amplitudes will be invariant under
SO(D — 2, 1) Lorentz invariance. For example, to get a
subcritical string theory that respects 3 + 1 Lorentz invari-
ance, we should start with 5 =4 + 1 dimensional space-
time.

The contribution of the field ¢ to the Boltzmann factor
of the worldsheet path integral will be

B(6) = expl~ - [@o(VF + iy dlp(x)

+iy

Tk)}. (61)

The last term converts the initial and final state description
from coordinate space to momentum space, and we special-
ize to a constant momentum density on each string at initial
and final times. Here, to conform with Mandelstam’s (and
also Giles and Thorns) conventions, we have taken o/ = 1
and scale the worldsheet spatial coordinate o 1q = T O ey =
T new/ 27 s0 that on a given string 0 < o7, <27p] = 7a;.
Thus p = 7+ i0 ey, and henceforth o = o,

066010-8
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We can extract the y dependence of the path integral by
completing the square in the usual way. We shift ¢ — ¢ + ¢
and choose c to cancel the linear terms:

Ve =2miy3ap —ple)), el =i

62
e, =il el =0, (02)
P
B(¢ +¢) iy i Pk /
In =+—=> clx; — do,cloy, ).

(63)

The answer can be expressed in terms of the Neumann
function

—V2N(p, p') = —2m8(p — p'),
, (64)
3.N(p, p),c0 = fp).
Then applying Green’s theorem we have
c(p) = —WZN(;O (x,). p [ doN(p, p')
e
+ ’Z Pi fdakN(p o)) +— [da' cf)lT
kEl
(65)
The last term, independent of p’ drops out of InB/B:
B(¢+c) v’
In———— N(p(x,), p(x))
B, 22N

+yz

Pk [ doN(p(x,). po)

PrDi
[ dodo BN p). (60

The Neumann functlon on the upper half plane is

N(z,z')=Inlz—Z/| +In|z = 2"|—=2Inlz = 2|, (67)
when one or both z’s are on the real axis. Then, with z(p)
the conformal map from the string diagram to the upper
half plane we find

B(¢ + c) 2
B, T 2

+ZPkP11ﬂ|Zk Z)| +7221n|x —x,|
]

+- Z[ddeUk

Note that Z, which we have set to oo, appears on the right
side in the combination
N-1

2pN<y + > pk) InZy = —2p% InZy, (69)
k=1

In —x,| + 2y2pk1n|xr ~Z

N(pk, pr)-  (68)

so the terms involving Z, for this special dimension will
combine just as with the other dimensions into the terms

PHYSICAL REVIEW D 86, 066010 (2012)

that lead to the mass shell condition on the Nth leg. We
therefore can drop them. The self-contractions on the last
line need further discussion. Those in the last term are of
the same form for all transverse dimensions and combined
give the mass shell condition. Let us denote the first D — 3
transverse components as a vector p; in bold face type,
retaining roman type for the last one. Then the lightcone
mass shell condition reads

D-2
24
The left side of this equation is Lorentz invariant

Pip pi which should be +1 to describe the subcritical
Veneziano model. This requires that p7 = (D — 26)/24,

or p;, = *iy/(26 — D)/24. In this case the requirement
dpi=-(N-2)y, (71)
k

can be met if p, = —iy/(26 — D)/24 = — for N — 1 val-
ues of k and the Nth momentum is +i4/(26 — D)/24 = +7.

Finally we need an interpretation of the self contractions
at the interaction points. Infinities in these contractions can
be absorbed into the coupling constant, provided they are
independent of the geometry of the worldsheet. Since the
lightcone worldsheet is the fundamental starting point, we
should set any regulator cutoffs in the p coordinate. Let us
examine p(z) near z = x,, where dp/dz = 0:

pi—2pip; = - p}. (70)

d2
p@=p) 38| e—x
l-[ (xr - X )
d2,0 _ _ SEY
d—Z2 7=X, o l;[(xr - Zk) ' (73)
l-l(xr - Zk) 12
z—x, =qp—px) k . (4
—ay 1;[ (x, — x,)

l2(p) = 2(p)| = lp = p(x,) = 4o’ = p(x,)
l_l\/ X =zl

(75)
\/laNll'lsllx
22 l_“xr_Zkl
Inx, —x|—’ (N—2)Ine+In—"*
lan V=2 T x, —x,]
s#Fr
(76)
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2

Y |CVN|
— | (N —2)Ine + In=———
l'[ |01k|
l-“xr - Zk|2
+Ine 2t (77)
l_llxr _xslnlzk -
SFr k#1

The last line is our interpretation of the self contractions at
the interaction points where we have let € be a measure of
the cutoff regularization on the lightcone worldsheet.

Having taken care of the terms involving Z, and the self
contractions at the external states, and setting p, = —v,
for k <N and py = +7, what is left of the contribution
from the insertion operator is the correction factor

2/2
l‘[lx l'l 1Z, — Z)| 7

C = eN=27*/2| r#s k¢l<N
n |xr - Zkl2
r,k<N
¥2/2
X lay]
HQIQII |a<k|
72
(N=2)y2/2 [Tlxs = x| IT 12 = Z)]
=€ r<s l<k<N
l-l |xr - Zkl
r,k<N
-7*/2
N—1
x | TL= el . (78)

PHYSICAL REVIEW D 86, 066010 (2012)

More generally we can choose another momentum
p, = tv,with p, = —vy for k # n. In that case the terms
in InC linear in p, change sign, that is

— ZyZZInlx, - Z,| +2y? Z In|Z, — Z,]
r k#n,N

— +292) Inlx, = Z,| = 29> > In|Z, - Z,|
r

k#n,N
= —Z'yzZlnlxr - Z,| +2v° Z In|Z, — Z,]
r k#n,N
+ 4y nlanl, (79)
|yl
where we have used the identity —ay[].(Z, — x,) =

a,[Tiznn(Z, — Z;), which we have proven earlier. Thus
in more generality the correction factor becomes

,}/2
-7

[Tlx, — x|

C = eN-27/2| r<s

[T 1z,

I<k<N

l-[ |xr - Zkl

rk<N
- ol |77 e, | 7
[ fay [mm] | ®0

Note that this formula embraces the previously obtained
special case n = N.
Finally we combine this correction factor with the mea-

o
| sure, setting Zy_; = 1:
|
(26—-D)/16—y2/2 (26—D)/24+7>
oT | —(0-2)/2 N N |e, | 147 l_l |ak| nlxt xr l-[ |Zl_Zm|
cl= det (—V2)=¢eWN-2y /21'[ [_”] k<N r<t m<I<N
9z =1l |anl IT1z,—x,l
= N ! r
riI<N

(26—D)/16—y2/2

(26—D)/24+?

