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Using information from the marginality conditions of vertex operators for the AdS5 � S5 superstring,

we determine the structure of the dependence of the energy of quantum string states on their conserved

charges and the string tension � ffiffiffiffi
�

p
. We consider states on the leading Regge trajectory in the flat space

limit which carry one or two (equal) spins in AdS5 or S5 and an orbital momentum in S5, with Konishi

multiplet states being particular cases. We argue that the coefficients in the energy may be found by using

a semiclassical expansion. By analyzing the examples of folded spinning strings in AdS5 and S
5, as well as

three cases of circular two-spin strings, we demonstrate the universality of transcendental (zeta-function)

parts of few leading coefficients. We also show the consistency with target space supersymmetry with

different states belonging to the same multiplet having the same nontrivial part of the energy. We suggest,

in particular, that a rational coefficient (found by Basso for the folded string using Bethe Ansatz

considerations and which, in general, is yet to be determined by a direct two-loop string calculation)

should, in fact, be universal.

DOI: 10.1103/PhysRevD.86.066006 PACS numbers: 11.25.Tq

I. INTRODUCTION AND SUMMARY

Recent progress in understanding the integrable system
that should be computing the spectrum of the maximally
supersymmetric example of AdS/CFT duality makes it im-
portant to further develop a detailed matching of the Bethe
ansatz predictions with quantum AdS5 � S5 string energies
extracted from the perturbative string theory. While direct
near-flat-space expansion of the quantum string theory de-

termining the large tension (T ¼
ffiffiffi
�

p
2� ) expansion of quantum

string energies with fixed quantum charges is still to be
developed, here we shall follow the ‘‘semiclassical’’ ap-
proach suggested in Ref. [1] (see also Ref. [2]) and recently
applied in Refs. [3–6] to demonstrate the matching of the
numerical results of the thermodynamic Bethe ansatz (TBA)
for theKonishi operator dimension interpolated fromweak to
strong coupling [7–9] with the perturbative string theory
prediction for the corresponding string energy.

Our motivation is to further understand the structure of
the dependence of the string energy on the string tension
and its quantum numbers (spins) guided by the expected
form of the string vertex operator marginality conditions
[1,4] and recent progress on the Bethe ansatz side [10]. We
shall consider several string states which belong (in the
flat-space limit) to the leading Regge trajectory and for the
lowest values of the spins or the lowest value of the string
level represent states in the Konishi multiplet and discover
the universality of some leading-order coefficients in the
expansion of their energies.

A. General structure of the inverse tension
expansion of the energy

Let us start with describing the general form of the
dependence of the energy E of a string state on its quantum
charges Qi in the large string tension expansion

(
ffiffiffiffi
�

p � 1).1 As follows from the structure of �0 expansion
of two-dimensional (2D) anomalous dimensions of the
corresponding AdS5 � S5 string vertex operators [11,12],
the solution of the marginality condition should give

E ¼ EðQ;
ffiffiffiffi
�

p Þ in the following general form [1,4]:

E2 ¼ 2
ffiffiffiffi
�

p X
i

aiQi þ
X
i;j

bijQiQj þ
X
i

ciQi

þ 1ffiffiffiffi
�

p
�X
i;j;k

dijkQiQjQk þ
X
i;j

eijQiQj þ
X
i

fiQi

�

þO

�
1

ð ffiffiffiffi
�

p Þ2
�
; (1.1)

where Qi are supposed to be fixed in the limit
ffiffiffiffi
�

p � 1.
The highest power of charges in 1

ð ffiffiffi
�

p Þn term here is nþ 2.

This follows, e.g., from dimensional analysis, from the fact
that higher-order terms in 2D anomalous dimension opera-
tor may contain higher derivative operators (e.g., E2 comes
from SOð2; 4Þ Casimir originating from Laplacian on
AdS5, etc.; see Ref. [12]) and also from the fact that, in
any theory, an ðnþ 1Þ-loop Feynman graph renormaliz-
ing a (vertex) operator contains at most ðnþ 2Þ Wick

*Also at Lebedev Institute, Moscow.

1Examples of these charges discussed below are spins S1, S2 in
AdS5 and spins J1, J2, J3 in S5.
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contractions with fields in the (vertex) operator and thus

contributes to its dimension terms like Qm=ð ffiffiffiffi
�

p Þn with
m�nþ2.

More explicitly, if we consider a string state with an
orbital momentum J3 � J in S5 and one extra oscillator
number N (corresponding, e.g., to an intrinsic spin compo-
nent due to an extended nature of the string) which deter-
mines the value of an effective string level then (1.1) is a
consequence of the following 2D marginality condition2

0 ¼ N þ 1

2
ffiffiffiffi
�

p ð�E2 þ J2 þ n02N
2 þ n11NÞ

þ 1

2ð ffiffiffiffi
�

p Þ2 ðn01NJ2 þ n03N
3 þ n12N

2 þ n21NÞ

þ O

�
1

ð ffiffiffiffi
�

p Þ3
�
: (1.2)

Including also some higher-order terms, the resulting
expression for E2 may be written as3

E2¼2
ffiffiffiffi
�

p
NþJ2þn02N

2þn11Nþ 1ffiffiffiffi
�

p ðn01J2N

þn03N
3þn12N

2þn21NÞþ 1

ð ffiffiffiffi
�

p Þ2 ð~n11J
2N

þ ~n02J
2N2þn04N

4þn13N
3þn22N

2þn31NÞ
þ 1

ð ffiffiffiffi
�

p Þ3 ð~n01J
4Nþ ~n21J

2Nþ ~n12J
2N2þn05N

5þ . . .Þ

þ 1

ð ffiffiffiffi
�

p Þ4 ð �n11J
4Nþ . . .ÞþO

�
1

ð ffiffiffiffi
�

p Þ5
�
: (1.3)

This expression follows under the assumption that in (1.2)
E2 enters only in the 1-loop 1ffiffiffi

�
p term. On general grounds, as

E may be thought of as a global charge analogous to
J, one might wonder if (1.2) should also contain terms
like 1

ð ffiffiffi
�

p Þk ðEkþ1 þ . . .þ EmNn þ . . .Þ. However, terms de-

pending only on E (or on E and J) should be 2D scheme-
dependent (like higher powers of Laplacian in 2D anomalous

dimension operator) andwould also contradict the BMN limit
E ¼ J in the absence of other charges (N¼0) leading to
spurious 1ffiffiffi

�
p dependent solutions of the marginality condition;

they should thus be absent in a scheme preserving target space
supersymmetry. Terms in (1.2) involving both E and N like
1

ð ffiffiffi
�

p ÞkE
nNm withmþn�kþ1, may be present, but in solving

themarginality condition (1.2) forE in perturbative expansion

in 1ffiffiffi
�

p they cannot modify the leading-order solution E2 ¼
2

ffiffiffiffi
�

p
N þ . . . , and their perturbative treatment leads just to

redefinitions of coefficients already present in Eq. (1.3). Note
also that the presence of the mixed terms JkNm terms reflects
the fact that in curved space the center of mass and internal
degrees of freedom do not in general decouple.

Expanding (1.3) in large
ffiffiffiffi
�

p
for fixed N, J we get

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffiffi
�

p
N

q �
1þ A1ffiffiffiffi

�
p þ A2

ð ffiffiffiffi
�

p Þ2 þ
A3

ð ffiffiffiffi
�

p Þ3 þO

�
1

ð ffiffiffiffi
�

p Þ4
��

;

(1.4)

A1 ¼ 1

4N
J2 þ 1

4
ðn02N þ n11Þ; (1.5)

A2 ¼ � 1

2
A2
1 þ

1

4
ðn01J2 þ n03N

2 þ n12N þ n21Þ

¼ 1

4

�
n21 � 1

8
n211 þ

�
n12 � 1

4
n11n02

�
N

þ
�
n03 � 1

8
n202

�
N2

�
þOðJ2Þ; (1.6)

A3 ¼ 1

128
½ðn311 � 8n11n21 þ 32n31Þ

þ ð3n02n211 � 8n11n12 � 8n02n21 þ 32n22ÞN
þ ð3n202n11 � 8n03n11 � 8n02n12 þ 32n13ÞN2 þ . . .�:

(1.7)

Substituting particular values of N and J into (1.3) and
(1.4) one can find the expansion of the corresponding
quantum string state energy, i.e., the strong-coupling ex-
pansion of the dimension of the dual gauge theory operator.
Note that the first two terms in the right-hand side of (1.3)
have direct flat-space interpretation, so that N plays the
role of string level and the spinning string states with
maximal value of N for a given value on spin belong to
the leading Regge trajectory. For example, N ¼ 0 corre-
sponds to massless (supergravity) states and N ¼ 2 to
states on the first excited string level which contains the
Konishi long multiplet as its ‘‘floor’’ and also its ‘‘KK
descendants’’ with higher values of J obtained by tensoring
with the ½0; J; 0� representation [14]. The states in the
Konishi multiplet that we will consider here correspond
to N ¼ 2, J ¼ 2; see Refs. [1,4].
The goal is thus to determine the coefficients nkm in (1.3).

To achieve this, one may use the observation [1,2] that a

2Here the ð�E2 þ J2 þ . . .Þ term is the 1-loop correction to
the 2D (anomalous) dimension, the next term is the 2-loop
correction, etc., with all the terms at the same order in 1ffiffiffi

�
p being

here on the same footing. This expansion should emerge in the
sigma model approach upon diagonalization of the 2D anoma-
lous dimension matrix (as, e.g., in the NSR approach or in the
context of a pure spinor approach like the one discussed in
Ref. [13]). Here we ignore possible shifts of N and E by integers
that depend on a choice of a reference vacuum state [in the
bosonic string context the left-hand side of (1.2) should be equal
to 2].

3Here the coefficient of J2 in the first line should be 1 to be
consistent with the BMN limit N ¼ 0. Again, we assume that in
general E and J may be redefined by possible constant
shifts to be consistent with positions in a supermultiplet [e.g.,
EðE� 4Þ ¼ JðJ þ 4Þ þ . . . is equivalent to ðE� 2Þ2 ¼
ðJ þ 2Þ2 þ . . . for simplest point-like states]. This depends on
a definition of string vacuum; see Ref. [4] for more details.
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similar expansion of the string energy is also found by
starting with a solitonic string carrying the same types of
charges as the vertex operator representing a particular
quantum string state and

(i) first performing the semiclassical expansion
ffiffiffiffi
�

p �1
for fixed charge densities Qi ¼ 1ffiffiffi

�
p Qi, i.e.,

ðN ;J Þ ¼ 1ffiffiffi
�

p ðN; JÞ, and then

(ii) expanding E in small values ofQi. Indeed, the limit

Qi ¼ Qiffiffiffi
�

p ! 0 should correspond to taking
ffiffiffiffi
�

p � 1

for fixed values of the quantum charges Qi.
Assuming that there is no order of limits problem,
the same coefficients nkm should be found in these
two different approaches.

Writing (1.3) in terms of N , J as

�
Effiffiffiffi
�

p
�
2¼2N þJ 2þn01J 2N þn02N 2þn03N 3þn04N 4þ ~n01J 4N þ ~n02J 2N 2þ . . .

þ 1ffiffiffiffi
�

p ðn11N þ ~n11J 2N þ �n11J 4N þn12N 2þ ~n12J 2N 2þn13N 3þ . . .Þ

þ 1

ð ffiffiffiffi
�

p Þ2 ðn21N þ ~n21J 2N þn22N 2þ . . .ÞþO

�
1

ð ffiffiffiffi
�

p Þ3
�
; (1.8)

one can then interpret the coefficient nkm in (1.3) as a k-loop contribution to a term scaling as N m in the semiclassical
expansion, i.e., n0m can be extracted from the classical string energy, n1m—from the 1-loop semiclassical correction, etc.
Expanding E in (1.8) in small N for fixed J we get

Effiffiffiffi
�

p ¼ J þ
�
N
J

�
1þ 1

2
n01J 2 þ 1

2
~n01J 4 þ . . .

�
� N 2

2J 3

�
1þ ðn01 � n02ÞJ 2 þ

�
~n01 � ~n02 þ 1

4
n201

�
J 4 þ . . .

�
þ . . .

�

þ 1ffiffiffiffi
�

p
�
N
2J

ðn11 þ ~n11J 2 þ �n11J 4 þ . . .Þ þ N 2

2J 3

�
�n11 þ

�
n12 � 1

2
n01n11 � ~n11

�
J 2

þ
�
~n12 � �n11 � 1

2
n01~n11 � 1

2
~n01n11

�
J 4 þ . . .

�
þ N 3

4J 5

�
3n11 þ ½3~n11 � 2n12 þ ð3n01 � n02Þn11�J 2

þ
�
2ðn13 � ~n12Þ � n01n12 þ 3 �n11 þ

�
3~n01 � ~n02 þ 3

4
n201

�
n11 þ ð3n01 � n02Þ~n11

�
J 4 þ . . .

�
þ . . .

�

þ 1

ð ffiffiffiffi
�

p Þ2
�
N
2J

ðn21 þ ~n21J 2 þ . . .Þ þ . . .

�
þO

�
1

ð ffiffiffiffi
�

p Þ3
�
: (1.9)

It should be noted that the quantum string sigma model
loop (i.e., �0 � 1ffiffiffi

�
p � 1) expansion in (1.3) is, of course,

different from the semiclassical loop expansion in (1.8):
in (1.2) or (1.3) the first-order N term is classical,
J2 þ n02N

2 þ n11N are 1-loop terms, etc., i.e., the coeffi-
cients nkm, in general, appear at different loop orders in the
two expansions.4 Note also that while each ‘-loop term in
(1.3) is a polynomial of finite degree, (‘þ 1), in the
charges, this does not, in general, apply to the semiclassical
expansion (1.8) where each term may contain an infinite
series of terms in the small J ,N expansion. To relate the
two expansions, one would need to reorganize or even
resum them.5 For example, the classical string energy

term in (1.8) receives contributions from all higher loop
orders in (1.3), etc.6

Comparison of (1.9) or (1.4), (1.5), (1.6), and (1.7) to
(1.3) shows that Eq. (1.3) for the square of the energy
provides a much more ‘‘economical’’ description of the
spectrum. Computing the semiclassical expansion (1.9)
directly one finds, indeed, many relations between the

4Note that n‘1 (‘ ¼ 1; 2; . . . ) are still ‘-loop coefficients in
both expansions.

5In particular, considering J � N expansion will lead to
inverse powers of J in the semiclassical expansion and thus will
require a resummation to relate it to (1.3).

6Note also that ‘‘nonanalytic’’ terms [1] likeB2; B3; . . . in the largeffiffiffiffi
�

p
expansion of the energy E¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffiffi
�

p
N

p
½1þ A1ffiffiffi

�
p þ A2

ð ffiffiffi
�

p Þ2þ...�þ
B1þ B2ffiffiffi

�
p þ B3

ð ffiffiffi
�

p Þ2þ..., which a priori could be present in the energy

found by using semiclassical expansion, should not actually

appear if this approach is consistent: they would lead to �1=4

dependent terms in E2, i.e., E2 ¼ 2
ffiffiffiffi
�

p
N þ 2

ffiffiffiffiffiffiffi
2N

p ½ B2

�1=4 þ B3

ð�1=4Þ3 þ
. . .� þ . . . which cannot be present in the standard sigma model

perturbative computation of eigenvalues of 2D anomalous di-

mension matrix.
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coefficients there in agreement with the general structure
of E2 in (1.3).

The expression for E2 in (1.3) or in (1.8) may be for-
mally organized as an expansion in small N which will
then look like an expansion in powers of N:

E2 ¼ J2 þ h1ð�; JÞN þ h2ð�; JÞN2 þ h3ð�; JÞN3 þ . . . ;

(1.10)

where for fixed J and large � the coefficient functions hk
are given by

h1 ¼ 2
ffiffiffiffi
�

p þ n11 þ n21ffiffiffiffi
�

p þ n31

ð ffiffiffiffi
�

p Þ2 þ . . .