N ITlal Mlx,—=x1 I1 1Z,—2Z,l
= e(N—2>72/2l_[ L la, P 7™ T iz "
k=1 |ak| |01,,| |C¥N|3 l'l |Zl xr

We recall that the N point tree amplitude is obtained by
multiplying this measure factor by the factor

dZ, -+~ dZy_, l_[ |Z, — Z,|?PrPm,
m<I<N
D—2 (82)
=p2—2ptp = — A2
p pp 24 Y

and integrating the Z’s over the range Z; = 0<%, <
Iy < <Zyo<Zy-1=1,where Z, =0,Zy_; =1,
Zy = oo are held fixed.

It is of interest to write the formula for the scattering
amplitude in a general projective frame where Z; <

rI<N
(81)

Zy—1 <Zy are fixed to general values. This is done
by making a change of variables by a projective trans-
formation Z, — Y, = (aZ, + b)/(cZ; + d) under which
Zl:O—’leb/d, ZN,1=1—>YN,1=(a+b)/c+d),
and Zy = co — Yy = a/c. In this case the map from the
z-plane to the lightcone diagram includes all N terms:
d Zak [1z—-71)
P I#k

N
p=}§1akln(z—Yk), d_zz—E[(z—Yk) . (83)

The numerator of dp/dz is a polynomial of degree
N — 2 because Y a;, = 0. Let its roots be &, which are

066010-10
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the images of x, under the projective transformation
&, = (ax, + b)/(cx, + d).

Zakn(Z -Y) = (Zalyl) n(Z — &)

I#k

- (84)
aml_[(Ym - Yl) = (Zalyl) l_[(Ym
l#m 1 r=1
The scattering amplitude then becomes
Ay =y =Yy )Xy = Y)Yy — 1))
< [ars--avy [T - P @5)
m<l
v [ladqes-oye-y
M=eN-272T]——| &~
] e
s [MIE & H 1Y, — (26-D)/24+?
% |an| r<t
PXDAR l_”Yz fr ’
1
(86)
where now factors involving Y are included in the various

products.

We see that since there are two noncovariant factors
raised to different powers, the only Lorentz covariant
choice is y =0, D = 26. For D <26 the best one can
do is either remove the noncovariant &, dependence by

Ay = [de cdZy o [ 120 = zilPrer
k<I<N

= [dzz cedZy_s n |Z, — Z,|2Pep
k<I<N

k<I<N

PHYSICAL REVIEW D 86, 066010 (2012)

setting y> = (D — 26)/24 or remove the other factor with
only a dependence by setting y> = (26 — D)/8. We have
already seen that in the first case the external states have
p> —2p*p~ = 1. Then the amplitude is just the general-
ized N-point Veneziano amplitude times the noncovariant
function of the «

_ ) _
l_[|ak| (26—D)/16—y*/2 l_”a | (26—D)/12
kiln | N k;&ln | (87)
a, a,

This noncovariant factor distinguishes the particle n
which is assigned +7y from the N — 1 others assigned
—+, and it is the only feature that does so. It is interes-
ting that this factor satisfies tree factorization by itself.
This means that removing it by hand leaves a covariant
amplitude that distinguishes none of the particles and
that factorizes as unitarity demands. This ad hoc proce-
dure would however destroy a local lightcone worldsheet
description,

The second choice y?> = (26 — D)/8 maintains the
scaling behavior demanded by Lorentz invariance, but
sacrifices Lorentz invariance in the behavior of excited
states. In this case the external state momenta satisfy

D—2 26—D _D—20

24 8 6 (58)

Z=2p*p”

The N-point scattering amplitude is then proportional to

dZyy T] 120 = Zylprem—Co-DI/s lay Ve, |?

26—D)/6
l-”xt r l-[ |Zl_Zm| ( /
| n r<t m<I[<N
layl? [1z; — x|
— Lr
(26-D)/6
_ lx, — x
eV e, b I
[Tl [T 1z, -zl
k k<I<N
(26-D)/6

[Tlx — x|

|ak| r<t

Note that the role played by the field ¢ in this discussion is similar to that of the Liouville field in Polyakov’s treatment of

the subcritical string [11-14].

B. Four-point examples

We have seen that some aspect of Lorentz invariance is lost when D < 26. To illustrate this we work out the 4-point

amplitude in various cases. We first look at the unmodified lightcone 4-point amplitude at general D (taking Z,

Z’ Z3 = 1, Z4 = 00):
|X2
Z(1 -

Ay = ]dzl_[| kl(D 2)/48[' ayl

1 _ —a(s)— (i) —
- dzn—|a gllalie = n 00Dz 011 =z o0
k=1 k

Let us define

=0,2, =

X1|

(26—D)/24
=2

Z2p1p2(] — Z)2p2ps

(89)
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2p, - py — (26 — D)/24

(p1 + p2)* —2(D —2)/24

— (26 — D)/24
= —s—(D-2)/24-1
= —al(s) — 1, (90)

2py - ps — (26 — D)/24 = —a(r) — 1, 1)

a;=a; +a; (92)
Then
lag2lxs — x112 = (e + ay + Z(a; + a3))* + 4Zaa,
= ah(1 — 2)* + a3, 2?
+(af, + ady —afy)Z(1 - 2). (93)

The last form shows that, in spite of the lack of Lorentz
invariance, A, is crossing symmetric, which immediately
follows from the change of variables Z — 1 — Z. To check
factorization, note that the poles in s arise from Z ~ 0, for
which

|a4|2|x2 - .Xllz b (al + az)z, (94)

so the contribution of this factor to the residue is
|y, ~(P=2/24 Thus we have

4 1—(D—2)/24
1 lays|
A ~
! 1!:[1 lat|P=2/48 p2 — (D — 2)/24 — |ap|p~
1
~ oy ayay,|~0-2/48 _
e [p? — (D —2)/24)/lap] - p
X |a3a4a34|7(D72)/48, (95)

which is precisely the desired factorization property. In this
way we see that the unmodified scattering amplitudes for
D <26 are crossing symmetric (cyclic), and unitary
(factorizing poles), but lack Lorentz invariance because
of the p;” dependence.

C. Branion branion scattering

In a four-dimensional theory the transverse space is two-
dimensional. To describe this situation with critical 26
dimensional open strings we make a 2 + 22 split of the
24 transverse coordinates (x', x2;y!, - - -, y*?) and impose
Dirichlet conditions y* = 0 at both ends of each open
string [15].

The concept of branions was introduced in the context of
quantum field theory [16] to get a handle on the force
between external sources in lightcone quantization, where
it is beneficial to maintain p™ conservation: the sources are
fixed in transverse space but free to move in the longitu-
dinal direction. In addition to bulk gauge fields, we intro-
duced dynamical source fields that lived at a point in
transverse space, but were free to move in the lightcone
longitudinal direction. In other words the source fields

PHYSICAL REVIEW D 86, 066010 (2012)

FIG. 4. Worldsheet for branion scattering.

lived on 1-branes. We called excitations of these source
fields “‘branions”. Of course, the branions interact with the
bulk gauge fields.

To translate this situation to string theory, we associate
the bulk gauge fields with open strings ending on a stack of
D3-branes. They have two NN dimensions and 22 DD
dimensions. We associate the branion of Ref. [16] with
an open string with one end on a 1-brane within the D3-
brane, and the other end free to move in the bulk of the D3
brane. Thus, the physical situation of branion-branion
scattering in string theory is an open string, with one end
free to move in the two-dimensional x space and the other
end fixed at say x = 0, scattering from another open string,
also with one free end and the other end fixed to a different
point, say x = R. Only the free ends participate in the
interactions (see Fig. 4). Examples of such string ampli-
tudes have been obtained long ago in Ref. [17] in the
context of building dual resonance amplitudes with
Regge trajectories with intercepts less than 1.

It is just as easy to analyze a D = d + 2 dimensional
theory using a (d, 24 — d) slit of transverse space. The
ground state mass of each branion string is then given by

24 —d N d d—16
24 48 16

Because the scattering kinematics is 1 + 1 dimensional,
p~ conservation implies either forward or backward scat-
tering. The figure shows backward scattering p = —p5
and p7 = —p{, with corresponding relations among the
a;’s. In the mapping to the upper half plane we choose
Zy=1,2,=U, Z3 =0, Z, = . Then the scattering
amplitude is

1,72 —
O Mpranion

(96)

2

8 ! .

M= deI) U)?qToR/4m
apis Jo PN

X (1— U)*(d716)(p|*/p2*+p;/p,*)/16

X [Jd=16)(p| /p; +p5 /p{)/16

2
- éjr + fldUD(U)qu"RzM”(l — U)2Prray=2rpe
4py sy Jo

_ g [14(1—k)dk T0R2/47T( 4k
apipy Jo (1+k) (1—k)?

2pi P2
)” " Dy,

97
here ¢ = e~ ™K'/K is the modulus associated with the map
of the rectangle to the upper half plane (see Fig. 5). The R
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/ N\ N\
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A\ /N /N 7

FIG. 5. Rectangle mapped to the upper half plane by an elliptic function. The horizontal boundaries can be taken Neumann, and the
vertical ones can be taken Dirichlet. The small circular arcs in both figures are all meant to be infinitesimal and are centered on
potentially singular points of the mapping. The large semicircle on the right is meant to be infinite.

dependence arises after shifting the string coordinates by
the classical solution, x, = R(K — x)/2K in the z = x +
iy plane, that sets both Dirichlet boundary conditions to
x = 0. In the discussion of that figure, we established
that U = (1 — k)?/(1 + k)2, which was used to obtain
the last line.

Consulting (B53) in Appendix B, we have

(1+ k)?

D> =de tDNDNm

(1+k)?

m)712
4k*(1 — k)*

=(2K) °q~"[]01 - (98)

& [1 (1 + k)@=10/4 g ( 4k )Mm .
pipd Jo @21 = 2)@-9/6 \(1 - k)2
ToR?/Am—d/48

q
* CRYFII g >
We recall the relations between &, K and g:
0,(0)* _ (1+4")°
K= : 100
03(0)4 l_[(l + 2n— 1)8 ( )
4 o (1 _ _2n—1)8
T (VA & A _ ) , (101)
93(0)4 ol (1 + q2n 1)8
(2K = m26;(0)' = [J(1 + ¢*)3(1 = g™)*. (102)

n=1

From these relations we see that ¢ ~ k>/16 for k — 0. In
this limit the integrand then behaves as

ToR?/2m—d /24
(‘j% (4k)29'Pi-p2 kOT
2k T
422'pi°pa
- (277.3)11/12

We note that the invariant (mass)? in the 12 channel
—M? = (p, + pr)> =2p, - p, — (d—16)/8a’ since

dkkT0R2/27T+2a’P1'P2_d/8_ (103)

a'p? = —(d — 16)/16. Integration near k = 0 then gener-
ates a pole at

ToR?
D= —1 or MP=T}R> -

g2 —
a' M- = —,
2 a’

(104)
since o/ = 1/27T,. This is in accord with the presence of
a stretched string of mass M ~ ToR between x = 0 and
x = R in the 12 channel. The zero point energy squared
—1/a’ is also in accord with that of a DD ground string.