þ J2
�
n01ffiffiffiffi
�

p þ ~n11

ð ffiffiffiffi
�

p Þ2 þ
~n21

ð ffiffiffiffi
�

p Þ3 þ . . .

�
þ . . . ; (1.11)

h2 ¼ n02 þ n12ffiffiffiffi
�

p þ n22

ð ffiffiffiffi
�

p Þ2 þ . . .

þ J2
�

~n02

ð ffiffiffiffi
�

p Þ2 þ
~n12

ð ffiffiffiffi
�

p Þ3 þ . . .

�
þ . . . ; (1.12)

h3 ¼ n03ffiffiffiffi
�

p þ n13

ð ffiffiffiffi
�

p Þ2 þ . . . ; h4 ¼ n03

ð ffiffiffiffi
�

p Þ2 þ . . . : (1.13)

The corresponding expansion of E in smallN for fixed J
is then

E ¼ J þ 1

2J
h1ð�; JÞN þ . . . ; (1.14)

i.e., h1ð�; JÞ may be called, following Ref. [10], a ‘‘slope’’
function. In Ref. [10] it was found exactly in the case of the
folded string with spin S in AdS5 (in this case N ¼ S).
While the coefficients in the ‘‘slope’’ function h1 are
expected, by analogy with the case in Ref. [10], to be
rational (h1 is determined [10] by the asymptotic Bethe
ansatz and is also not sensitive to the phase) the coefficients
in the next ‘‘curvature’’ function h2 are already transcen-
dental (as we shall discuss below n12 contains �3, ~n12
contains �5, etc.) and h2 is expected to be sensitive to
‘‘wrapping’’ corrections.

B. Summary of results for the coefficients

Below we shall consider the examples of ‘‘small’’
semiclassical spinning string states discussed in
Refs. [1,4] that fall into the class of states described by
(1.3), (1.8), and (1.9). They correspond to quantum string
states with angular momentum J and few oscillator
modes excited that are responsible for nonzero com-
ponents of intrinsic spin. More specifically, we shall con-
sider and compare the following solutions7: two folded
string cases: ðS; JÞ and ðJ0; JÞ and three rigid two-spin

circular string cases: ðJ1 ¼ J2 � J0; JÞ, ðS1 ¼ S2 � S; JÞ,
and ðS ¼ J1 � J0; JÞ. For lowest values of the winding
numbers these represent (in the flat-space limit) states on
the leading Regge trajectory with the string level being
N ¼ S or N ¼ J in the folded one-spin cases and N ¼ 2J0
or N ¼ 2S in the circular two-spin cases.
For example, forN ¼ 2 these represent states on the first

excited string level. In this case all states with fixed J (i.e.,
on a fixed KK level [14]) should belong to a single long
PSUð2; 2j4Þ multiplet.8 Furthermore, the string states with
N ¼ 2, J ¼ 2 are dual to particular states in the Konishi
multiplet on the gauge theory side [1,4].
As all operators in a given supermultiplet should have

the same four-dimensional anomalous dimension, that
means that the corresponding string states should have
the same target space energy [up to constant integer or
half-integer shifts reflecting their positions in the super-
multiplet; such shifts are ignored in (1.3)], i.e., the expres-
sion for EN¼2 as a function of J and � should be universal,
with EN¼2ðJ ¼ 2; �Þ being equal to the dimension of the
Konishi multiplet.
As follows from (1.3), this expected universality of the

N ¼ 2 value of the energy for any J and
ffiffiffiffi
�

p
imposes the

following invariance constraints on the coefficients of
states within a supermultiplet:

n01 ¼ inv; 2n02 þ n11 ¼ inv;

4n03 þ 2n12 þ n21 ¼ inv; (1.15)

2~n02 þ ~n11 ¼ inv;

8n04 þ 4n13 þ 2n22 þ n31 ¼ inv; . . . (1.16)

Note that these conditions relate different terms in the
semiclassical loop expansion. Once the values of these
coefficients are known at least for one state in the multiplet,
then (1.15) and (1.16) constrain the coefficients for other
states.
Explicitly, these universal coefficients enter EN¼2 in

(1.3) and (1.4) as follows:

EN¼2 ¼ 2
ffiffiffiffi
�

4
p �

1þ a1ffiffiffiffi
�

p þ a2

ð ffiffiffiffi
�

p Þ2 þ
a3

ð ffiffiffiffi
�

p Þ3 þO

�
1

ð ffiffiffiffi
�

p Þ4
��

;

(1.17)

a1 ¼ ðA1ÞN¼2 ¼ 1

8
J2 þ 1

4
ð2n02 þ n11Þ; (1.18)

a2¼ðA2ÞN¼2¼�1

2
a21þ

1

4
n01J

2þ1

4
ð4n03þ2n12þn21Þ;

(1.19)

7We shall use the following notation: S1 and S2 will stand for
spins in AdS5; J1 � J0 and J2 will be spins in S5 and J3 � J will
be orbital momentum in S5.

8For example, the three circular string states in the flat-space
limit are related by Lorentz transformations and thus belong to
the same multiplet. This should remain so upon switching on the
curvature.
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a3¼ðA3ÞN¼2¼�a1a2þ1

4
ð2~n02þ ~n11ÞJ2

þ1

4
ð8n04þ4n13þ2n22þn31Þ: (1.20)

ðakÞJ¼2 are then the coefficients of the string cou-
pling expansion of the dimension of the Konishi multiplet.
a1 thus depends on tree-level n02 and 1-loop n11 coeffi-
cients; a2 depends on tree-level, extra 1-loop n12 and
also 2-loop n21 coefficients; a3 depends on tree-level, extra
1-loop ~n11, n13, extra 2-loop n22 and also 3-loop n31
coefficients, etc.

In general, the highest loop order ‘ coefficient n‘1 in a‘
originates from the slope function h1 in (1.11) and thus
should be rational (as found for the ðS; JÞ folded string
state in Ref. [10]).9 The subleading loop order coefficient
n‘�1;2 (for ‘ > 1) originating from h2 in (1.11) should

already be ’transcendental’’—containing zeta function
�ð2‘� 1Þ � �2‘�1. Also, n‘�2;3 (for ‘ > 2) should contain
�2‘�1, etc. Then the highest transcendentality term in a‘ in
(1.17) should contain �2‘�1.

Indeed, as we shall see below the 1-loop coefficients n1k
obey this pattern: n12 contains �3, n13 contains �5, etc.
What is unclear at the moment is if the 2-loop and higher
coefficients in h2; h3; . . . (like n22; n32; . . . ) may contain
other transcendental constants as well.10 It would be im-
portant to carry out an explicit 2-loop computation of n22 to
clarify this question.

It is interesting to note that the weak-coupling expansion
of the anomalous dimension of the Konishi multiplet states
also contains �k constants at 4- and 5-loops (see, e.g.,
Ref. [17], and references therein) while the transcenden-
tality origin of higher loop coefficients here again appears
to be an open question (an answer should follow from an
analytic solution of TBA equations at weak coupling
[7,8]).

Let us now summarize what is known [1,3–6,10] and
what will be found below about the coefficients nkm; ~nkm in
(1.3) using the semiclassical approach. We will try to
identify the general universality patterns in the structure
of these coefficients. First, in all cases

n01 ¼ 1; ~n01 ¼ � 1

4
: (1.21)

The universality of n01 is in agreement with (1.15). This
follows from the universal form of the ‘‘near-BMN’’ ex-
pansion of the classical string energy:

E2 ¼ J2 þ 2N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ J2

p
þ . . .

¼ J2 þ N

�
2

ffiffiffiffi
�

p þ 1ffiffiffiffi
�

p J2 � 1

4ð ffiffiffiffi
�

p Þ3 J
4 þ . . .Þ þ . . . ;

(1.22)

where we assumed that N � J � ffiffiffiffi
�

p
. In other words, the

first term in the semiclassical expansion of the slope function

h1 in (1.10) is universal: h1ð�; JÞ ¼ 2
ffiffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ J 2

p þOðJ Þ.
The classical n02, n03 and the leading 1-loop n11 coef-

ficients are also rational [1,3]. We find that in all cases

2n02 þ n11 ¼ 2; (1.23)

verifying the first universality relation in (1.15). The value
of ~n11 is determined by the term linear in N in the 1-loop
semiclassical energy computed for fixed J and small N
and then expanded in small J [see (1.9)]. The results for
the folded string [6,10] and the circular string results
described below imply that in all cases

~n 11 ¼ �n11; �n11 ¼ n11: (1.24)

More generally, these results imply the universality (for the
states on the leading Regge trajectory) of the J depen-
dence of the first two leading terms in the ‘‘slope’’ function

h1 in (1.10) expanded in the semiclassical limit
ffiffiffiffi
�

p � 1
with J ¼ Jffiffiffi

�
p held fixed:

h1¼2
ffiffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þJ 2

p
þ n11
1þJ 2

þ 1ffiffiffiffi
�

p ½n21þ ~n21J 2þOðJ 4Þ�

þO

�
1

ð ffiffiffiffi
�

p Þ2
�
: (1.25)

We find also that the leading term in the semiclassical
expansion of h2 in (1.12) has the following general form:

h2 ¼ n02 þ ~n02J 2

1 þ J 2
þ 1ffiffiffiffi

�
p ½n12 þ ~n12J 2 þ OðJ 4Þ�

þ O

�
1

ð ffiffiffiffi
�

p Þ2
�
: (1.26)

Again, by inspection in all cases we observed, in agree-
ment with first relation in (1.16) we find

2~n02 þ ~n11 ¼ 0; (1.27)

so that [using (1.23) and (1.24)]

~n 02 ¼ 1

2
n11 ¼ 1� n02: (1.28)

The 1-loop coefficient n12 in (1.3) and (1.26) contains a
transcendental �3 part. This was first observed in the small-
spin expansion of the folded string [2,18] and pulsating
string [19] energy, indicating also that higher-order 1-loop
terms should contain �5, etc. constants. The computation
of n12 for the circular 2-spin string with J1 ¼ J2 � J0
(N ¼ 2J0) in Ref. [1] and for the folded spinning string

9In particular, for the ðS; JÞ folded string state [10]: n11 ¼ �1,
n21¼�1

4, n31 ¼ � 1
4 , n41¼�25

64, n51¼�13
16, n61¼�1073

512 , etc.
10For example, the 2-loop and higher-order terms in the lnS
coefficient of the large S limit of the folded string energy
expanded in 1ffiffiffi

�
p contain Dirichlet beta function constants

K ¼ �ð2Þ, etc. (as well as �k) [15,16].
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(N ¼ S) in Ref. [6] led to the exactly same coefficient of �3
in n12, suggesting its universality, i.e., that11

n12 ¼ n012 � 3�3; (1.29)

where n012 is a rational number depending on a particular
string state on the leading Regge trajectory. The universal-
ity of the �3 coefficient in (1.29) will be confirmed below
also for the two other examples of the ‘‘small’’ circular
string solutions: with two equal spins S1 ¼ S2 in AdS5;
with one spin in AdS5 and one spin J1 � J0 in S5 with
S ¼ J0, N ¼ 2S (in Ref. [1] only n11 was computed in
these cases).

As was found in Ref. [10] from the exact computation of
the ‘‘slope’’ function h1 in (1.10) for the ‘‘ground-state’’
ðS; JÞ state in slð2Þ sector [corresponding to the folded
ðS; JÞ string], the 2-loop coefficient n21 is rational and
given by12

n21 ¼ � 1

4
: (1.30)

In view of (1.15) and the observed universality of �3 in
n12 (1.29) the rationality of n21 should apply also to other
states under consideration. Indeed, using the values of
n03 ¼ � 3

8 , n012 ¼ 3
8 [6] and (1.30) [10] for the folded

ðS; JÞ string case the universality of the third combination
in (1.15) translates into

4n03 þ 2n012 þ n21 ¼ �1: (1.31)

Remarkably, as we shall find below, this constraint implies
the same value (1.30) for the 2-loop coefficient n21 also
for the folded ðJ0; JÞ, circular ðJ1 ¼ J2; JÞ and circular
ðS1 ¼ S2; JÞ strings. We thus suggest that this value
n21 ¼ � 1

4 , like the value of the �3 coefficient in (1.29),

should again be the same for all the states on the leading
Regge trajectory.13 This universality of n21 may help
understand how to generalize the exact result of Ref. [10]
for the function h1 in (1.10) to states outside the slð2Þ
sector. While the direct 2-loop computation of n21 is yet
to be done for the circular string cases, the value (1.30) can
be indirectly obtained from the knowledge of the 1-loop
coefficients by using the expected universality of the
subleading a2 coefficient in the dimension of the Konishi
state (1.19).

Note that in view of (1.29) and (1.31) the coefficients in
the Konishi multiplet energy (1.17) take the following
explicit form:

ða1ÞJ¼2 ¼ 1; ða2ÞJ¼2 ¼ 1

4
� 3

2
�3: (1.32)

The universality of ða1ÞJ¼2 ¼ 1, i.e., the validity of (1.23)
not only for the ðS; JÞ folded [3] but also for the small
circular string cases was already verified in Refs. [1,4].
Assuming the universality of the value of n21 in (1.30),

we get from (1.31)

n012 ¼ � 3

8
� 2n03: (1.33)

We shall explicitly confirm this relation (and thus the
n21 ¼ � 1

4 prediction) in Sec. II for the circular J1 ¼ J2
and S1 ¼ S2 cases. In the case of the circular S ¼ J0 string
one has n03 ¼ � 1

2 and then (1.33) implies n012 ¼ 5
8 . The

direct computation of n012 in this case will be discussed in
Sec. II D and Appendix C. As it will be explained in
Sec. II A, the result depends on a choice of a summation
prescription over the fluctuation frequencies. One particu-
lar summation procedure discussed in Appendix C leads to
n012 ¼ 11

8 . While so far we were unable to identify a pre-

scription leading to the value n012 ¼ 5
8 consistent with the

universality of (1.30), we believe it should exist. Further
support of the universality of n21 comes from the folded
ðJ0; JÞ string discussed in Appendix D where we show that
in this case n03 ¼ 1

8 and n012 ¼ � 5
8 , in agreement with

(1.33).
The 1-loop result for the ðS; JÞ folded string in Ref. [6]

[in Eq. (B5) there] and our present results for the circular
and ðJ0; JÞ folded string cases all lead also to the following
universal expression for the coefficient ~n12 in (1.3):

~n 12 ¼ ~n012 þ 3�3 þ 15

4
�5; (1.34)

where ~n012 is a rational number depending on a particular
state. Remarkably, like in the case of n11 ¼ �~n11 in (1.24),
the �3 term here is the same as in n12 in (1.29), up to the
sign. The coefficient ~n12 contributes to a higher subleading
term a4 in the Konishi dimension (1.17).
The value of ~n12 can be found from the coefficient of the

1
2
ffiffiffi
�

p N 2J term in (1.9), i.e.,

~n12 � �n11 � 1

2
ðn01~n11 þ ~n01n11Þ ¼ ~n12 � 3

8
n11; (1.35)

where we used (1.21). For example, for the ðS; JÞ folded
string the result of Ref. [6] gives (1.34) with ~n012 ¼ � 27

16 .

The coefficient n13 can be found also by starting with
solutions with J ¼ 0, expanding in small N and compar-
ing to (1.4) and (1.7) (see Sec. II): n13 is present in the N2

term in A3 in (1.7) which appears at one loop order in the

semiclassical expansion (as N2

ð ffiffiffi
�

p Þ3 ¼ N 2ffiffiffi
�

p ). Our 1-loop re-

sults for the circular strings (N ¼ 2J0 ¼ 2S) imply that

11The �3 coefficient is no longer universal for an m-folded
string [6] but has simplem2 dependence (see also Sec. II B below
for the corresponding circular string case).
12The simplicity of this coefficient may a priori be surprising as
it should be given by some 2-loop world-sheet theory integral
(with discrete sum over spatial momenta).
13The universality of this subleading coefficient in the slope
function is supported by the fact that while n11 is sensitive to the
curvature of subspace where string moves (i.e., it changes sign
between the AdS5 and S

5 cases) the 2-loop correction (determin-
ing, in particular, n21) depends on the square of the curvature.
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n13 ¼ n013 þ n0013�3 þ
15

4
�5; (1.36)

where n013 and n0013 are rational numbers. The coefficient of

�5 is again universal. In the semiclassical expansion of the
energy at fixed J the coefficient n13 first appears in the
1

4
ffiffiffi
�

p N 3

J term in (1.9), i.e., in the combination

2ðn13 � ~n12Þ � n01n12 þ 3 �n11 þ ð3~n01 � ~n02 þ 3

4
n201Þn11

þ ð3n01 � n02Þ~n11 ¼ ð2n0013 � 3Þ�3
þ 2n013 � 2~n012 � n012 � n211 þ n11; (1.37)

where we first used (1.21), (1.29), (1.30), and (1.28) and
then (1.34) and (1.36). Note that �5 terms cancel out in this
combination. The absence of �5 in the coefficient of
N 3=J term is seen in the expression for the 1-loop energy
for the AdS5 folded string in Ref. [6]; we will also find that
the same is true for the folded string in S5 and the three
circular string examples. As for the �3 term in (1.37)
appearing in the coefficient of N 3=J in (1.9), the result
of Ref. [6] and our results described in Sec. II and
Appendix D imply that it depends on a particular solution.
Thus n0013 is not universal (we shall list its values for differ-
ent solutions below). The results of Ref. [6] in the folded
ðS; JÞ string case lead to n11 ¼ �1, n012 ¼ 3

8 , n
00
13 ¼ 15

4 ,

~n012 ¼ � 27
16 , and thus n013 ¼ � 9

16 .

We expect the 3-loop slope coefficient n31 to be rational
for all states while the 2-loop coefficient n22 to contain
only �3 as its highest transcendentality part, i.e.,

n22 ¼ n022 þ n0022�3: (1.38)

Then the universality of the combination 8n04 þ 4n13 þ
2n22 þ n31 in (1.16) is consistent with the universality of
the �5 coefficient in (1.36). Thus the next-order coefficient
a3 in the first excited string level state energy (1.20) should
contain a �5 part.

Explicitly, as follows from the above discussion [cf.
(1.27) and (1.36)] the coefficients in the energy (1.17) for
the states on the first excited string level take the form:

a1 ¼ 1

8
J2 þ 1

2
; (1.39)

a2 ¼ � 1

2
a21 þ

1

4
J2 � 1

4
� 3

2
�3

¼ � 1

128
J4 þ 3

16
J2 � 3

8
� 3

2
�3; (1.40)

a3 ¼ �a1a2 þ 2n04 þ n13 þ 1

2
n22 þ 1

4
n31

¼ 1

4
a1ð2a21 � J2 þ 1Þ þ 2n04 þ n013 þ

1

2
n022 þ

1

4
n31

þ
�
3

16
J2 þ 3

4
þ n0013 þ

1

2
n0022

�
�3 þ 15

4
�5: (1.41)

The universality of a3 implies that the coefficient of
�3 and thus n0013 þ 1

2n
00
22 should have state-independent

value. For the folded ðS; JÞ string a1, a2 in (1.39) and
(1.40) appeared in Refs. [3,6]. In this case the 3-loop
coefficient n31 can be inferred from the exact expression
(A2) for the ‘‘slope’’ h1 in Ref. [10], i.e., n31 ¼ � 1

4 . Using

also that for folded string solution n04 ¼ 31
64 and the value

for n13 in (1.36) given by n13 ¼ � 9
16 þ 15

4 �3 þ 15
4 �5 (see

Ref. [6] and (D28)) we conclude that for this state we
should get

a3 ¼ 1

1024
ðJ2 þ 4ÞðJ4 � 24J2 þ 48Þ þ 11

32
þ 1

2
n022

þ 1

2

�
3

8
J2 þ 9þ n0022

�
�3 þ 15

4
�5: (1.42)

To fix a3 we thus need to know the 2-loop coefficient
n22 in h2 in (1.12). As the folded string is an elliptic
solution, the required direct 2-loop string computation
appears to be hard. It should be easier to find n22 for the
rational circular J1 ¼ J2 solution. In that case n31 should
be again rational, while [see (2.22)] n013 ¼ � 3

16 , n
00
13 ¼ � 3

4

so that the coefficient of �3 in a3 is 1
2 ð38 J2 þ n0022Þ. The

universality of this coefficient could be checked by an
independent computation of n22 by another circular string,
e.g., S1 ¼ S2 one.
It would be interesting also to extend the numerical

TBA analysis in Ref. [9] to test the universal J depend-
ence of a3 and extract the value of n22 for the folded string
state. The J ¼ 2, 3, 4 data in Ref. [9] suggests that
n22 ��10.
Let us now list the values of few leading coef-

ficients nkm, ~nkm for various folded and circular spinning
strings adding question marks next to the values that were
not yet derived directly but are conjectured to be true on
the basis of the universality of (1.30) (see also table in
Appendix E). For the folded strings with one spin N in
AdS5 or S5 and an S5 orbital momentum J one finds:
(i) folded string in AdS5 with ðS; JÞ, N ¼ S [2,3,6,10]:

n01¼1; n02¼3

2
; n03¼�3

8
; n04¼31

64
;

~n02¼�1

2
; n11¼�1; ~n11¼1; n012¼

3

8
;

n0013¼
15

4
; n21¼�1

4
; (1.43)

(ii) folded string in S5 with ðJ0; JÞ, N ¼ J0 [5,20]:

n01¼1; n02¼1

2
; n03¼1

8
; n04¼ 1

64
;

~n02¼1

2
; n11¼1; ~n11¼�1; n012¼�5

8
;

n0013¼�3

4
; n21¼�1

4
ð?Þ: (1.44)
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The value of n12 in (1.29) and (1.44) and ~n11 will be
determined below in Appendix D following the
algebraic curve approach of Refs. [3,5,6]
For the circular strings with two equal spins in AdS5
or S5 and an S5 momentum J one finds:

(iii) circular string with ðJ1 ¼ J2; JÞ N ¼ J1 þ J2 ¼ 20
[1,4] (see Sec. II B):

n01¼1; n02¼0; n03¼0; n04¼0; ~n02¼1;

n11¼2; ~n11¼�2; n012¼
3

8
; n0013¼�3

4
;

n21¼�1

4
ð?Þ; (1.45)

(iv) circular string with ðS1 ¼ S2; JÞ, N ¼ S1 þ S2 ¼
2S [1,4] (see Sec. II C for ~n11 and n012):

n01¼1; n02¼2; n03¼�1; n04¼2;

~n02¼�1; n11¼�2; ~n11¼2; n012¼
13

8
;

n0013¼
15

4
; n21¼�1

4
ð?Þ; (1.46)

(v) circular string with ðS ¼ J0; JÞ,N ¼ Sþ J0 ¼ 2S14:

n01¼1; n02¼1; n03¼�1

2
; n04¼3

4
;

~n02¼0; n11¼0; ~n11¼0;

n012¼
5

8
ð?Þ; n0013¼

3

2
; n21¼�1

4
ð?Þ: (1.47)

It is useful also to add the corresponding expressions
for the pulsating strings with N being the oscillation
number (see Ref. [19], and references therein)15:

(vi) pulsating string in AdS5:

n01¼1; n02¼5

2
; n03¼�13

8
;

n11¼�~n11¼�3ð?Þ; n012¼
23

8
ð?Þ;

n21¼�1

4
ð?Þ; (1.48)

(vii) pulsating string in S5:

n01 ¼ 1; n02 ¼ � 1

2
; n03 ¼ � 1

8
;

n11 ¼ �~n11 ¼ 3ð?Þ; n012 ¼ � 1

8
ð?Þ;

n21 ¼ � 1

4
ð?Þ: (1.49)

As discussed in Ref. [19], for N ¼ 2 the pulsating
strings should also represent states on the first
excited string level, i.e., in particular (for J ¼ 2)
states from the Konishi multiplet. With the above
values of nkm one indeed reproduces the coeffi-
cients in (1.32).

The rest of this paper is organized as follows. In the
Sec. II we first comment on the general strategy of comput-
ing one-loop correction to the energy of classical solitons
and then use it to evaluate the one-loop contributions to the
energy of the three ‘‘small’’ circular spinning strings. The
necessary characteristic polynomials are collected, in a
factorized form, in Appendix B. While the solutions with
two spins in AdS5 or with two spins in S

5 yield coefficients
nkm in line with the expectations and patterns outlined
above, the rational terms in the result for the circular string
solutionwith one spin inAdS5 and one spin inS

5 are found to
be ambiguous, depending on a choice of prescription for the
summation of the characteristic frequencies. In Appendix C
we compute the one-loopcorrection to the energy of the same
small circular string solution using the algebraic curve ap-
proach and find a result consistent with a particular world-
sheet summation prescription. In Appendix Awe discuss the
structure of the leading terms in the slope function h1 [10] in
the semiclassical expansion. The one-loop correction to the
energy of folded stringwith spin inS5 is found inAppendixD
and E contains table with values of the leading coefficients
discussed in this paper.

II. ONE-LOOP CORRECTION TO ENERGY
OF ‘‘SMALL’’ CIRCULAR STRINGS

Below we shall revisit the semiclassical computation of
1-loop correction to energy of ‘‘small’’ semiclassical cir-
cular strings discussed in Refs. [1,4] with the aim to extend
the expansion to next subleading order allowing one to
extract the value of the coefficient n12 in (1.3) and (1.6),
and thus n012 in (1.29). In the case of the J1 ¼ J2 string this

14Note that the values of all coefficients listed here are given by
the mean average of the values for the J1 ¼ J2 and S1 ¼ S2
circular strings: symbolically, nðSJÞ ¼ 1

2 ½nðJJÞ þ nðSSÞ�. An in-
tuitive explanation for this may be that since we are considering a
near-flat-space expansion certain leading coefficients should be
given just by sums of independent contributions of oscillators in
different dimensions. Then to leading order the AdS5 and S5

directions should contribute similarly in the near-flat expansion,
modulo signs due to opposite sign of the curvature.
15To get the required 1-loop coefficients n11 it appears that one
is to take the fermions in Ref. [19] with antiperiodic boundary
conditions. The same applies to folded string cases discussed in
Refs. [18,19]; this removes ln2 terms from n11 present in the
periodic-fermion results of Refs. [2,18,19]; it remains to see that
at the end one establishes the full agreement with the algebraic-
curve computation of Ref. [3].
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was already done in Ref. [1] but we will review this case as
well for completeness.

A. General comments on computation
of one-loop correction

We will be interested in computing 1-loop corrections to
the energy of rigid circular spinning strings in AdS5 � S5.
While these solutions are among the simplest ones being
stationary and leading to fluctuation Lagrangian with con-
stant coefficients, this problem (addressed in the past, e.g., in
Refs. [1,21–25]) turns out to be subtle. Expanding the string
action near the solution and using a static gauge on fluctua-
tions one ends up with a quadratic fluctuation operator
�2 ¼ diagðKB;KFÞ for 8þ 8 coupled bosonic+fermionic
fluctuation modes. Equivalent result for �2 (restricted to
‘‘physical’’ subspace) is found in the conformal gaugewhere
2 massless bosonic modes decouple and their contribution is
cancelled against the conformal gauge ghost one. Since for
all solutions we will consider the target-space time is
proportional to the world-sheet one, t ¼ ��, the 1-loop
correction to the target space energy can be found as

E1 ¼ 1

�
E2D; (2.1)

where E2D is 1-loop correction to energy of the world-sheet
theory on R� S1 ½� 2 ð� T

2 ;
T
2Þ; T ! 1; � 2 ð0; 2�Þ�.

Since in our case �2 has constant coefficients, E2D can be

found as 1
2T lndet �2 ¼ 1

2T lndetKF

detKB
. Even though lndet�2 is

UV finite,16 the computation of its finite part on 2D cylinder
is potentially ambiguous—it may depend on how individual
fluctuation modes are defined and how their contributions
are combined together. One complication is that the space
of bosonic fluctuations is multidimensional. Also, the lack
of manifest Bose-Fermi 2D symmetry (like world-sheet
supersymmetry in the NSR case) implies an extra ambiguity
in choice of a consistent regularization. On general grounds,
the choice of a prescription for computation of this qua-
ntum correction should be governed by the requirement of
preservation of underlying symmetries of the theory (i.e.,
conserved charges, including ‘‘hidden’’ ones) which are
‘‘spontaneously broken’’ by a choice of a particular back-
ground we are expanding around. A practical implementa-
tion of this starting directly with the Green-Schwarz
AdS5 � S5 string action remains a nontrivial task.17

To give an example of possible ambiguities, consider a
model where

E2D ¼ 1

2

Xh
r¼1

cr
X1

p1¼�1

Z dp0

2�
ln½ðp0 þ arÞ2

� ðp1 þ krÞ2 þm2
r�: (2.2)

Here p1 is an integer momentum in S1 direction and the
sum rules

P
h
r¼1 cr ¼ 0,

P
h
i¼1 crm

2
r ¼ 0 ensure that E2D is

UV finite. The shifts ai and (integer) kr reflect particular
choice of definitions of fluctuation modes. If one splits the
sum over fluctuations into h separate 2D integrals and
formally ignores the UV cutoffs in them one may shift
the integration/summation variables so that to completely
eliminate the dependence on ar, kr. However, if one first
combines all the contributions into a single integrand the
finite result will depend on ar, kr.
To evaluate similar 1-loop expressions, one may

choose to diagonalize �2 first to get its determinant over
‘‘flavor’’ indices as a product over roots of the correspond-
ing characteristic polynomials, PB;Fðp0Þ ¼‘‘det’’KB;F¼Q

i½p0�!ðb;fÞ
i ðp1Þ�. One particular prescription for evalu-

ating the resulting integral over p0 is to first Wick-rotate it
(which is equivalent to i	 prescription p0 ! p0 � i	).18

Then performing the integral one gets a sum of absolute
values of the characteristic frequencies

E2DðmodÞ ¼ 1

4

X16
i¼1

X1
p1¼�1

ðj!ðbÞ
i ðp1Þj � j!ðfÞ

i ðp1ÞjÞ: (2.3)

Alternatively, one may also treat the world-sheet theory
expanded to quadratic order around the classical solution
as a collection of infinitely many coupled harmonic
oscillators (found by expanding the 2D fluctuation fields
in Fourier series in �) and evaluate the corresponding
vacuum energy using the one-dimensional Hamiltonian
(operator) quantization method. As was discussed in
Ref. [24,27], upon a diagonalization of the mixing, the
contribution of each normal mode to the energy will enter
in the sum with a sign si ¼ 	1 determined by a minor of
the mixing matrix, i.e., in this case we get

E2DðsÞ ¼ 1

4

X16
i¼1

X1
p1¼�1

½sðbÞi;p1
!ðbÞ

i ðp1Þ � sðbÞi;p1
!ðfÞ

i ðp1Þ�: (2.4)

While this expression is equivalent to (2.3) in some stan-
dard simple cases, this need not be true in general.19 The
computation in one-dimensional Hamiltonian quantization
setting may be sensitive to low values of p1 when sign of
!i may fluctuate with p1 and different treatments may
correspond to different choices of oscillator vacuum for

16See Ref. [25,26] for discussions of the UV regularization of
such determinants.
17Unfortunately, in more complicated 2-spin cases the
integrability-based algebraic curve approach does not appear
to help with the problem of ambiguities in the summation over
the fluctuation modes.