Singularities in the 23 channel arise from integrating
near k = 1. To analyze them it is best to do a Jacobi
transformation on the various infinite products. Define g
via the relation IngIng = 72, so ¢ — 1 implies § — O.
Then

—Ing\'2_, 1, PYNSRYIPS = 2%k
( - ) g g(l_q )= g/ g(l_q ), (105)
g AT+ ) =g ] + ¢, (106)
k=1 k=1
g VI = gt =222 [T + %), (107)
k=1 k=1
2125112 l_l(l + g2y = g~/ l‘[(l —g* 1. (108)
k=1 k=1
From these identities we infer
(1— g1y
l_[(1 + gy (109)
00 4 q2n)8
2 =
1 =k =169 l_[(1+—2n ns’
(2K)* = 7°65(0)*
—Ing\2 & _ _
= () [Ta+@ra - g, o)

n=1

066010-13



CHARLES B. THORN

[Ta-am=TTa-¢H1-¢*"
m k

—1na\1/2
=—1/6q—1/24(ﬂ) \/51_1(1—51“), (111)
k

o

—1ng\d/2 &
KT =g = ey (D) P T+ gy
m ™ n=1

X(l _q4n)dqd/12q—d/48_ (112)
Thus we see that § — 0 implies that k — 1. To analyze
integration near k = 1, we substitute these relations in
the integrand, dropping terms that vanish like a power of
(1 — k) or a power of g:

>2a’p1 py TR /AT

I dk 4
8(1 — k)@-0/e ((1 — k) (2m)@/4 g2

o (— anI)d/z
o

_ dg <1
2(2mw) 4G \16g>

% <__7T)d/ 2 o™ ToR?/41ng.
Ing

)20/171 pr+(d—8)/8

(113)

Integration near g = 0 generates a branch point (because
of the powers of Ing) in the variable (p, + p3)> =
(p1 — p2)? = —2p, - p,— (d—16)/8a’ at 1/a’. This
precisely reflects the propagation of the open string
tachyon (with (mass)> = —1/a’) between two points in
transverse space.

The small g region of integration controls the large R
behavior of the scattering amplitude. To clarify this point,
it is helpful to change variables to 7 = — Ing which is
large for small g. Then we apply a saddle point approxi-
mation to the integral

(o) m\d/2 7TT0R2
1= [A dT(T) exp{—Z(a’p%3 - 1T — T }
_ mMTRH)VA (87T(a’p§3 — 1)>d/4
25/4(a,lp%3 _ 1)3/4 TORZ

X exp{—Ry[p3; — 1/a'}, (114)

where the saddle point is at T = \/77'T0R2/8(a’p%3 - 1)
which is large for large R. Notice that for 4 dimensional
spacetime (d = 2), this large R behavior is precisely that of

the Kelvin Bessel function K(Ry/p3; — 1/a’), which is

the R dependence of the corresponding scattering ampli-
tude in quantum field theory.

To compare our results to those of Siegel [17], we make
use of some identities from the theory of elliptic functions
[18] to rewrite our expression for D. First note that
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21/0q VAT = g™) = 0.(0)720,(0)1/65(0)/¢

= 2_]((1 _ k2)1/6k1/12,
T

(115)
Then
6
1
DM — T 1K) 12
16( ) 4k3(1 — k)°
b 1+ k)'?
= —[2(1 + HK(k)] "2 s
16[ ( VK@ 4k (1 — k)°
= m2K(1 - U)]"?U3(1 —-U0)3.  (116)
Then (97) can be written
2_d/4  p
o f AURK (T = D) 42 47
Py Py Jo
X (1 — U)2Prp2a=d/8=2p1p2=d/8, (117)

The amplitudes calculated in Ref. [17] would have R = 0
and would not necessarily be for backward scattering. We
obtain agreement if we set R = 0 in the above formula and
2p2 Py = _2p1 P2 in Ref. [17]
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APPENDIX A: METHOD OF IMAGES

The empty space solution of the diffusion equation is
simply

1 :
Plp = p',1) = 5 e 0mP 12 (A1)

For a wedge of angle § = w/2M D or N boundary
conditions can be arranged by placing sources at angles
*a+nw/M, n=0,1...,2M — 1 where the source in
the wedge is at angle «. To impose N conditions on both
edges of the angle choose the same sign for all sources. To
impose Dirichlet conditions on both edges, the image
charges alternate in sign. Finally to arrange D conditions
on the abscissa and N conditions on the ray § = 7/2M,
choose the sign pattern + + — —+ + — —+ +--- +
+ — — counterclockwise around the circle. Here the first
+ is the sign of the original source.

For all cases, as one goes counterclockwise around
the circle, (p — p,=)*> assumes the values 2p*(1 —
cos(nm/M — 2a), 2p*(1 —cos(na/M). Then
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2M

1
Tre'V'/2 = f d’p—1| 1+ +
wedge 27t ,; (_)n—l

e—pz[l—cos(mr/M—Za)]/t + Z +
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2M—1 +

e—pz[l—cos(nﬂ'/M)]/t . (A2)

)

where the signs in the sums are for boundary conditions DD, NN, DN respectively.
Except for the 1 term and the n = 1, 2M terms of the first sum, the integral of p over the whole infinite wedge is finite.
The integral of the 1 term is simply A/27t where A is the area of the wedge. The integral of the n = 2M term of the first

sum, restricting 0 < p < R(«),

1 w/2M R 2 i 1 7/2M 1
- d d —2(p?/n)sin*a :_[ d
27Tl,[0 a[o pape 41 Jo Y sinta

w/2M
=Lf/ da(l—

1 T 1 [
~—-—cot—+—
87 2M 4t

1 t”+1f°°d n(R’_I_R) 1
PR SO Ry__1
sr oM 2wty 7 R Jm) 8w

R(0)

1 7T

The integral in the n = 1 term of the first sum gives the
same result with R(7r/2M) in place of R(0). The remainder
of the first sum gives

| 2M-1 /M
— + / da
27t = (_)n—l 0

—2(R2/t)sm a)

—t+ —
87 2M 42

(1 _ 6*2(R2/t)sin2a)

( cota)

1 T/2M . d
— ——cot%(l _ e*Z(Rz/t)sm 77'/2M) _’_m/ dae*Q(Rz/r)smzaCota%(RZSiHZQ)
©da —Z(asz/I)z(RRl 2+R2a)
a
R(0)
o+ =+ 0
2M - 427 ( )
(A3)
[
2M—1
- niwr
n—1 — t—]
Z( ) [co o %%y
2M—2 2M—1
= Z( )"cot—+ Z( )"cot—
M2 M — n)m
= t— + cot——— [ = 0. A6
Z( )[co co— ] (A6)