18It is not clear a priori why the standard i	 prescription should
be preferred given that 2D Lorentz invariance is broken by the
background.
19The expression in (2.4) may be thought of also as a result of a
generalized i	 prescription: p0 ! p0 � i~si	, with si!i ¼ ~sij!ij,
~s2i ¼ 1.
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low (zero) modes. At the same time, the signs of suffi-
ciently high mode number terms (i.e., with jp1j> n ¼
finite number) cannot be sensitive to them. Indeed, since
the mixing of modes is subleading (at most linear) in p1

compared to the free kinetic term, the mixing can be
ignored for large p1; in particular,

jp1j> n: si;p1
!iðp1Þ ¼ j!iðp1Þj: (2.5)

Since the transcendental (�3, �5, etc.) terms that may
appear in the expression for the 2D energy can originate
solely from a summation over infinite range of p1 (the sum
over any finite set of modes can only produce a rational
number), it follows that the transcendental parts of the 2D
energy should be controlled by the jp1j � 1 limit and thus
should ‘‘not’’ depend on a sign prescription. Moreover,
fluctuations with high mode numbers have large 2D energy
and thus probe only short world-sheet distances.20 Their
contribution is thus less sensitive to details of the classical
solution which is chosen as an expansion point for the the
world-sheet action (they will, however, be sensitive to the
‘‘topological’’ features of the solution, such as winding
number). We may then expect that at least some of the
coefficients of the transcendental terms in E1 should be
universal within a given Regge trajectory (parametrized by
values of spins with fixed values of windings). This ex-
plains, in particular, the universality of the �3 term in (1.29)
and of the �5 terms in (1.34) and (1.36).

The choice of signs si may itself be sensitive to the
definition of the fluctuation modes (related to shifts in
fluctuation frequencies or choice of oscillator vacua that
may also be different in different gauge choices). In gen-
eral, one expects that the whole summation prescription
should be determined by the requirement that the target
space symmetry algebra is correctly realized on quantum
string states. There are more practical physical conditions
that are easier to verify, e.g., the vanishing of the one-loop
correction to the energy in the limit in which all charges go
to zero. The one-loop correction should also vanish in the
limit in which the classical solution becomes supersym-
metric (in cases where such limit exists),21 e.g., one may
require consistency with the BMN limit.

Another requirement one may impose is an analyticity in
the smallest charge. Indeed, in the presence of a large
charge one may expect that turning on another charge

should be smooth; that is, the derivative of the energy
with respect to the smallest charge evaluated at zero should
not be singular. This translates into the absence in E2D of
fractional powers of small charges, Q� with �< 1. Such a
requirement of the absence of ‘‘nonanalytic’’ terms (see
Ref. [1]) turns out to be consistent with the structure of the
energy (1.3) and (1.4) expected to follow from the margin-
ality condition for the corresponding vertex operator.

Circular string with spins J1 ¼ J2

and orbital momentum J

We shall start with the ‘‘small’’ circular string in S5

described by the following classical solution [1,4,21,23]
(t ¼ ��, XkXk ¼ 1):

X1 þ iX2 ¼ aeiðw�þm�Þ; X3 þ iX4 ¼ aeiðw��m�Þ;

X5 þ iX6 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2a2

p
ei
�

E2
0 ¼ �2 ¼ 
2 þ 4m2a2 ¼ 
2 þ 4m2J 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ 
2
p ;

w2 ¼ m2 þ 
2; J 0 � J 1 ¼ J 2 ¼ a2w;

J � J 3 ¼ ð1� 2a2Þ
; 
 ¼ J

1� 2J 0ffiffiffiffiffiffiffiffiffiffiffi
m2þ
2

p
: (2.6)

In the limit a ! 0 this becomes a short string with small
spin J 0. m is a winding number which is to be set to 1 to
get a state on the leading Regge trajectory. For 
 ¼ 0
the classical energy has the same expression as in flat-

space, E0 ¼ 2
ffiffiffiffiffiffiffiffi
mJ0

p
. Expanding the classical string energy

E0 ¼
ffiffiffiffi
�

p
E0 for J 0 ¼ J0ffiffiffi

�
p � 1, J ¼ Jffiffiffi

�
p � 1 and assuming

J 2 � J 0 we get for m ¼ 1

E0¼2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

p
J0

q �
1þ 1ffiffiffiffi

�
p J2

8J0
� 1

ð ffiffiffiffi
�

p Þ2
�

J4

128J02
�J2

4

�
þ . . .

�
:

(2.7)

More generally, if we expand in small J 0 for fixed
�2 ¼ J 2=ð4mJ 0Þ, we find

E0 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

ffiffiffiffi
�

p
J0

q �
1þ 1

m
ffiffiffiffi
�

p �2J0

1þ �2

þ 1

ðm ffiffiffiffi
�

p Þ2
ð4�2 þ �4 � 2�6ÞJ02

2ð1þ �2Þ2 þ . . .

�
;

�2 ¼ J2

4m
ffiffiffiffi
�

p
J0
: (2.8)

Expanding this further in the limit � ! 0 we get back to
(2.7) form ¼ 1. An alternative expansion corresponding to
J 0 � 1with fixed J (i.e., � � 1) gives [cf. (1.10), (1.22),
and (1.26)]

20Classical scale invariance is broken by the background so this
notion makes sense; ‘‘short distance’’ is measured with respect
to the characteristic scale of the background which is set by the
parameters of the solution.
21Such a requirement may seem inconsistent with the fact that
the exact target space energy should contain a charge-
independent term which describes the position of the corre-
sponding state in a supersymmetry multiplet. However, from
the perspective of a quantum string state, this constant term is
governed by the fermionic zero mode content and should not be
accessible semiclassically.
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E0 ¼ J þ 2

J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2�þ J2

p
J0 � 2m2�ðm2�þ 2J2Þ

J3ðm2�þ J2Þ J02 þ . . .

(2.9)

It is useful to perform the one-loop calculation in terms of
the two independent semiclassical parameters a and 
. We
will first expand in small a at fixed 
 and then expand in 
.
An important feature of this expansion is that all 1-loop
integrals are then regularized in the IR by a nonzero value
of 
 or J and therefore a2 and thus the spin J 0 will appear
in the 1-loop world-sheet energy only in integer powers,
E2D ¼ P

kfka
2k. A further expansion in small J can then

be carried out in the resulting coefficients.22 Then

E1 ¼ 1

�
E2D

¼ 1

�
½f0ð
;mÞ þ f1ð
;mÞa2 þ f2ð
;mÞa4 þ . . .�

¼ e0ðJ ; mÞ þ e1ðJ ; mÞJ 0 þ e2ðJ ; mÞJ 02 þ . . .

(2.10)

Note that as the expansion of � or the classical energy (2.9)
contains inverse powers of J , terms of higher-order in
J�1 in fi contribute to terms of lower order in the corre-
sponding expansion of ei. Note also that in view of (2.1) we
have

E2 ¼ E2
0 þ 2

ffiffiffiffi
�

p
E2D þ . . .

¼ E2
0 þ 2

ffiffiffiffi
�

p ½f0ð
;mÞ þ f1ð
;mÞa2
þ f2ð
;mÞa4 þ . . .� þ . . . (2.11)

To compute the 1-loop energy E2D we need the quadratic
fluctuation operators KB;F or the corresponding bosonic

and fermionic characteristic polynomials. They can be
extracted from Ref. [22] and are listed in Appendix B.
As discussed in the previous subsection, we need also to

choose an appropriate definition of lndetKB

detKF
or a quantization

scheme in the Hamiltonian approach. Since in the present
case the characteristic polynomials depend on p0 only
through p2

0, for each mode number p1 we have a positive

and a negative root which are equal in absolute value. In the
Hamiltonian approach it is then natural to define the vac-
uum energy as a graded sum of the positive roots [cf. (2.4)].
Such a prescription gives the same result as the path

integral approach with the ‘‘standard’’ i	 prescription lead-
ing to (2.3). We then find that the one-loop correction to the
energy vanishes in the limit J0 ! 0. This is a required
feature since for J0 ¼ 0 (a ¼ 0) and J0 ¼ 0 the solution
(2.6)) reduces to a BMN geodesic.23

Let us summarize the results for the 1-loop coefficients
(2.10) in the J 0 � J � 1 expansion. Expanding E2D first
in a at fixed 
 and then expanding the result in small 
 we
find for the coefficients fk in (2.10) (for m ¼ 1):

f0ð
; 1Þ ¼ 0; f1ð
; 1Þ ¼ 2� 
2 þ 3

4

4 þOð
6Þ;

f2ð
; 1Þ ¼ � 3

4
� 6�3 þOð
2Þ: (2.12)

Then e0ðJ ; 1Þ ¼ 0 and

e1ðJ ; 1Þ ¼ 2

J
� 2J þOðJ 3Þ;

e2ðJ ; 1Þ ¼ � 4

J 3
þ 2

J

�
5

8
� 3�3

�
þOðJ Þ:

(2.13)

Comparing this with the general expression for the energy
(1.9) (here N ¼ 2J 0) we conclude that the resulting
values of n11, n12, n

0
12, ~n11 are as given in (1.29) and

(1.45). The values of n11 and n12 were already found in
Ref. [1].
We can also find the exact dependence of f1 and e1 on J :

f1ð
;1Þ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ
2

p ; e1ðJ ;1Þ¼ 2

J ð1þJ 2Þ : (2.14)

Then the coefficient ofJ 0 in the energy, i.e., the semiclassical
expansion for the corresponding circular string analog of the
‘‘slope’’ [10] function is [see (1.10) and (1.14)]

h1¼2
ffiffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þJ 2

p
þ n11
1þJ 2

þ ... ; n11¼2: (2.15)

Together with a similar expression found in the ðS; JÞ folded
string case [6,10] this provides an evidence of the universality
of the general expression in (1.25).
Note that when formally expanded in large J , the

function h1 in (2.15) takes the following form: h1 ¼ 2J þ
�
J ð1þ 2

J þ . . .Þ þ . . . Here the 2
J term is different by a factor

of 2 from the result for the leading 1-loop finite size
correction found in Ref. [28]. This disagreement should
not, however, be surprising as the two expansions are
derived in different limits (see also Appendix A). In
the present case, relevant for ‘‘short’’ strings, we as-
sumed thatJ 0 � 1 andJ is fixed. In contrast, the finite size

22Note that for fixed J the small J 0 expansions of a and �
[over which we are to divide E2D to get E1 in (2.1)] are
given by

a ¼ J 01=2

ðJ 2 þm2Þ1=4 �
J 03=2J 2

ðJ 2 þm2Þ7=4 þOðJ 05=2Þ;

� ¼ J þ 2J 0 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J 2 þm2

p
J

� 2J 02m2ð2J 2 þm2Þ
J 2ðJ 2 þm2Þ þOðJ 03Þ:

23Let us note that to carry out the calculation in a path integral
approach in the case of J ¼ 0 one should write the p0 integral

as
R
dp0 ln

detKB

detKF
¼ �R

dp0p0
d

dp0
lndetKB

detKF
. This integration by

parts step here is legal as lndetKB

detKF
vanishes fast enough at infinity.

The resulting rational function may then be expanded in J 0 and
integrated without a difficulty.
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correction calculation of Ref. [28] assumed the standard ‘‘fast string’’ limit ofJ 0 � 1,J � 1with J 0
J being fixed and then

taken to be small.24

Let us now present the results for the 1-loop coefficients fkð
;mÞ in (2.10) in the case of higher winding numbersm 
 1
(i.e., for states on subleading Regge trajectories):25

f0 f1 f2

m ¼ 1 0 2� 
2 þOð
4Þ � 3
4 � 6� 14 � �3 þOð
2Þ

m ¼ 2 0 20� 17
2 


2 þOð
4Þ � 89
6 � 6� 24 � �3 þOð
2Þ

m ¼ 3 0 60� 247
12 


2 þOð
4Þ � 3357
40 � 6� 34 � �3 þOð
2Þ

m ¼ 4 0 376
3 � 4043

108 

2 þOð
4Þ � 263939

945 � 6� 44 � �3 þOð
2Þ

(2.16)

Simple inspection shows that the coefficient of �3 in f2 grows like m4. This dependence is changed, however, after we
express the parameters of the solution in terms of the spins, using, in particular, the relation a2 ¼ m�1J 0 þOðJ 2Þ. The
coefficients ekðJ ; mÞ in (2.10) are then found to be:

e0 e1 e2

m ¼ 1 0 2
J � 2J þOðJ 3Þ � 4

J 3 þ 2
J

�
5
8 � 3� 12 � �3

�
þOðJ Þ

m ¼ 2 0 10
J � 11

2 J þOðJ 3Þ � 40
J 3 þ 2

J

�
319
48 � 3� 22 � �3

�
þOðJ Þ

m ¼ 3 0 20
J � 287

36 J þOðJ 3Þ � 120
J 3 þ 2

J

�
3821
240 � 3� 32 � �3

�
þOðJ Þ

m ¼ 4 0 94
3J � 2233

216 J þOðJ 3Þ � 752
3J 3 þ 2

J

�
289367
10080 � 3� 42 � �3

�
þOðJ Þ

(2.17)

As in the folded string case [6], the coefficient of �3 in e2 grows likem
2, supporting the above argument for the universality

of the transcendental terms.26

It is possible to find higher-orders in the small N ¼ 2J 0 expansion of the one-loop correction (2.10) to the energy:

E1 ¼
�
1

J
� J þ J 3 þ . . .

�
N þ

�
� 1

J 3
þ

�
5

16
� 3

2
�3

�
1

J
�

�
69

32
� 3

2
�3 � 15

8
�5

�
J

�
�
655

128
þ 25

16
�3 þ 15

8
�5 þ 35

16
�7

�
J 3 þ . . .

�
N 2 þ

�
3

2J 5
þ

�
3

16
þ 3

2
�3

�
1

J 3
þ

�
41

32
� 9

8
�3

�
1

J

�
�
175

32
� 33

8
�3 � 25

8
�5 þ 35

16
�7

�
J þ . . .

�
N 3 þ . . . (2.18)

We notice that through OðN 2Þ order all the transcendental terms are the same as in the case of the folded string in AdS5
[6]; we will find them also to be the same for other two circular string solutions and the folded string in S5. Comparing to
the general expansion in (1.9) where the corresponding coefficient is in (1.37) we find then the values of ~n12, n13 quoted in
(1.34), (1.36) with ~n012 ¼ � 57

16 , n
00
13 ¼ � 3

4 , and n013 ¼ � 3
16 .

24Let us recall the distinction between the ‘‘small’’ and ‘‘large’’ circular 2-spin solutions [21,22]. The distinction is sharp at J �
J 3 ¼ 0: (i) the solution is ‘‘small’’ if J 1 ¼ J 2 ¼ J 0 is such that J 0 < 1

2 (here J ¼ 0 since 
 ¼ 0; this solution is stable); (ii) the

solution is ‘‘large’’ if J 0 > 1
2—(here J ¼ 0 since a2 ¼ 1

2 ; this solution is unstable). For nonzero J the ‘‘small’’ solution may be

defined by requiring that J 2 � J 0; then its classical energy still starts with
ffiffiffiffiffiffiffiffiffi
4J 0p

and thus scales as �1=4 for fixed J0. The ‘‘large’’

solution is the one with J � J 0 and J � 1 so that E0 ¼ J þ 2J 0 þ 1
J 	ðJ0J Þ þ . . . It is stable if J 0 < 3

2J . While the ‘‘small’ and

‘‘large’’ cases are smoothly connected for the folded spinning string, that does not apply to the circular 2-spin case as the two
expansions have different origins (a ! 0 and a ! 1ffiffi

2
p ).

25The Green-Schwarz fermions here are taken to be periodic for any m (see Ref. [29]).
26An interesting open question is how the quantum string states corresponding to folded and circular spinning strings with m> 1 fit
into supermultiplets at higher excited string levels. Note, however, that the pattern of the 1

J 3 terms in e2 in (2.17) appears to be different
from the one in Ref. [6].
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Let us now present the result for the 1-loop correction to

the energy in the limit of small J 0 and fixed �2 ¼ J 2

4m
ffiffiffi
�

p
J 0 .

At fixed � and J 0 � 1 the relation between the parameters
of the solution and the charges is


 ¼ 2�
ffiffiffiffiffiffiffiffiffiffi
mJ 0p �

1þ 2J 0

m
� 4J 02ð�2 � 1Þ

m2
þOðJ 03Þ

�
;

� ¼ 2
ffiffiffiffiffiffiffiffiffiffi
mJ 0p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �2
q �

1þ J 0�2

mð1þ �2Þ
þ J 02�2ð4þ �2 � 2�4Þ

2m2ð1þ �2Þ2 þOðJ 03Þ
�
;

a2 ¼ J 02

m

�
1� 2J 0�2

m
þ J 02ð6�4 � 8�2Þ

m2
þOðJ 03Þ

�
:

(2.19)

We may use these expressions and fk in (2.10) given in
(2.16) to find the fixed-� expansion of E1. Indeed, since
a2 / J 02 contains only positive powers of J 0 while � and

 do not contain inverse powers of J 0, higher-orders in the
small a and small 
 expansion cannot affect lower orders.
For m ¼ 1 we then find

E1 ¼
ffiffiffiffiffiffi
J 0p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p �
1þ

�
� 3þ 43�2 þ 32�4

8ð1þ �2Þ � 3�3

�
J 0

þOðJ 02Þ
�
: (2.20)

Taking the limit � ! 0 we may read off the value of the
coefficient n12 in (1.4) and (1.6) (here n02 ¼ 0)

n12 ¼ � 3

8
� 3�3; (2.21)

which is in agreement with (1.29) and (1.45).
It is possible also to determine the transcendental part of

the next terms in the small J0 expansion of the one-loop
energy directly at J ¼ 0, extending the � ¼ 0 limit of the
expression in (2.20) and showing that this limit can be
safely taken in that equation:

ðE1ÞJ 1¼J 2¼J 0;J¼0 ¼
ffiffiffiffiffiffi
J 0p �

1þ
�
� 3

8
� 3�3

�
J 0

þ 2

�
� 3

16
� 3

4
�3 þ 15

4
�5

�
J 02

þOðJ 03Þ
�
: (2.22)

Comparing to (1.7) (where the transcendental part of the
N2 term is contained in n13 � 1

4n02n12) we find the value of

n13 to be in agreement with (1.36) again with n013 ¼ � 3
16

and n0013 ¼ � 3
4 (here n02 ¼ 0).

C. Circular string with spins S1 ¼ S2 and
orbital momentum J

Let us now consider the small string with 2 equal spins in
AdS5 orbiting big circle in S5 [1,4,21,23] (Y2

0 þ Y2
5 �

YmYm ¼ 1):

Y0 þ iY5 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2r2

p
ei��; Y1 þ iY2 ¼ reiðw�þm�Þ;

Y3 þ iY4 ¼ reiðw��m�Þ; X1 þ iX2 ¼ ei
�;

w2 ¼ �2 þm2; �2 ¼ 4m2r2 þ 
2;

E0 ¼ ð1þ 2r2Þ� ¼ �þ 2�Sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ �2

p ;

S ¼ S1 ¼ S2 ¼ r2w; J ¼ 
: (2.23)

Short string limit corresponds to r ! 0 when the solution
approaches its flat-space limit (for 
 ¼ 0). The parameter
� determined from the conformal gauge condition may be
written as

�2 ¼ 4m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ �2

p S þ J 2: (2.24)

Below we shall consider the case of m ¼ 1. For small S
and small J we get the following ‘‘short’’ string expansion

of the classical energy (E0 ¼
ffiffiffiffi
�

p
E0):

E 0 ¼ 2
ffiffiffiffi
S

p �
1þ S þ J 2

8S
þ . . .

�
: (2.25)

In the limit of small S with fixed J we get

E 0 ¼ J þ 2

J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ J 2

p
S � 2S2

J 3ð1þ J 2Þ þOðS3Þ:
(2.26)

At small S with fixed �2 ¼ J 2

4S we find instead

E 0 ¼
ffiffiffiffi
S

p ��
� 1

4�3
þ 1

�
þ 2�

�
�

�
1

2�3
� 1

�
� 2�

�
S

þ
�
1

�3
� 5

�
� 4�� 2�3

�
S2 þOðS3Þ

�
:

(2.27)

As in the previous J1 ¼ J2 case it is convenient to carry out
the 1-loop calculation in terms of 
 and r and then evaluate
the result in the two limits: (i) small S with fixed J or
(ii) small S with fixed �. As in (2.10) the 1-loop correction
to the energy may be written as

E1 ¼ 1

�
E2D

¼ 1

�
½f0ð
;mÞ þ f1ð
;mÞr2 þ f2ð
;mÞr4 þ . . .�

¼ e0ðJ ; mÞ þ e1ðJ ; mÞS þ e2ðJ ; mÞS2 þ . . .

(2.28)
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Using the expressions for the characteristic polynomials in
Appendix B27 and the ‘‘standard’’ choice of summation
prescription (2.3) in which we keep unspecified the signs of
the terms that vanish in the r2 � S ! 0 limit, we found
that expanding first in r and then in 
 the expansion of the
world-sheet energy E2D in (2.28) contains the following
terms:

E2D ¼ E2Dlow þ E2Dhigh;

E2Dlow ¼
�
� q



� 7

3
þ 235

216

2 þOð
4Þ

�
r2

þ
�
q


3
� 1565

432
þOð
2Þ

�
r4 þOðr6Þ; (2.29)

E2Dhigh ¼
�
1

3
� 19

216

2 þOð
4Þ

�
r2

þ
�
2969

432
� 6�3 þOð
2Þ

�
r4 þOðr6Þ: (2.30)

We split the result into the contribution of few ‘‘low’’
modes (p1 ¼ 0, 	1, 	2) and the rest of ‘‘higher’’ modes.
The coefficient q of the singular in 
 ! 0 contributions
depends on the signs sp1

of low fermionic frequencies

which vanish at r ¼ 0 for p1 ¼ 	1, i.e., q ¼ 2þ s1 þ
s�1. There is thus a choice of a sign prescription that
ensures the absence of unwelcome singular terms in 
.
The natural value for this coefficient is q ¼ 0 as the
complete two-dimensional energy of the solution, whose
1-loop part is E2D above, is the right-hand side of Eq. (1.2)
and is therefore expected to contain only even powers of
J ¼ 
. Setting thus q ¼ 0, the resulting values of the
coefficients fk in (2.28) are

f0ð
; 1Þ ¼ 0; f1ð
; 1Þ ¼ �2þ 
2 þOð
4Þ;

f2ð
; 1Þ ¼ 13

4
� 6�3 þOð
2Þ:

(2.31)

Using that 
 ¼ J and

r2¼ Sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þJ 2

p � 2S2

ð1þJ 2Þ2þ . . . ;

�¼J þ 2

J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þJ 2

p S� 2ð1þ3J 2Þ
J 3ð1þJ 2Þ2S

2þ . . . ;

(2.32)

it follows that ek in (2.28) are given by

e0 ¼ 0; e1 ¼ � 2

J
þ 2J þOðJ 3Þ;

e2 ¼ 4

J 3
þ 2

J

�
5

8
� 3�3

�
þOðJ Þ: (2.33)

Comparing to (1.9) (here N ¼ 2S) we find, in agreement
with (1.29) and (1.46), that in the present case n01 ¼ 1,
n02 ¼ 2, n11 ¼ �2, ~n11 ¼ 2, and

n12 ¼ 13

8
� 3�3: (2.34)

The value of n11 was previously found in Ref. [1]. The
value n012 ¼ 13

8 is the expected one, i.e., is in agreement

with (1.33), implying the universality of the value of the
energy for the corresponding (Konishi-multiplet) state with
J ¼ S ¼ 2 on the lowest massive string level.
As in (2.18) we may determine the transcendental part of

the higher-order terms in the small S expansion of the
energy (N ¼ 2S)28:

E1 ¼
�
� 1

J
þJ �J 3þ . . .

�
N þ

�
1

J 3
þ
�
5

16
�3

2
�3

�
1

J

þ
�
�93

32
þ3

2
�3þ15

8
�5

�
J þ . . .

�
N 2

þ
�
� 3

2J 5
þ
�
3

2
�3� 3

16

�
1

J 3
þ
�
9

8
�3�41

32

�
1

J

þ
�
363

32
�43

8
�3�5�5�35

16
�7

�
J þ . . .

�
N 3þ . . .

(2.35)

Comparing to (1.9) and (1.37) the OðJN 2Þ term here
gives the value of ~n12 in (1.34) with ~n012 ¼ � 105

16 . Together

with the absence of �5 atOðN 3=J Þ, this determines n13 as
quoted in Eq. (1.36) with n013 ¼ � 85

16 and n0013 ¼ 15
4 .

Next, let us mention the case of small S expansion for

fixed �2 ¼ J 2

4S . Since the expressions in (2.32) contain the

exact J dependence, we may get the corresponding E1

from E2D in (2.28) and (2.31) [cf. (2.20)]

E1 ¼
ffiffiffiffi
S

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p �
�1þ

�
21

8
þ 4�2 � 3�3

�
S þOðS2Þ

�
:

(2.36)

Taking the limit � ! 0 we may read off again the value of
the coefficient n12 in (1.4), (1.6), and (2.34).29

Summing up the small 
 expansion of the function
f1ð
; 1Þ in (2.31) we may find the exact form of e1ðJ ; 1Þ in
(2.33):

f1ð
; 1Þ ¼ � 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 
2

p ; e1ðJ ; 1Þ ¼ � 2

J ð1þ J 2Þ :
(2.37)

27They can be obtained from those in the J1 ¼ J2 case as the
two solutions are related by an analytic continuation effectively
interchanging the AdS5 and S5 parts, a2 ! �r2, � ! 
, etc.

28It is interesting to mention that, in a small 
 expansion of the
coefficient f2ð
; 1Þ in E2D, at Oð
0Þ there is only �3 term and at
Oð
2Þ there is only �5 for both J1 ¼ J2 and S1 ¼ S2 cases. This
implies that �3 in ~n12 has the same origin as �3 in n12: the only

difference in its coefficient comes from the expansion of a
4

� vs. r
4

� .
29Note that in (2.36) we have the following combination: n012 �

1
4n11n02 ¼ 13

8 þ 1 ¼ 21
8 .
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These expressions are just negative of the corresponding
functions in the J1 ¼ J2 case in (2.14), in agreement with
the general expression (1.25) and the opposite signs of the
n11 coefficients in (1.45) and (1.46).

One may also perform the computation of E1 by setting
J ¼ 0 directly from the start.30 While similarly to the
J1 ¼ J2 string case the characteristic polynomials here
depend only on p2

0 and thus for each mode number there

are two roots equal in absolute value and opposite in sign, a
sign prescription similar to that of the J1 ¼ J2 case in
which the one-loop energy is given by the graded sum of
the positive roots of the characteristic polynomial (2.3)
leads to an unwanted feature: a nonzero value for E2D in
the S ! 0 limit (see also Eq. (3.35) in Ref. [1]). As dis-
cussed in Appendix A of Ref. [1], this constant term may
be removed by a specific reorganization of modes together
with a change of integration variables, leading to a cancel-
lation of the problematic term at the level of the p0

integrand (so that a specific i	 prescription was not neces-
sary). The same result may be obtained by adjusting the
sign of just one root of each of the two fermionic character-
istic polynomials F1 and F2 which for p1 ¼ 	1 scale asffiffiffiffi
S

p
in the limit S ! 0: their signs should be such that their

contribution adds up to zero.31 Then the ‘‘low’’ modes with
p1 ¼ 0;	1;	2 contribute to the sum over the roots of the
characteristic polynomial as

E1 ¼ 1

�
ðE2Dlow þ E2DhighÞ;

E2Dlow ¼ � 7r2

3
� 1565r4

432
þOðr6Þ; (2.38)

E2Dhigh ¼
X1
p1¼3

�
� 4

p1ð1� p2
1Þ
r2

þ 4� 17p2
1 þ 137p4

1 � 40p6
1

p3
1ð4� p2

1Þð1� p2
1Þ3

r4 þOðr6Þ
�
:

(2.39)

Using that E2Dhigh ¼ 2
3 r

2 þ ð2969216 � 12�3Þr4 þOðr6Þ we

find

E1 ¼
ffiffiffiffi
S

p �
�1þ

�
21

8
� 3�3

�
S þOðS2Þ

�
; (2.40)

which is the same as the � ¼ 0 limit of (2.36).
It is possible also to find the analog of (2.22), i.e., to

determine the transcendental part of the next terms in the
expansion of the one-loop energy of the S1 ¼ S2 string at
J ¼ 0, extending (2.40) to next order:

ðE1ÞS1¼S2¼S;J¼0¼
ffiffiffiffi
S

p �
�1þ

�
21

8
�3�3

�
S

þ2

�
�59

8
þ21

4
�3þ15

4
�5

�
S2þOðS3Þ

�
:

(2.41)

Comparing to (1.7) we conclude that the highest transcen-
dental coefficient �5 at the next order is again universal,
leading to the expression for n13 in (1.36) again with
n013 ¼ � 85

16 and n0013 ¼ 15
4 .

D. Circular string with spins S¼ J0
and orbital momentum J

The ‘‘mixed’’ AdS5 � S5 circular solution is described
by (we set the two windings equal to 1)

Y0 þ iY5 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
ei��; Y1 þ iY2 ¼ reiðw�þ�Þ;

w2 ¼ �2 þ 1; X1 þ iX2 ¼ aeiðw0���Þ;

X3 þ iX4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
ei
�; w02 ¼ 
2 þ 1; (2.42)

�2�
2¼2r2þ2a2; r2w¼a2w0;

E0¼�ð1þr2Þ; S¼ r2w¼a2w0 ¼J 0; J ¼ð1�a2Þ
:
(2.43)

Note that this solution is ‘‘self-dual’’ under the analytic
continuation interchanging AdS5 and S

5 parts: � $ 
, r $
ia,w $ �w0. The parameters � and 
may be expressed in
terms of the spins by solving the equations

�2 � 
2 ¼ 2Sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p þ 2Sffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 
2

p ;

J 2 ¼ 
� 
Sffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 
2

p : (2.44)

The classical energy has the following expansions:

ðE0ÞS�1;J¼fixed ¼ J þ 2

J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ J 2

p
S � 2

J 3
S2 þOðS3Þ;

(2.45)

ðE0ÞS�1;�2¼J 2

4S¼fixed
¼2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�2

q ffiffiffiffi
S

p �
1þ 1þ2�2

2ð1þ�2ÞS

�5þ8�2þ12�4þ8�6

8ð1þ�2Þ2 S2þOðS3Þ
�
;

(2.46)

ðE0ÞJ 2�S�1 ¼ 2
ffiffiffiffi
S

p �
1þ 1

2
S þ J 2

8S
þ . . .