X joo pdpe*pz[l*cos(nﬂ/M*Za)]/t
0

N (n— 1w

=—-— + [cot M
(=)

(A4)

- cotmr]
2M ]

In the first two cases (DD, NN) the inner terms in the sum
cancel in pairs leaving the first term for n = 2 and the
second term for n = 2M — 1:

87 =, 2M 2M
8 2M 2M
1 ™
= cot— A
a7 % (A3)

In the last case a complete cancellation occurs ‘“‘outside-in’:

The 1 term together with all the contributions to the first sum
in square brackets contribute simply

A R(0) R(m/2M) A Lp—Ly
27t 427t 427t 2 a2t
(A7)

where Lp, Ly are the total lengths of the Dirichlet and
Neumann boundaries respectively.

Finally we turn to the second sum in square brackets,
which will be responsible for the corner contributions. The
p integration is finite and elementary:

v 1 2M—1 + 1
Tr{e!V'/? mer 1 a7 +
{e }co e 16M n; _)n s1n2(n7T/2M)
| M1 * e~inm/M
__ + A8
2 - (1_ —mﬂ'/M)Z (A8)
n (—)"
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This sum can be represented as a contour integral because

the quantities z, = e~ ""/M are all the non unit 2Mth roots
of unity: 72 — 1 = 0 and z¥ = (—)". We have

oA en L
22" 1)z — 12 16Msin’(nm/2M) 7 — 2,
7, (A9)
Thus
1
dz 1

T tV2/2 — _f -~ s
r{e }comer c2mi 2(Z2M _ 1)(Z _ 1)2

(A10)

where C is a counterclockwise contour encircling all the
Zy, for n=1,2,...,2M — 1. This contour can be de-
formed to a clockwise contour encircling the (triple) pole
at z = 1. Then the integral is just (—) times the residue of
that triple pole. In terms of the functions

z—1
2( 2M )’
o Mz—-1)  (z—1)
fl(Z) = 2(ZZM — 1) - 2(ZM — Z,M);

these residues are just f”(1)/2, f’(1)/2, and f}(1)/2
respectively. An efficient way to evaluate these deriva-
tives it to put g(z) = f(e’),sothat g = e'f' and § = e'f' +
e’ f". Then f"(1) = g(0) — ¢(0). So we expand g to

fz) =
(Al1)

order #2:
(1= 1 1+¢t/2+¢/6
8= M T+ M1 1 202723
1 1 1 1 M 1
= 4+[— )i+ [—+=—2 )2+ 0
am <8M 4) (24M 12 8) o)
_f//()__ JM_1 M 1
24M 12 16M 12 48M

1 1
=—(2M——), (A12)
24 M

which confirms the formula for a DD or NN corner of angle
0=m/2M.
To handle the ND case we expand

1 1+t/2+72/6 1 Lt

l‘:_—__ -
90 = T arr/e  aM M
M -1
- ?+ 0@
24M )
1 M1 1 M1
W == =
2 24 24M  16M 24 48M

1 2
=—— +—
13 (2M 2M)’ (A13)

which confirms the formula for a DN corner of angle
0=m/2M.
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APPENDIX B: DETERMINANT FOR THE
LIGHTCONE WORLDSHEET TREE

The quantities Z;, with k = 1--- (N — 1), and x,, with
r=1--+(N — 2) are determined from the map from the
upper-half Koba-Nielsen plane (z) to the lightcone world-
sheet (p =7+ io):

N—1 dp
p= Z aIn(z — Z), e =0, (B1)
k=1 T N z=x,
dp _ N« — Yo e[l — 2
dz. S =% [Tz — Zy) (B2)
— l-[r(Z - X )
l'lk(z - Zy)’
dzp 5 Xk l-[r?ﬁs(-xs - X
) = = —ay———7+, (B3)
=S I Y Al A

where the last line is true because the factor (z — x,) in the
numerator must be killed by the derivative to get a nonzero
contribution. The asymptotic strings at 7= *oo are
mapped from the Z;. In this notation Zy = o, Z; = 0. A
useful identity follows by setting z = Z,, in the identity

—ay[Jz—x) = Z a1 - 2) (B4)
r k=1 I#k
N—1
- aNl_[(Zm - xr) = Z akl_[(zm - Zl)
r k=1 1#k
= a,[[Z, (B5)
[#m
lay Y 1'[|z,,, — x| = 1‘[ la, [ 112 = (B6)

1#k

We next consider the transformation of the determinant.

N—1 N-2

S =Inlayl = D Inlz—=Z|+ Y Inlz — x| (B
k=1 r=1

Clearly 9,2 = 0 on the real axis. Since the points z = Z,,
x, are singular, we deform the boundary near those points
into small semicircles, in the upper half plane, of radii €,
€, respectively. The radius €; near Z; can be interpreted in
terms of a large time 7, for the asymptotic string k. From
the mapping function we find

€ = eTk/akl_llzl
I#k

— Zy| /e, (BS)

The string N is asymptotic at large z. If R is the radius of a
large semi-circle, we have from the mapping function
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Ty ~ —ayInR, R~ e Tn/a,

(B9)

On the other hand the radius €, near x, is a temporary
regulator, which maps onto a circular deformation of the
boundary near the corresponding interaction point on the
lightcone worldsheet. From the mapping function we see
that the radius of this regulating circle on the worldsheet is
given by

_ 1 62|a | nrqﬁs |xs B xrl
= _ =
7=x 27 k |xs - Zkl

., (B10)

28, — 772
€, = K l-lk |x5 kl (Bll)

law| T, 1y = x, 112

n = |ay|” N+3/2n|a |1/2n\/ﬁn#k 12, - 2"

nr¢s |X - X |l/2 '
(B12)

To calculate the determinant for the lightcone worldsheet,
we start with the determinant for the region in the upper-
half z-plane bounded by the real axis, the large radius R
semi-circle, and the small radius €, €, semi-circles. Then
we apply the generalized McKean-Singer formula to trans-
form to the determinant for the worldsheet.