�
: (2.47)

As in the previous cases we shall carry out the 1-loop
computation in terms of the parameters 
 and r and then
evaluate the result in the small S limit with fixedJ or fixed

30For J ¼ 
 ¼ 0 one has � ¼ 2r ¼ 2
ffiffiffiffi
S

p � 2S3=2 þ 9S5=2 þ
OðS7=2Þ, etc.
31Interestingly, the only effect of this choice is to remove the
problematic term and thus to restore the expected S ! 0 limit
(all related higher integer powers of S are simultaneously
removed).
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�2 ¼ J 2

4S , i.e., we will define fk and ek as in (2.28). We will

need the following small S expansions of the parameters:

� ¼ J þ 2þ J 2

J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ J 2

p S � 2þ 6J 2 þ 3J 4

J 3ð1þ J 2Þ2 S2 þ . . . ;

r ¼ S1=2

ð1þ J 2Þ1=4 �
2þ J 2

2ð1þ J 2Þ7=4 S
3=2 þ . . . ;


 ¼ J þ JSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ J 2

p þ JS2

ð1þ J 2Þ2 þ . . . (2.48)

The corresponding characteristic polynomials are given in
Appendix B. The summation prescription in (2.4) may be
fixed as follows. All frequencies which are nonzero in the
BMN limit (r ! 0) are summed with uniform signs such
that at p1 � 1 they contribute positively to the energy (this
guarantees the vanishing of 1-loop correction to the BMN
vacuum state). The signs of some remaining frequencies

are fixed by requiring the absence of r2


 terms in the

frequency sum. Few other signs are fixed by requiring
that all Oðr2Þ terms vanish (such terms are expected to
cancel due to opposite curvatures of AdS5 and S

5). Then as
in (2.29), (2.30), and (2.38) we may split the contribution of
modes with p1 ¼ �2; . . . ; 2 from that of the higher ones

E2Dlow ¼
�
1

2

�
� 961

72
� 9

8
u

�
þ 1

2

�
141337

10368
þ 21

16
u

�

2

þOð
4Þ
�
r4 þOðr6Þ; (2.49)

E2Dhigh ¼
X1
p1¼3

�
4p4

1 þ 11p2
1 � 3

p3
1ð1� p2

1Þ3
þOð
2Þ

�
r4 þOðr6Þ

¼
�
1033

144
� 6�3 þOð
2Þ

�
r4 þOðr6Þ: (2.50)

Here the parameter u represents the still unfixed sum
of 4 bosonic p1 ¼ 	2 frequency signs; it can take values
u ¼ �4, �2, 0, 2, 4. Then fk in the analog of (2.28) are

f0ð
; 1Þ ¼ 0; f1ð
; 1Þ ¼ 0;

f2ð
; 1Þ ¼ 1

2
� 9u

16
� 6�3 þOð
2Þ: (2.51)

Expanding E1 first in small S at fixed J and then in small
J we get

E1 ¼ 1

�
E2D ¼

�
2n12
J

þOðJ Þ
�
S2 þOðS3Þ; (2.52)

n12 ¼ n012 � 3�3; n012 ¼
8� 9u

32
: (2.53)

This gives n012 ¼ ð118 ; 1316 ; 14Þ for u ¼ ð�4;�2; 0Þ. The

choice of n012 ¼ 11
8 appears to be preferred in the algebraic

curve approach that we discuss in Appendix C. None
of these choices leads to n012 ¼ 5

8 consistent with the

universality of (1.30) observed for four other (two folded
and two circular) examples of the solutions. This suggests
that a consistent summation prescription in this S ¼ J0
case is yet to be identified.
Expanding in S for fixed � when


 ¼ 2�S1=2 þ 2�S3=2 þOðS5=2Þ;

� ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

q
S1=2 � S3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �2
p þOðS5=2Þ;

(2.54)

we get [cf. (2.20) and (2.36)]

E1 ¼
ffiffiffiffi
S

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p ½ðn012 � 3�3ÞS þOðS2Þ�; (2.55)

where n012 is the same as in (2.53).
Similarly to the J1 ¼ J2 and S1 ¼ S2 cases in (2.18) and

(2.35), the transcendental parts of the higher terms in the
small S expansion of E1 here are found to be ðN ¼ 2S)

E1¼
��

n012
2

�3

2
�3

�
1

J
þ
�
q1þ3

2
�3þ15

8
�5

�
J þ . . .

�
N 2

þ
�
q2
J 5

þ
�
q3þ3

2
�3

�
1

J 3
þq4
J

þ
�
q5�5

8
�3�15

16
�5�35

16
�7

�
J þ . . .

�
N 3þ . . . ;

(2.56)

where qk are rational numbers. The coefficient of JN 2

term again leads to the same universal value of ~n12 in
(1.34) with ~n012 ¼ 2q1. At OðN 3Þ we should find that
q2 ¼ 3

4n11 ¼ 0 and that q3 ¼ � 1
2 n

0
12. The absence of �5

inN 3=J term confirms again the universality of �5 in n13
in (1.36), the absence of �3 implies that n0013 ¼ 3

2 and the

rational term fixes n013 ¼ 2ðq1 þ q4Þ þ 1
2 n

0
12.

It is also possible to determine unambiguously the
transcendental part of E1 in the small S expansion at
J ¼ 0 [cf. (2.22) and (2.41)]

ðE1ÞS¼J 0;J¼0¼
ffiffiffiffi
S

p �
ðn012�3�3ÞS

þ2

�
k3þ9

4
�3þ15

4
�5

�
S2þ . . .

�
; (2.57)

where k3 is a rational number. This again leads to n13
in Eq. (1.36) with n013 ¼ k3 þ 1

4 n
0
12 and n0013 ¼ 3

2 (here

n02 ¼ 1). Consistency of the two values for n013 requires

then that k3 ¼ 2ðq1 þ q4Þ þ 1
4n

0
12.
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APPENDIX A: COMMENTS ON SMALL AND
LARGE J EXPANSIONS OF h1ð�; JÞ IN EQ. (1.10)

Let us comment on the exact expression for the slope
function h1ð�; JÞ in (1.10) proposed in Ref. [10] in the case
of the folded spinning string state in the slð2Þ sector and its
possible generalizations for other string states. One moti-
vation to try understand the structure of h1 better is that it
determines, in particular, the value of the 2-loop coefficient
n21 in (1.11) that is still to be derived by a direct world-
sheet computation.

It was suggested in Ref. [10] that the exact form of h1
function in the energy (dimension) (1.10) of the slð2Þ
sector ground state corresponding in the semiclassical limit
to the ðS; JÞ folded string in AdS5 is given by

h1 ¼ 2
ffiffiffiffi
�

p d

d
ffiffiffiffi
�

p lnIJð
ffiffiffiffi
�

p Þ (A1)

¼ 2
ffiffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ J 2

p
� 1

1þ J 2
�

1
4 � J 2ffiffiffiffi

�
p ð1þ J 2Þ5=2

�
1
4 � 5

2J
2 þ J 4

ð ffiffiffiffi
�

p Þ2ð1þ J 2Þ4 þ . . . (A2)

¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ J2

p
� �

�þ J2
� �ð14�� J2Þ

ð�þ J2Þ5=2

� �ð14�2 � 5
2�J

2 þ J4Þ
ð�þ J 2Þ4 þ . . . ; (A3)

where IJ is the modified Bessel function and J ¼ Jffiffiffi
�

p . The

second line corresponds to the string semiclassical expan-
sion: � � 1 for fixed J ; the first term in it is the classical
string contribution, the second is 1-loop term, the third is
2-loop one, etc. The third line is found by rewriting the
semiclassical result back in terms of J.

Starting with E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ h1ð�; JÞN þ . . .

p
in (1.10) and

expanding it in semiclassical regime with fixed J and
small N we get

E ¼ J þ N

2J
h1ð�; JÞ þ . . .

¼ J þ N

2J

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ J2

p
� �

�þ J2
þ . . .

�
þ . . . (A4)

The 1-loop term �N
2J

1
1þJ 2 was found directly in the

semiclassical limit in Ref. [6]. As was mentioned in
Sec. I, this term is universal, i.e. found also for other
semiclassical states [see (1.25)]. This expression can be

expanded in several different limits and interpolates be-
tween some previously known results. If we assume that
J � 1, i.e., J2 � �, then we get from (A2)

h1 ¼ 2J þ �

J

�
1� 1

J
þ 1

J2
þ . . .

�
þ . . . ; (A5)

implying that the expansion of E in the large J, small N
J

limit is

E ¼ J þ N þ �

2J2
N

�
1� 1

J
þ 1

J2
þ . . .

�
þO

��
N

J

�
2
�
:

(A6)

This matches the known tree level plus 1-loop result in
string semiclassical expansion.32 Notice that in (1� 1

J þ
1
J2
þ . . . ) in (A5) the string 1-loop term � 1

J came from the

� �
�þJ2

term in (A2) while the string 2-loop termþ 1
J2
came

from the � �ð14��J2Þ
ð�þJ2Þ5=2 term in (A2).

These two leading terms are, in fact, protected, i.e. are
the same as on the 1-loop gauge theory (spin chain) side
where the 1

J term is the leading finite size correction [31].

The structure ð1� 1
JÞ of the leading correction appears to

be universal: it is found also for the circular ðS; JÞ string
[24,31].33This is consistent with the relations (1.24) and
(1.25). The linear in N

J term comes only from the zero-mode

contribution on the string side or only from the non-
anomalous finite-size correction on the 1-loop gauge
theory side. The next 1

J2
correction (1-loop on gauge theory

side and 2-loop on the semiclassical string theory side)
which should again be protected was computed on the spin
chain side in Ref. [32] (to all orders in N

J ).
34

If instead we consider the opposite limit of J � 1, i.e.
J2 � �, then we get from (1.6) [10]

h1 ¼ 2
ffiffiffiffi
�

p � 1�
1
4 � J2ffiffiffiffi

�
p �

1
4 � J2

ð ffiffiffiffi
�

p Þ2

�
25
64 � 13

8 J
2 þ 1

4 J
4

ð ffiffiffiffi
�

p Þ3 þ . . . ; (A7)

implying the values n11 ¼ �1, ~n11 ¼ 1 and n21 ¼ � 1
4 in

(1.11) and (1.43). This value for the 1-loop coefficient n11
in the small S semiclassical expansion (matching the one

32For folded string the 1
J term was found in Appendix D of

Ref. [30].
33To see that there is no linear in S=J � N=J term in the

‘‘anomalous’’ part of the 1-loop correction Eanom ¼ �
2J2

�
ðP1

n¼1½n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 4M2

p
� n2 � 2M2� where M2 ¼ S

J ð1þ S
JÞ one

needs to differentiate this over M2 (the first derivative vanishes).
34As we have checked explicitly from the results in the
Appendix of Ref. [32], the same subleading 1=J2 finite-size
term as in (A6) appears also for the circular ðS; JÞ string state
in the slð2Þ sector (here J is the momentum along the circle in S5

which the string is wound on). This suggests the universality of
the terms given explicitly in (A6) in the slð2Þ sector.
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directly computed using the algebraic curve approach in
Ref. [3]) has the same origin in (A2) as the 1

J string term in

(A6): both come from two different limits of the the 1-loop
semiclassical term � 1

1þJ 2 there. This confirms that this

term should not be sensitive to wrapping (Luscher) correc-
tions, being at the same time the origin of a finite-size (and
even nonanomalous) term at large J. This also suggests
that, like the coefficient of the� 1

J term, n11 may be coming

only from the zero-mode contributions in the near folded-
string expansion. This supports the claim [10] that h1ð�; JÞ
has its origin just in the asymptotic Bethe ansatz and is not
even sensitive to the string phase.

One may expect to find similar expressions for the
corresponding ðJ0; JÞ folded string state in the suð2Þ sector.
Indeed, the folded string in S5 is related to its AdS5
counterpart by an analytic continuation [33], implying
(up to signs) ðE; S; JÞ ! ðE; J0; JÞ, E ¼ �J, S ¼ J0,
J ¼ �E. In this case N ¼ J0 so we may expect to get
similar relations as above up to some sign changes, i.e.,35

E2 ¼ J2 þ h1ð�; JÞJ0 þ . . . ;

h1 ¼ 2
ffiffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ J 2

p
þ 1

1þ J 2
þ . . . (A8)

Changing the of sign of the subleading term in (A8)
compared to (A2) has two implications: the signs of n11,
of ~n11 and of the leading 1

J term also change. Now n11 ¼
1 ¼ �~n11 as in (1.44) in agreement with Refs. [1,5] (see
also Appendix D).36 For large J we get

E ¼ J þ J0 þ �

2J2
J0
�
1þ 1

J
þ 1

J2
þ . . .

�
þ . . . ; (A9)

where the ð1þ 1
JÞ term is in agreement with the result for

the finite size corrections from the spin chain and the
string sides (cf. Eqs. (7.33, 7.34) in Ref. [30]). As in the
slð2Þ sector case in (A2) and (A5), the subleading term 1

J2

in (A9) should originate from the next (string 2-loop)
term in h1 in (A8). The coefficient of this 1

J2
term should

be universal in the suð2Þ sector, i.e., the same also as for
the circular string. Indeed, for the circular string in the
suð2Þ sector we get (A9) with the same terms in the
bracket ð1þ 1

J þ 1
J2
þ . . .Þ, as one can see from Ref. [34]

(these terms come from nonanomalous finite size contri-
bution only). Such a correction in the near-BMN expan-
sion was found also in Ref. [30]. It came out the same

from the Bethe ansatz and the Landau-Lifshitz approach,
so it should be a protected one.37 Direct check of the
universality of the 1

J2
term requires a 2-loop computation

on the string side. The knowledge of this 1
J2
term provides

a priori only a weak constraint on a possible next term in
the expansion of h1 in (A8), but there is a natural guess:

the direct analog of the � �ð14��J2Þ
ð�þJ2Þ5=2 term in (A3) reproduces

both the 1
J2
term and the expected universal value of n21 in

(1.30) [see (1.44)].
In the case of ‘‘small’’ circular strings with 2 internal

spins we again find

h1 ¼ 2
ffiffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ J 2

p
þ n11

1þ J 2
þ . . . ; (A10)

where, e.g., for ðJ1 ¼ J2 ¼ J0; JÞ case N ¼ J1 þ J2 ¼ 2J0
and n11 ¼ 2 ¼ �~n11 [see (1.45)]. Indeed, according to
(2.37), in this case

E1 ¼ N
J ð1þ J 2Þ þOðN 2Þ;

h1ðJ � ffiffiffiffi
�

p Þ ¼ 2J

�
1þ �

2J2
ð1þ n11

J
Þ þ . . .

�
: (A11)

The term 1þ n11
J with n11 ¼ 2 here appears to be in contra-

diction with the form of the finite size correction—ð1þ 1
JÞ

times the classical �
2J2

N term—found earlier [28,31].38 As

already mentioned below Eq. (2.15) this is not really a
disagreement as, in the 2-spin case, the two expressions are
derived in different limits: here we have J 0 � 1 for fixed
J , while in the standard discussions of finite-size correc-
tions in the thermodynamic limit one first assumes J 0�1,

J � 1, with J 0
J ¼ fixed, and then may expand in J 0

J .

APPENDIX B: CHARACTERISTIC
POLYNOMIALS FOR CIRCULAR STRING

FLUCTUATION FREQUENCIES

Rigid circular strings with two equal spins and orbital
momentum J in S5 discussed in this paper are homoge-
neous solutions for which the quadratic fluctuation opera-
tor has constant coefficients. In Fourier transformed form
this is a matrix depending on 2D momenta ðp0; p1Þ [with
p1 being integer as� 2 ð0; 2�Þ] whose determinant is thus

35Note that this analytic continuation is not useful if J is fixed,

while E� �1=4 � 1 so there is no way of interchanging E and J.
It still works at large J and thus large E and explains why the
sign of first finite size correction changes: E ¼ J þ �N

2J2
�

ð1� J�1 þ J�2Þ translates into J ¼ E� �N
2E2 ð1þ E�1 þ E�2Þ

and then using that E ¼ J þ . . . we get the required result.
36The change of sign of the leading 1-loop string correction can
be attributed to the change in sign of the curvature between AdS5
and S5 [1].

37The fact that it comes out of the Landau-Lifshitz approach
means that one does not need the full superstring computation to
reproduce it, provided one regularizes properly (in addition, only
zero modes are expected to contribute to this term).
38This structure from expansion of Eq. (2.23) in Ref. [31] to
linear order inN : again only the analytic spin chain side part or
0-mode string side part is contributing to it. It appears that the
analytic finite size correction to the linear in N term is univer-
sal: 1þ 1

L in compact [su(2), etc.] sector and 1� 1
L in non-

compact [sl(2), etc.] sector. Here L ¼ J þ N is total length, its
difference from J is irrelevant to leading order in N. The sign
difference is due to the analytic continuation between the
sectors.
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a finite-order polynomial in ðp0; p1Þ. The roots of this
characteristic polynomial determine the fluctuation fre-
quencies p0 ¼ !ðp1Þ that appear in the 1-loop correction
to 2D energy [see (2.3) or (2.4)]. While we focused on the
solutions with unit winding number, m ¼ 1, a nontrivial
value of m may be introduced in the characteristic equa-
tions for all three circular string solutions through the
formal rescaling

p0 ! p0

m
; p0 ! p1

m
; � ! �

m
; 
 ! 


m
;

w ! w

m
; w0 ! w0

m
; r ! r; a ! a:

This rescaling may be identified in the classical solutions
(2.6), (2.23), and (2.42).