1. Unmixed boundary conditions

In this case, the boundary conditions are either Dirichlet
everywhere or Neumann everywhere. Then in the limit of
large R and small €, factorization implies that the z-plane
figure determinant has the behavior

1
-3 Trin(—=V?), ~ — lnR + 24ZInek

+ ﬂz Ine, + const, (B13)

where the constant term, representing the determinant for
the upper half plane with the same boundary conditions
everywhere, has nothing to depend on! We treat mixed
boundary conditions in the next subsection, where the
corresponding term can depend on the relative locations
of the points that separate Dirichlet from Neumann bound-
ary conditions.
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Next we develop the transformation of the determinant
from this z-plane figure to the lightcone worldsheet:

N-1 N2
=Inayl = > Inlz = Z + D Inlz —x,|. (B14)

k=1 r=1
Clearly 9,% = —9,% =0 on the real axis. Thus the

change formula receives contributions from the corners
and semi-circles only. For z near Z;, put z = Z; + re'¢
and approximate

N-1 N-2
=~ In|lay| — Inr — Z In|Z, — Z,| + Z In|Z, — x,|,
17k =1

5,5 ~1 (B15)
r

Then

A _[1_1 1] _l I |CYN| H,|Zk—x,|
€k 24 12 8 12 €y nl¢k|Zk—Zl|

. (|akl)mz
€k

The three terms in square brackets are the [dI%d,0 term
the extrinsic curvature term (negative here) and the two
corners at this semi-circle respectively.

For z = x, + re'?, on the other hand we have

(B16)

N—1
=~ In|lay| + Inr — Z In|Z, — x,| + ZInle — x|,
! r#s
1
9,3 ~—~. (B17)
r
Then
1 1 1
A, =|-=——+-[|S=0 Bl
[ 24 12 8]2 0 (B18)
Finally for the large semi-circle, X =~ —In(r/|ayl),
9,2 =~ —1/r, and
1 1 1 1
Agp = + =+ 2 =—--1 B19
k [ 24 12 8]2 layl (B19)

Combining all the contributions, we have
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1/6 1/12
det~12(—V?), — det—1/2(—v2)z<M) ]‘[(@)

R L €

_ C|aN|1/6R1/24l—[€k—1/24l—[6}/24n|ak|1/12
k r k

T

N —
= ClaN|1/6 CXP{_ Z 242 }l—llzk - Z[lak/24all—[|ak|1/12 nr(26r) l-[k nr |xr B Zkl
k=1 k

k#1

N
T
= Clay|"/ exp{— }I |12
kZl PALTS by

Al |01k|l/8

=c
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1/48

k _|aN|N_2 nris |xs - xrl

B 1/48
— Zl|ak/24all_[|ak|1/12 [1,28) [Tk |l Tkt 121 — Zk[|
k

|2N—3
N

| nris |xs X

(B20)

k=1 vyl k#l

If there are d = D — 2 transverse dimensions this entire
factor should be raised to the power d.

The worldsheet path integral is this determinant factor
times a factor e’ which arises from removing boundary
data in the path integral by shifting the x by the classical
solution that satisfies those boundary data. Among other
things e/" includes factors R‘i”zl_[ke}':2 in the limit that
the —T,/a; get large. If W. =3, ,piN(pw p))p; is ex-
pressed in terms of a Neumann function, these factors arise
from the diagonal ! = k terms. The rest of these diagonal
terms, combined with the factors |a,|'/®, provide a factor of
the ground string wave function for each external string. The
N ground string scattering amplitude is obtained by ampu-
tating these ground state wave functions together with the
factors e2Pi 42T/ ac — oDuTiP from the path integral
and integrating over the interaction times [d7, - - dry_,
where p, = 7, + io, are the locations of the N — 2 inter-

1/24 N
T
7, — 7w/ | [1: 328, Tt 121 — Zi] {— k }
1/48 l—ll k i |: | xp ];24ak

|C¥N|N_3 l-[r<x |xs - X

action points on the worldsheet. By translational invariance
in x* the integrand after amputation will acquire a factor
e 2Piif all the 7, are translated by a. This means that
integrating over one of the 7, simply produces a P~ con-
serving delta function. The coefficient of this delta function
is just the integral over only N — 3 of the 7,. Note that
> ar = 0 by the lightcone worldsheet construction and
Y «Pr = 0 when Neumann conditions are chosen for the x
integrals as explained in Section III (see (38)).

M= [z, -dryofder P T) e s (B21)

where we have set 7; = 0 and understand that >, P, = 0.
The final result for [ ], ueq includes the off diago-
nal terms in its Neumann function representation, together

with the parts of €, that remain after amputating e TPy

. *Otlpz/ak
(™ Jompuraea = [ 121 — zklm'w(]‘[lzk - Zzl) :

k<l k#1

1

N
[det_d/z(_v2)p]amputated =C l_[ |l |d/48 l_llzk R
k=1 k k#1

1

d/24
| 4o/ 24a |:l_lr V20, [l 1Z; = Zkl]

(B22)

|aN|1\]73 nr<s |xs - xrl

N d/24
[det_d/z(_vz)peiwr]amputated =C l_[ Wnlzk - Zl|2pk'p1 [nr 28,, nk<l |Zl _ Zkl] ’
k=11%% k<l

|a’N|]\]73 l_[r<s |xs - xrl

where we have used p,-p; = p;p,— pipi — ripl =pi P — a(p? —d/24)/2a; — a)(p? — d/24)/2a; 1t is
convenient to change integration variables from the 7’s to the Z’s. Mandelstam’s result for the Jacobian is (taking Z;,

Zy—1,Zy = 0, 1, 0o respectively)

ATy, ) Ty—2) _

(B23)

Zy, -+, Zy-2)

so that the scattering amplitude becomes

|:|C“N|N_3 nr<s |xs - xrl

-1
[ 12 - zkl] |
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s
M=c||@s,)% 7de---dZ,
l:[( r) !:lllakld/‘m 2 N-2

X n|zk - lezpk'Pl[ 1 [hlZ

k<l |aN|N_3 l-lr<s |xs

(B24)

(D—26)/24
—Zkl} |
]
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be the same. Only the contributions from the ND strings
need modification. Since we have to have an even number
of ND strings, in this section we might as well assume there
are at least 2 and take one of them to map to the z = oo.
Then by factorization the z-plane determinant has the
behavior for large R and small €

1 ) 1
—ETrln( V), ~—lnR—48 Z lnek—i-ﬁ Z Ine,

The factor raised to the power D — 26 depends on the 43 YEDN KENN
Lorentz frames so the critical dimension D = 26 is neces- 1
sary for Lorentz invariance [2], in which case M is pro- + ﬂz Ine, + InD, (B25)

portional to the N particle dual resonance amplitude. Of
course factorization implies that C = g¥~2 and §, = §,
independent of r. Then [],(28,) = (26)" "2 so & can be
absorbed in the coupling constant.

2. Mixed boundary conditions

Here we consider the cases where the boundary consists of
several segments with either Dirichlet or Neumann bound-
ary. Call the points that separate different boundary condi-

where in the last term D(P,), representing the determinant
for the z-plane stripped of the semi-circles, can now de-
pend on the locations of the Dirichlet-Neumann transitions
points P,,.

The transform to the worldsheet involves the same X
(B14), the same change factors associated with x, (B18)
and Z, for k € NN (B16) as in the previous subsection.
Modifications occur in the change factor associated with R

tions P,. The asymptotic strings on the worldsheet can now m 1 1 1 R
have two free ends (NN), one free end (ND), or no free ends ARN = - 7 + E ]2 =- ﬂ ﬁ (B26)
(DD). It will be convenient to choose to close the asymptotic B
worldsheet with N, D, and D boundary conditions respec- and in the change factor associated with Z; with k € DN.
tively, in order to minimize the number of ND corners. - 1 1 la|

The contributions associated with the NN and DD ADN = %D ]2 = — ﬂ In ( k ) (B27)

asymptotic strings will therefore be exactly as in the pre-
vious subsection, since they involve no ND corners. Also
the contributions associated with the interaction points will

Combining all the contributions, we have for the determi-
nant on the worldsheet:

_ _ |y [\1/24 |l [\1/12 o[\ -1/24
12(_2) — 12(_\2
det™ (=), = det (- 7), () k!N[N<€k) k!D[N()

€k

— Dla |1/24R 1/48 l—[ €, —1/24 l—[ 1/48 l—[ la |1/12 l—[ |a |- 1/241—[61/24

KENN kEDN KENN kEDN
1/48
= DlayV#R714 T & TT €/ [T lew /2 T lapl /24| [1-20)) [T larl Tlisi 12, = Zi]
2N-3 —
KENN KEDN KENN kEDN |ayl IT -5 1xs — x,
1/24
— DR 1/48 l_[ -1/24 l_[ 1/48 l_[ |C¥ |1/81_[ Ia | 1/48 l-[r \/23 nk<l |Z] Zkl (B28)
KENN kEDN kENN layV 73 T1,<; |xs — x|
f
Remembering (B8) we see that the different powers of €, (P Aw/2don /48 p;l—ll Z, — Z,|72pi ni
for the NN and DN cases simply reflect the different k ok
round state masses for the open string in those cases
g (I; dg _ eTkp;nlzk _ Zl|—2a’P,+p;_2“’p;p;_
a'M% = — N4 DN (B29) I<k
24 ' 48 (B30)

where dyypy) is the dimension of NN(DN) string coordi-
nates. Each NN external string can carry a momentum,
so we we collect them as the components of a dyy
dimensional vector p. Then the p~ of the kth string is
pr = (p* + M3)/2pf = (p* + M)/ ay. Then

The extra factor of | o, |““/® for k € NN simply reflects the
normalization of the NN ground state compared to the DN
ground state.
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3. Determining D

We now consider the dependence of D on the DN
transition points. We will content ourselves with working
out that dependence for no more than 2 Dirichlet bounda-
ries (i.e., no more than 4 DN transition points. For the case
of only one Dirichlet boundary, the two transition points
can be taken to be two of the fixed Koba-Nielsen variables,
and D will therefore not depend on any of the integration
variables. For the case of two Dirichlet boundaries there
are four transition points, three of which can be taken fixed,
but D can depend on the fourth, which will be an integra-
tion variable.

To calculate D for the case of two Dirichlet boundaries
we consider the conformal map of a DNDN rectangle to
the upper half plane (see Fig. 5). If the lightcone world-
sheet is mapped to that figure, the asymptotic strings would
be mapped to the centers of the circular arcs on the vertical
boundaries. For the purpose of calculating D we only need
to keep the quarter circles at the corners. We map their
centers to the points 0, U, 1, oo, labelled counterclockwise
starting at the upper left corner. Situate the rectangle in the
upper half z-plane with the bottom side on the real axis,
—K <x < +K, with the upper boundary on the line z =
x + iK'. Let u be the complex variable of the target upper
half plane. Then

L (ksn(z q) + Dk~ 1)
(ksn(z, q) = Dk + 1)’

du  —2k(k— 1)sn'(z, q)
dz  (k+ 1)(ksn(z, q) — 1))*’

where sn is one of the Jacobian elliptic functions of

modulus &k and ¢ = e "K/K_ With this notation,

U= (k—1)72/(k+1)>

The determinant for the u-plane figure is in the limit
é1’2‘3 —0and R — o

(B31)

1 1 1
- 5 lndetu ~ E InR — E 11151&253 + ln@,
where R is the radius of the large semicircle and € , 5 are
the radii of the small semicircles. This is related by a
conformal transformation to the determinant for the
z-plane figure given by

(B32)

1 1
- E lndetz ~ 1n€1€2€364 - 5 lndetDNDN. (B33)

48
Since 9,2 = 0 on all of the straight line segments of the
boundary of the rectangle, we only get a contribution from
the change formula near each of the corners. So we approxi-
mate 2, for each corner in turn. Starting with the upper left
corner, put z = —K + iK' + re'® with r small. then

1
sn(—K + iK') = e sn’(—K + iK') =0,
|- (B34)

sn’(—K + iK') = — o

PHYSICAL REVIEW D 86, 066010 (2012)