1. J1 ¼ J2 string

The characteristic polynomials for this circular string
have been derived in Refs. [21,22]. The AdS5 fluctuations
have the standard BMN type form with mass � [expressed
in terms of the other independent parameters a and 
; see
(2.6)] while the characteristic polynomial for the S5 part is
more complicated. Explicitly,

BAdS5
8 ¼ ð�p2

0 þ p2
1 þ 
2 þ 4m2a2Þ4; (B1)

BS5

8 ¼½ðp2
0�p2

1Þ2�4
2p2
0�2�16ð2a2�1Þm4ðp2

0�p2
1Þ2

þ8m2½ða2�1Þðp2
0�p2

1Þ2ðp2
0þp2

1Þ
�4
2p2

0½ða2�1Þp2
0þð1�3a2Þp2

1��: (B2)

As discussed in Refs. [21,22], the determinant of the
fermionic quadratic operator is the square of the determi-
nant of an operator expressed solely in terms of six-
dimensional Dirac matrices. We note here that, due to the
chirality of six-dimensional spinors, this determinant (over
spinor indices) further factorizes:

detK10D
f ¼ ðdetK6D

f Þ2; detK6D
f ¼ F1F2; (B3)

where F1;2 are the corresponding fermionic characteristic

polynomials

F1¼ðp2
0�p2

1Þ2þp2
0½
ð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2m2þ
2

p
�3
Þ

�2ða2þ1Þm2�þp2
1½
ð
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2m2þ
2

p
Þ

þð6a2�2Þm2�þða2�1Þ2m4þm2
½
þða2�1Þ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2m2þ
2

p
�þ1

2

3ð
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2m2þ
2

p
Þ; (B4)

F2¼ðp2
0�p2

1Þ2þp2
0½
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2m2þ
2

p
�3
Þ�2ða2þ1Þm2�

þp2
1½
ð
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2m2þ
2

p
Þþð6a2�2Þm2�

þða2�1Þ2m4þm2
½
�ða2�1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2m2þ
2

p
�

þ1

2

3ð
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2m2þ
2

p
Þ: (B5)

Using the relations between the parameters of the solution,
one can check that the product F1F2 reproduces the fer-
mionic characteristic polynomial in Ref. [22].

2. S1 ¼ S2 string

As was mentioned in Sec. II, this solution may be
obtained from the J1 ¼ J2, J by the analytic continuation

� $ 
; a2 $ �r2: (B6)

This observation may be used to find the corresponding
characteristic polynomials from their J1 ¼ J2 counter-
parts. The bosonic ones are then

B
AdS5
8 ¼½ðp2

0�p2
1Þ2�4�2p2

0�2�16ð2r2�1Þm4ðp2
0�p2

1Þ2
þ8m2½ðr2�1Þðp2

0�p2
1Þ2ðp2

0þp2
1Þ

�4�2p2
0½ðr2�1Þp2

0þð1�3r2Þp2
1��; (B7)

BS5

8 ¼ ð�p2
0 þ p2

1 þ 
2Þ4: (B8)

The fermionic determinant has factorization property simi-
lar to that in the J1 ¼ J2, J solution (B3) with

F1 ¼ ðp2
0 � p2

1Þ2 þ p2
0½��ð
þ 3�Þ � 2ð�r2 þ 1Þm2�

þ p2
1½�ð�� 
Þ � 2ð3r2 þ 1Þm2� þ ðr2 þ 1Þ2m4

þm2�½�� ðr2 þ 1Þ
� þ 1

2
�3ð�� 
Þ; (B9)

F2 ¼ ðp2
0 � p2

1Þ2 þ p2
0½�ð
� 3�Þ � 2ð�r2 þ 1Þm2�

þ p2
1½
ð
þ �Þ � 2ð3r2 þ 1Þm2� þ ðr2 þ 1Þ2m4

þm2�½�þ ðr2 þ 1Þ
� þ 1

2
�3ð�þ 
Þ: (B10)

Upon setting 
 ¼ 0 we may recover the characteristic
polynomials in Ref. [35].

3. S¼ J0 string
Here the AdS5 bosonic characteristic polynomial can be

directly extracted from Ref. [24] (from the expression
found before using the conformal gauge constraint).39

Then its S5 counterpart can be found by using the
‘‘self-duality’’ property of the solution (2.42) under

� $ 
; r $ ia; w $ �w0: (B11)

We end up with

BAdS5
8 ¼ð�p2

0þp2
1þw2�m2Þ2

�½ðp2
0�p2

1Þ2�4m2p2
1ð1þr2Þþ8mp0p1ð1þr2Þw

�4p2
0½��2r2þð1þr2Þw2��; (B12)

39One can check directly that the massless mode decouples in
the characteristic polynomial for three coupled AdS5 fluctuation
modes that follows from the fluctuation Lagrangian in Eq. (4.13)
in Ref. [24].
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BS5

8 ¼ð�p2
0þp2

1þw02�m2Þ2
�½ðp2

0�p2
1Þ2�4m2p2

1ð1�a2Þ�8mp0p1ð1�a2Þw0

�4p2
0½�
2a2þð1�a2Þw02��: (B13)

As in the previous cases here the fermionic operator can be
put into a block-diagonal form where each block may be
written in terms of the six-dimensional Dirac matrices.
While the two blocks are not identical, parity invariance
requires that their determinants are the same. The fact
that six-dimensional spinors are chiral implies that the
determinant of each block further factorizes as in (B3),
where now

F1 ¼ ðp2
0 � p2

1Þ2 þ 2mp0p1

�
2a2

�
w0 þ �


w

�
þ ðw� w0Þ

�
þ p2

1½��
þ 3
2 þ ðw� 2w0Þðwþ w0Þ� � p2
0½�


þ 
2 þ wðwþ w0Þ� þ 1

4
½�2�
½w0ðwþ w0Þ � 
2�

þ 2
4 þ 
2ðw� 3w0Þðwþ w0Þ þ w02ðwþ w0Þ2�;
(B14)

F2 ¼ ðp2
0 � p2

1Þ2 þ 2mp0p1

�
2a2

�
w0 � �


w

�
þ ðw� w0Þ

�
þ p2

1½�
þ 3
2 þ ðw� 2w0Þðwþ w0Þ� � p2
0½��


þ 
2 þ wðwþ w0Þ� þ 1

4
½2�
½w0ðwþ w0Þ � 
2�

þ 2
4 þ 
2ðw� 3w0Þðwþ w0Þ þ w02ðwþ w0Þ2�:
(B15)

Let us comment on derivation of these expressions [that
reduce to the ones in Ref. [24] for a ¼ 1 in (2.42)]. In the
�-symmetry gauge �1 ¼ �2 the quadratic part of the fer-
mionic Lagrangian is (see, e.g., Ref. [22,24], and referen-
ces therein)

L ¼ �2i
��eA� ���AD��� 	�� ���A���B�e
A
�e

B
�; (B16)

where D ¼ dþ 1
4!

AB�AB is the usual spinor covariant

derivative. For the solution (2.42) the 2D projected combi-
nations eA��A and !AB

� �AB are

eA0�A ¼ �0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
�þ �4rwþ �5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p

þ �9aw

0;

eA1�A ¼ mð�4r� �9aÞ;
!AB

0 �AB ¼ 2�r�01 � 2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
w�14

þ a
�56 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
w0�69Þ;

!AB
1 �AB ¼ mð�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
�14 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
�69Þ; (B17)

where �A are the ten-dimensional (10D) Dirac matrices;
one should project the quadratic operator onto its chiral
part thus rendering it a 16� 16 matrix. To evaluate the
determinant of the quadratic fermionic operator we first

notice that the matrices �2 and �3 in �� ¼ i�01234 in (B16)
do not appear elsewhere in the quadratic operator. The
product �23 may therefore be diagonalized; its diagonal
entries are	i. In this representation the quadratic operator
is block-diagonal and each block may be obtained from
(B16) and (B17) by using for �i and �ij the d ¼ 6 Dirac

matrices and �� ¼ 	�014. Since the sign of �� affects only
the sign of the Wess-Zumino term which can also be
changed by parity transformations, the determinants of
the two blocks are equal and thus the 10D determinant is
a perfect square, as in the first equation in (B3). Since the
six-dimensional (6D) spinors are chiral, there exists a
representation of the 6D Dirac matrices in which each
block of the quadratic operator is itself block-diagonal.
Thus, the determinant of each block further factorizes;
each block is only a 4� 4 matrix and its determinant can
be easily evaluated leading to the two factors F1 and F2 in
Eq. (B3) given by (B14) and (B15).
In Sec. II D we discussed the small r expansion of the

energy of the S ¼ J0 string with angular momentum J. For
this purpose, we need that

a¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2r2

1þ
2

s
; �¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ4r2þ 4r4

1þ
2

s
; (B18)

w¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ
2þ4r2þ 4r4

1þ
2

s
; w0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ
2

p
: (B19)

Plugging these expressions in F1 and F2 and dividing by a
factor of r4 we find that

F1;2 ¼ cð1;2Þ0 þ cð1;2Þ2 r2 þ cð1;2Þ4 r4 þ . . . ; (B20)

with

cð1Þ0 ¼ cð2Þ0 ¼ ð
2 � p2
0 þ p2

1 � 2p1 þ 1Þ
� ð
2 � p2

0 þ p2
1 þ 2p1 þ 1Þ

cð1Þ2 ¼ 8

ð1þ 
2Þ3=2 ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 þ 1

p
ð�2p2

0ð4
2 þ p2
1 þ 3Þ

þ p4
0 þ ðp2

1 � 1Þ2Þ þ 4ð
2 þ 1Þ2p0p1�; (B21)

cð2Þ2 ¼ 8

ð1þ 
2Þ3=2 ½4ð

2 þ 1Þp0p1

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 þ 1

p
ð3
4 þ 
2ð�4p2

0 þ 4p2
1 þ 6Þ

þ p4
0 � 2p2

0ðp2
1 þ 2Þ þ p4

1 þ 3Þ�; (B22)

cð1Þ4 ¼ 4


2ð1þ
2Þ5=2 ½32ð

3þ
Þ2p0p1

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ1

p
ð4
4ðp2

1�6p2
0Þþ
2ðp4

0�2p2
0ðp2

1þ10Þ
þp4

1þ4p2
1þ3Þþ2ðp2

0þp2
1þ1ÞÞ�; (B23)
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cð2Þ4 ¼ 4


2ð1þ 
2Þ5=2 ½16ð

2 þ 1Þ
2p0p1

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 þ 1

p
ð13
6 þ 
4ð�14p2

0 þ 14p2
1 þ 24Þ

þ 
2ðp4
0 � 2p2

0ðp2
1 þ 8Þ þ p4

1 þ 8p2
1 þ 9Þ

� 2ðp2
0 þ p2

1 þ 1ÞÞ�: (B24)

It is not difficult to construct higher-order terms in the
small r expansion at fixed 
.

APPENDIX C: ONE-LOOP ENERGY OF S¼ J0
CIRCULAR STRING FROM THE ALGEBRAIC

CURVE APPROACH

Here we shall revisit the computation of the 1-loop
correction to the energy of the S ¼ J0 circular string solu-
tion (2.42) discussed in Sec. II D using the algebraic curve
approach [25,36] to determine the fluctuation frequencies.

In order to focus on a near flat-space expansion in
the short string limit we will consider the limit S ! 0 for
fixed %

% ¼ 


2
ffiffiffiffi
S

p : (C1)

In Sec. II D in (2.46) we used instead

� ¼ J

2
ffiffiffiffi
S

p ¼ %

�
1� Sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4%2S
p �

: (C2)

Note also that

S ¼ w2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2%2wþ %4w4

p �!ð1þ 2%2w� %2w3Þ
2ð1þ 2%2wÞ2 :

(C3)

1. Quasimomenta

The quasimomenta can be obtained by explicit diago-
nalization of the monodromy matrix [25]; for the S5 part
the basic single cut quasimomenta vanishing at infinity are
determined by

~pðxÞ ¼ ��þ �
x� ~x1
x2 � 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� ~x2Þðx� �~x2Þ

q
; (C4)

where the two roots ~x1, ~x2 are given by

~x1 ¼ � 1

2%
ffiffiffiffi
S

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4%2S

p ; ~x2 ¼
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4%2S

p þ 2%
ffiffiffiffi
S

p Þð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4%2S

p þ 2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4%2S
p � SÞ

q
� 2SÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4%2S
p : (C5)

The four S5 quasimomenta can be identified looking at the asymptotic x ! 1 behavior of ~pðxÞ and ~pðx�1Þ, which is related
to the conserved global charges:

x

2�
~pðxÞ ! S � J þ . . . ;

x

2�
~pðx�1Þ ! �1� S � J þ . . . (C6)

Hence, we can identify

p~1ðxÞ ¼ �2�� ~pðx�1Þ; p~2ðxÞ ¼ ~pðxÞ;
p~3ðxÞ ¼ �~p2ðxÞ; p~4ðxÞ ¼ �~p1ðxÞ: (C7)

For the AdS5 quasimomenta, the basic function is given by

p̂ðxÞ ¼ �
x� x̂3
x2 � 1

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x̂1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x̂2

p � 1Þ; (C8)

where the x̂i are

x̂1 ¼ ðx̂2x̂23Þ�1; x̂2 ¼ � 2S þ w� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðS þ wÞp

wðw�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 � 1

p
Þ ;

x̂3 ¼ w�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 � 1

p
: (C9)

Again, comparing with the asymptotic, the identification of the quasimomenta goes as follows:

p1̂ðxÞ ¼ �p̂ðx�1Þ; p2̂ðxÞ ¼ p̂ðxÞ;
p3̂ðxÞ ¼ �p̂ðxÞ; p4̂ðxÞ ¼ p̂ðx�1Þ: (178)
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2. Off-shell frequencies

Due to the symmetry of the circular string solution,
all the fluctuation energies can be conveniently written
as combinations of only two independent functions

�AðxÞ ¼ �2̂ 3̂ðxÞ and �SðxÞ ¼ �
~2~3ðxÞ [36]:

�B1
ðxÞ¼�

~1~4ðxÞ¼��Sðx�1Þþ�Sð0Þ;
�B2

ðxÞ¼�
~2~4ðxÞ¼�

~1~3ðxÞ
¼1

2
½�SðxÞ��Sðx�1Þþ�Sð0Þ�;

�B3
ðxÞ¼�1̂4̂ðxÞ¼��Aðx�1Þ�2;

�B4
ðxÞ¼�2̂4̂ðxÞ¼�1̂3̂ðxÞ¼1

2
½�AðxÞ��Aðx�1Þ��1;

�F1
ðxÞ¼�2̂~4ðxÞ¼�

~13̂ðxÞ
¼1

2
½�AðxÞ��Sðx�1Þþ�Sð0Þ�;

�F2
ðxÞ¼�

~24̂ðxÞ¼�1̂~3ðxÞ¼1

2
½�SðxÞ��Aðx�1Þ��1;

�F3
ðxÞ¼�

~14̂ðxÞ¼�1̂~4ðxÞ
¼1

2
½��SðxÞ��Aðx�1Þþ�Sð0Þ��1;

�F4
ðxÞ¼�2̂~3ðxÞ¼�

~23̂ðxÞ¼1

2
½�AðxÞ��AðxÞ�: (C11)

Following [36], the two functions �AðxÞ and�SðxÞ can be
uniquely fixed imposing the correct analytical and asymp-
totic properties for the perturbed quasimomenta pþ �p:

�SðxÞ¼�
~2~3ðxÞ¼ f̂ð1Þ

~fð1Þ
� ~fðxÞ
x�1

�1

�
þ f̂ð�1Þ

~fð�1Þ
� ~fðxÞ
xþ1

�1

�
;

�AðxÞ¼�2̂3̂ðxÞ¼2

�
x

x2�1
f̂ðxÞ�1

�
; (C12)

where the two functions f̂ðxÞ and ~fðxÞ are defined as

~fðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� ~x2Þðx� �~x2Þ

q
;

f̂ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x̂1Þðx� x̂2Þ

q
; (C13)

with a suitable choice of the cuts.