1 1- . k—1)? )
sn(z) = BT rre%ie, U=~ —7( 1 ) rle?i¢,
k— 12
g = k= el (B35)
4
(k—1)*r 1
S =~ In——k—"—, 9,2 = —-, (B36)
2 r
1 Iy 1 (k-1
A, = ( 5 ﬂ>2 = -l (837
For the lower left corner z = —K + re'?
sn(—K)=—1, sn'(—K)=0, sn”(—K)=1—k*  (B38)
1—k% ) k—1)? )
sn(z) = —1 +—2 2o, y= Ek+ 1;2[1 + kr?e%¢],
_ k(k—1)%&3 (B39)
6 :77
2 (k+1)?
2k — 1)2r 1
~mm ' 55 =—c, B40
> =y 2= (B40)
1 1 1 2k(k—1)%e,
A== )3 =——m™"— 72 (B4l
2 ( 48 24)2 16" (k+ 1) (B41)
For the lower right corner z = K + re'¢,
sn(K)=1, sn'(K)=0, sn”(K)=-(1—k%), (B42)
1-# 2 ,2i 2 ,2i ~ 2
sn(z)=1-— ree’'?, u=1—kree’'?, &=ke;
(B43)
1
S ~In2kr, 9,5 =—-, (B44)
r
A ( 1 1)2 U ok (B45)
=[-—=—=—=)2=—-——1In )
3 48 24 16 €3

For the final (upper right) corner, z = K + iK' + re'?,

1
sn(K + iK') = o sn’'(—K + iK’) = 0,

1— k2 (B46)
(K + iK') = ——,
1 — k2 . 4
~_ 4+ - 2 ,2ip S —
Sn(Z) k 2k r-e ’ u (k + 1)2r2621<p ’
4 B47
a4 (B47)
(k + 1)%e3
8 3
=~ In———, 9,2 ==, B48
2 n(l + k)?r3 2 r (B48)
3 1 1 8
A= )= B49
4 (48 24)E 48 (1 + ke B49)
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Then we have

1
— — Indet, =

1
2 _E lndetz + A] + A2 + A3 + A4, (BSO)
~ - ﬁ 1n€1 €rE3€E4 — % lndetDNDN - 1 In 2];;{%1)]2)4
1 8
_8 lnm - ﬁ ln€162€3€4 - % lndetDNDN

1 2 4 1 2
- — —1)*+ = In(1 + k)2
e MR (k = 1)* + 2 In(1 + 1) (B51)

On the other hand

1 InR 1 Ine 1 4 1

— InR — € &,E N — —

48 48 c1e2s T (k + 122 48
K(k—1)etezes k(k — 1)?€,€,€65€4

__11

>< ll
T4k 1) 24 4

(B52)

So comparing we deduce

k(k -1)?% 1

1
1 D 24 4 5 lndetDNDN - g 1nk(k - 1)2

1
+—In(1 + k)?
2g 1K)

1 1 1
- E lndetDNDN - —2 ln2k(k - 1)2 + ﬁ ln(l + k)2
i 1 42k — 1)*
R TR [

(B53)
It is important to bear in mind that this formula applies
only when the corners of the rectangle are mapped to
0,U=(1—-k)?*/(1+ k)?, 1, oo, which mark the DN tran-
sition points. The formula to use when the transition points
are at general locations, can be obtained by executing a
projective conformal transformation

au +b

= d—bc=1.
cu+d’ “ ¢

(B54)
Carefully transforming the corresponding determinants,
regulated by suitable circular arcs to avoid singular points,
leads to the result

InD,, = InD + % Incd(cU + d)(c + d). (B55)

For example, a symmetrical and canonical choice is to map
the corners of the rectangle to —1/k, —1, +1, +1/k

respectively. For this case, ad(c + d)(cU + d) = k*/(1 +
k)?, and The corresponding determinant D, is given by

1 1 4k*(k—1* 1 k?

1 Q) = — = 1 d t - l I - I

150 = =5 nlonoN Tar e T8 urke
1 k?
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a. D for unmixed boundary conditions

As we have noted, for unmixed boundary conditions the
analog of D had nothing to depend on, and so had to be a
constant. It is instructive to see this using the methods of
the present subsection. The determinant for the u-plane
figure changes, in the unmixed case, to

1 5 1
_Elndetu ~ﬁlnR + ﬁlné1é2é3 + IHDN
1 1. k(k—1)?
Lpaes L MEZDT ) o Bsy)

120 & 120 (k+1)°

And the determinant for the z-plane figure becomes

1 1
— Indet, ~ 18 Ine e,€5€4 — 3 Indetpppp.

— B58
3 (B58)
To relate these we need to adapt the A, to the unmixed case.
The only difference is that the corner contributions for each
quarter circle add instead of cancel:

A, = % lnzk((llz_‘__ii))jez, Ay = 1i6 In2kes
A4=(438‘214 ) = 3 T
2 — 1)
A= ZA _ 12k (k(k —:)1)6216263 7 n (1+8k)23
(B59)
Then
A- ; Indet, ~%1 61263—;1ndetDDDD
21— 1)
1 zik(f— 1)? a3 (1f e (B0

Since this quantity should be the determinant in the
u-plane, we must have

1 2% (k— 1)* 8
InDN = —ElndetDDDD +— 1 e & .(1 e
k(k —1)?
(k (k+1)°
— 1 Indetpppp + 1 Ink?(k> — 1)* + l1112. (B61)
2 48 2

To see that the right side is a constant we use
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62(0)"/126,(0)'3 _ (6,(0)65(0)84(0))"/'26,(0)'/

k1/24 1 — k2 1/12 —
e 050"

6(0)'/?

— 21/12611/481_1(1#2"71)1/2 —pl/12 s I10L— g2

[+ ¢

— 21/1241/48 [0 —¢"'”?
QK /)4

1 1 1
= _—_InQ27) +=-In2 = o In27 773.

12 2

V65(0)

= /4212 dets 13 InDN

(B62)

In a similar vein, executing a projective conformal transformation shows that DV is a projective invariant.
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