3. One-loop energy

Given the above set of off-shell frequencies �I ¼ �i;j,
I 2 fA; S; B1;2;3;4; F1;2;3;4g, the corresponding physical

on-shell fluctuations energies associated to the ði; jÞ exci-
tations with mode number n, are given by

!ðnÞ
I ¼ !ðnÞ

i;j ¼ �i;jðxi;jn Þ; (C14)

where, for any pair ði; jÞ, xi;jn is determined as the solution
of the equation

piðxi;jn Þ � pjðxi;jn Þ ¼ 2�n: (C15)

The one-loop correction to the energy can be obtained as a
sum over n and polarizations40

E1 ¼ 1

2

Xþ1

n¼�1

X
i;j

ð�1ÞFi;j!ðnÞ
i;j : (C16)

This sum is sensitive to integer shifts in the labeling of the
frequencies n ! nþ �; following [25] here we propose to
use the following choice:

E1 ¼ 1

2

Xþ1

n¼�1
½!ðn�1Þ

S þ!ðn�1Þ
A þ!ðn�1Þ

B1
þ!ðn�1Þ

B2

þ!ðnþ1Þ
B3

þ!ðnÞ
B4

� 2!ðn�1Þ
F1

� 2!ðnÞ
F2

� 2!ðnÞ
F3

� 2!ðn�1Þ
F4

�: (C17)

Then the final result in the short string limit has the same
form as in (2.55)

E1 ¼
11
8 � 3�3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
%2 þ 1

p S3=2 þOðS2Þ; (C18)

corresponding to the rational part of n12 in (1.29) and
(2.53) being

n012 ¼
11

8
: (C19)

The prescription (C17) thus does not lead to the preferred
choice n012 ¼ 5

8 consistent with the universal value (1.30) of

the 2-loop coefficient n21. The value in (C19) together with
universality of Konishi dimension implying Eq. (1.31) then
leads to n21 ¼ � 7

4 (n03 ¼ � 1
2 ).

Making a natural guess about the structure of the lead-
ing term in the 2-loop correction to the slope function, we
then get

E ¼ E0 þ E1 þ E2 þ . . .

¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ %2

q ffiffiffiffi
�

p ffiffiffiffi
S

p �
1þ 1

2ð%2 þ 1ÞS

þ 8%6 � 4%4 � 16%2 � 5

8ð%2 þ 1Þ2 S2 þ . . .

�

þ n012 � 3�3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
%2 þ 1

p S3=2 þ . . .þ 1ffiffiffiffi
�

p n21

ð%2 þ 1Þ3=2
ffiffiffiffi
S

p þ . . .

(C20)

APPENDIX D: ONE-LOOP ENERGY
OF THE ðJ0; JÞ FOLDED STRING FROM THE

ALGEBRAIC CURVE APPROACH

Here we shall derive the 1-loop coefficients in (1.44)
in the small spin expansion of the energy of a folded
string with spin J1 ¼ J0 and orbital momentum J3 ¼ J

40In the algebraic curve formalism, the on-shell energies !ðnÞ
i;j

enter directly E1 and do not require 1=� factors.
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representing a state in the suð2Þ sector on the dual gauge
theory side. This will a direct counterpart of the computa-
tion done for the ðS; JÞ folded string in Ref. [6].

1. Quasimomenta

The classical solution [37] for the folded string with spin
J0 and orbital momentum J in S5 is related to the folded
string with spin S in AdS5 and orbital momentum J in S5

by an analytical continuation [33] implying a relation
between the string profiles and the global conserved
charges

ðE; J0; JÞ ! ð�J;S;�EÞ: (D1)

In the algebraic curve approach the quasimomenta for the
ðJ0; JÞ string can then be obtained by an analytical continu-
ation of the quasimomenta for the ðS; JÞ string given in
Ref. [3]. According to [5], the S5 quasimomentum p~2 as a
function of the branch points is expressed in terms of the
elliptic functions:

p~2ðxÞ¼�� i2�E0

�
a

a2�1
� x

x2�1

�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b

a

a2�1

b2�1

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jaj� ia

jaj� i �a

�a�x

a�x

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

�a

jaj� i �a �a

jaj� ia

þx

aþx

s

� 8�abJ 0

ðb�aÞðabþ1ÞF1ðxÞ� 2�E0ða�bÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiða2�1Þðb2�1Þp F2ðxÞ;

(D2)

F 1ðxÞ ¼ iF
�
isinh�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a� b

aþ b

a� x

aþ x

s
;
ðaþ bÞ2
ða� bÞ2

�
; (D3)

F 2ðxÞ ¼ iE
�
isinh�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a� b

aþ b

a� x

aþ x

s
;
ðaþ bÞ2
ða� bÞ2

�
; (D4)

where ReðaÞ, ImðaÞ> 0, b ¼ � �a and

J ¼ 1

2�

ab� 1

ab

�
bE

�
1� a2

b2

�
þ aK

�
1� a2

b2

��
;

J 0 ¼ � 1

2�

abþ 1

ab

�
bE

�
1� a2

b2

�
� aK

�
1� a2

b2

��
;

E0 ¼ � 1

�b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2 � 1Þðb2 � 1Þ

q
K
�
1� a2

b2

�
: (D5)

The inversion symmetry provides the other sphere quasi-
momenta through the relations

p~2ðxÞ ¼ �p~3ðxÞ ¼ �p~1ðx�1Þ ¼ p~4ðx�1Þ: (D6)

Since the motion in theAdS5 part is trivial, the correspond-
ing quasimomenta are simply

p1̂;2̂ðxÞ ¼ �p3̂;4̂ðxÞ ¼ 2�E0

x

x2 � 1
: (D7)

2. Off-shell frequencies

The symmetry of the solution allows to express all the
off-shell fluctuation frequencies as combinations of only
two independent functions [5]:

�AðxÞ ¼ 2

x2 � 1

�
1þ x

fð1Þ � fð�1Þ
fð1Þ þ fð�1Þ

�
; (D8)

�SðxÞ ¼ 4

fð1Þ þ fð�1Þ
�
fðxÞ
x2 � 1

� 1

�
; (D9)

where ðfðxÞÞ2 ¼ ðx� aÞðx� �aÞðx� bÞðx� �bÞ. The com-
plete list of the frequencies is given by

�
~2~3ðxÞ ¼ �SðxÞ; �2̂ 3̂ðxÞ ¼ �AðxÞ;

�
~1~4ðxÞ ¼ ��Sðx�1Þ þ�Sð0Þ;

�
~2~4ðxÞ ¼ �

~1~3ðxÞ ¼ 1

2
½�SðxÞ ��Sðx�1Þ þ�Sð0Þ�;

�1̂ 4̂ðxÞ ¼ �2̂ 4̂ðxÞ ¼ �1̂ 3̂ðxÞ ¼ �2̂ 3̂ðxÞ;
�2̂~4ðxÞ ¼ �

~1 3̂ðxÞ ¼ �
~1 4̂ðxÞ ¼ �1̂~4ðxÞ

¼ 1

2
½�AðxÞ ��Sðx�1Þ þ�Sð0Þ�;

�
~2 4̂ðxÞ ¼ �1̂~3ðxÞ ¼ �2̂~3ðxÞ ¼ �

~2 3̂ðxÞ
¼ 1

2
½�SðxÞ þ�AðxÞ�: (D10)

The off-shell frequencies provide the fluctuation energies
when evaluated on the solutions of the equations:

piðxi;jn Þ � pjðxi;jn Þ ¼ 2�n: (D11)

3. One-loop correction to the energy

We have computed the one-loop energy correction E1 in
the two limits. The first one is motivated by the analysis in
Ref. [38] and is defined as

J 0 ! 0; t � Jffiffiffiffiffiffiffiffiffi
2J 0p ¼ fixed: (D12)

In this limit, the classical energy is given by

E0ffiffiffiffiffiffiffiffiffi
2J 0p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ 1

p
þ 4t2 þ 1

8
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ 1

p J 0

þ �32t6 � 16t4 þ 28t2 þ 3

128ðt2 þ 1Þ3=2 J 02 þ . . . (D13)

For the one-loop correction, we find

E1 ¼
X
p
0

apðtÞðJ 0Þpþð1=2Þ

¼ a0ðtÞðJ 0Þ1=2 þ a1ðtÞðJ 0Þ3=2 þ . . . ; (D14)
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a0ðtÞ ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðt2 þ 1Þp ;

a1ðtÞ ¼ � 16t4 þ 25t2 þ 6

8½2ðt2 þ 1Þ�3=2 � 3

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðt2 þ 1Þp �3:

(D15)

Adding the classical energy and re-expanding at large � for
fixed J0, J, this gives

E2 ¼ 2
ffiffiffiffi
�

p
J0 þ 1

2
J02 þ J0 þ J2 þ 1ffiffiffiffi

�
p

�
1

8
J03 þ J0J2

þ
�
� 5

8
� 3�3

�
J02 þ 1

8
J0
�
þ . . . ; (D16)

leading to the values of the coefficients nij in (1.44). The

resulting value

n012 ¼ � 5

8
(D17)

is perfectly consistent with the universality of the two-loop
coefficient n21 in (1.30), i.e., as follows from (1.31),

n21 ¼ � 1

4
: (D18)

As in Ref. [38], expanding E1 at large t we recover the
expansion in small J 0 for fixed small J :

E1¼
�
1

2J
�1

2
J þ . . .

�
J 0 þ

�
� 1

2J 3
þ�1

8�3�3

2J
þ . . .

�
J 02

þ
�

3

4J 5
þ

3
8þ3�3

2J 3
þ . . .

�
J 03

þ
�
� 5

4J 7
þ�23

8 �9�3

4J 5
þ . . .

�
J 04þ . . . (D19)

The second limit is

J 0 ! 0; J ¼ fixed: (D20)

In this limit, the classical energy reads41

E 0 ¼ J þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J 2 þ 1

p
J

J 0 � 3J 2 þ 2

4J 3ðJ 2 þ 1ÞJ
02

þ 15J 6 þ 33J 4 þ 28J 2 þ 8

16J 5ðJ 2 þ 1Þ5=2 J 03 þ . . . (D21)

For the one loop correction, we find

E1 ¼ e1ðJ ÞJ 0 þ e2ðJ ÞJ 02 þ e3ðJ ÞJ 02 þ . . . ; (D22)

and, at order J 02,

E1¼ J 0

2J ð1þJ 2Þþ
��21J 4�29J 2þ1

16J 3ðJ 2þ1Þ5=2

�X1
n¼2

n2ðJ 2þ2n2�1Þ
J 3ðn2�1Þ2ðJ 2þn2Þ3=2

�
J 02þ . . . (D23)

This expression is very similar to the one for the ðS; JÞ
folded string found in Ref. [6]:

EðS;J Þ
1 ¼ � S

2J ð1þ J 2Þ þ
�
3J 4 þ 11J 2 þ 17

16J 3ðJ 2 þ 1Þ5=2

� X1
n¼2

n2ðJ 2 þ 2n2 � 1Þ
J 3ðn2 � 1Þ2ðJ 2 þ n2Þ3=2

�
S2 þ . . .

(D24)

The only differences are in the sign of the first term [i.e.,
the sign of the 1-loop term in the ‘‘slope’’ function (1.25)]
and in the coefficients of the contributions of low modes in
the second term.
Extending the calculation to the order J 03 we find the

following correction to E1:

e3ðJ Þ¼150J 8þ456J 6þ202J 4þ8J 2�27

64J 5ðJ 2þ1Þ4

þX1
n¼2

1

2J 5ðJ 2þ1Þ3=2ðn2�1Þ4ðJ 2þn2Þ5=2
�½ð8J 4þ17J 2þ10Þn10þ2ð10J 6þ9J 4

�13J 2�14Þn8þ2ð3J 8�19J 6�43J 4

�17J 2þ7Þn6�2ð6J 8þ2J 6�13J 4

�9J 2þ2Þn4�J 2ð2ðJ 4þ5J 2þ7ÞJ 2þ7Þn2�:
(D25)

Expanding the coefficients of each power of J 0 in (D23) in
small J we get explicitly [hereN ¼ J0; cf. (2.18), (2.35),
and (2.56)]

E1¼
�
1

2J
�J

2
þJ 3

2
þ . . .

�
J 0 þ

�
� 1

2J 3
þ 1

J

�
� 1

16
�3

2
�3

�

þJ
�
� 9

32
þ3

2
�3þ15

8
�5

�
þJ 3

�
125

128
�25

16
�3

�15

8
�5�35

16
�7

�
þ . . .

�
J 02þ

�
3

4J 5
þ 1

J 3

�
3

16
þ3

2
�3

�

þ 1

J

�
1

32
�9

8
�3

�
þJ

�
1

8
þ3�3þ35

16
�5�35

16
�7

�
þ����J 03þ . . . (D26)

This is in perfect agreement with the expansion (D19)

found in the case of fixed t ¼ Jffiffiffiffiffiffi
2J 0

p .

From this expansion one extracts, in particular, the
following values [cf., (1.9), (1.35), and (1.37)]:

41Equivalently, E2
0¼J 2þ2

ffiffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þJ 2

p
J 0þ 1þ2J 2

2ð1þJ 2ÞJ
02þ... For

comparison, in the ðS; JÞ folded string case E2
0 ¼ J 2 þ

2
ffiffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ J 2

p
S þ 3þ2J 2

2ð1þJ 2ÞS
2 þ . . .
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n12 ¼ � 5

8
� 3�3; ~n12 ¼ � 3

16
þ 3�3 þ 15

4
�5;

n13 ¼ � 7

16
� 3

4
�3 þ 15

4
�5: (D27)

For comparison, the corresponding values for the ðS; JÞ
folded string that follow from the analog of (2.6) in Ref. [6]
are

n12 ¼ 3

8
� 3�3; ~n12 ¼ � 27

16
þ 3�3 þ 15

4
�5;

n13 ¼ � 9

16
þ 15

4
�3 þ 15

4
�5: (D28)

The value of n0013 ¼ � 3
4 in (1.36) for the folded ðJ0; JÞ string

in (D27) is the same as for the J1 ¼ J2 circular string found
in sect II B; n0013 ¼ 15

4 for the folded ðS; JÞ string in (D28) is
the same as for the S1 ¼ S2 circular string found in
Sec. II C.

Similarly to the cases of the ðS; JÞ folded string [6] and
the circular strings discussed in Sec. II, the coefficient of
J 03=J in (D26) does not contain �5, supporting the uni-
versality of the transcendental terms in ~n12 in (1.34) and of

the �5 term in n13 in (1.36). Note also that the highest
transcendentality �7 term in the coefficient of JJ 03 in
(D26) is also universal, i.e., has the same value ð�35=16Þ
as in Ref. [6] and in all circular string cases [cf., (2.18),
(2.35), and (2.56)].

APPENDIX E: SUMMARY OF COFFICIENTS

Here we summarize the known values of the leading
coefficients in E2 in (1.3) for two single-spin folded and
three equal-spin circular solutions. We omitted the values
of ~n012, n

0
13 for the circular S ¼ J0 solution that appear to be

scheme-dependent (see Sec. II D). We added question
marks to the values that were not computed directly but
are expected on the basis of universality of the Konishi
multiplet dimension. Let us recall the definitions of n0km,
n00km as rational coefficients in n12, ~n12, n13:

n12 ¼ n012 � 3�3; ~n12 ¼ ~n012 þ 3�3 þ 15

4
�5;

n13 ¼ n013 þ n0013�3 þ
15

4
�5:
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