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“Short” spinning strings and structure of quantum AdS; X S° spectrum
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Using information from the marginality conditions of vertex operators for the AdSs X S° superstring,
we determine the structure of the dependence of the energy of quantum string states on their conserved
charges and the string tension ~+/A. We consider states on the leading Regge trajectory in the flat space
limit which carry one or two (equal) spins in AdSs or $° and an orbital momentum in S°, with Konishi
multiplet states being particular cases. We argue that the coefficients in the energy may be found by using
a semiclassical expansion. By analyzing the examples of folded spinning strings in AdS5 and S, as well as
three cases of circular two-spin strings, we demonstrate the universality of transcendental (zeta-function)
parts of few leading coefficients. We also show the consistency with target space supersymmetry with
different states belonging to the same multiplet having the same nontrivial part of the energy. We suggest,
in particular, that a rational coefficient (found by Basso for the folded string using Bethe Ansatz
considerations and which, in general, is yet to be determined by a direct two-loop string calculation)

should, in fact, be universal.
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I. INTRODUCTION AND SUMMARY

Recent progress in understanding the integrable system
that should be computing the spectrum of the maximally
supersymmetric example of AdS/CFT duality makes it im-
portant to further develop a detailed matching of the Bethe
ansatz predictions with quantum AdSs X $° string energies
extracted from the perturbative string theory. While direct
near-flat-space expansion of the quantum string theory de-
termining the large tension (7" = g) expansion of quantum
string energies with fixed quantum charges is still to be
developed, here we shall follow the ‘“‘semiclassical” ap-
proach suggested in Ref. [1] (see also Ref. [2]) and recently
applied in Refs. [3-6] to demonstrate the matching of the
numerical results of the thermodynamic Bethe ansatz (TBA)
for the Konishi operator dimension interpolated from weak to
strong coupling [7-9] with the perturbative string theory
prediction for the corresponding string energy.

Our motivation is to further understand the structure of
the dependence of the string energy on the string tension
and its quantum numbers (spins) guided by the expected
form of the string vertex operator marginality conditions
[1,4] and recent progress on the Bethe ansatz side [10]. We
shall consider several string states which belong (in the
flat-space limit) to the leading Regge trajectory and for the
lowest values of the spins or the lowest value of the string
level represent states in the Konishi multiplet and discover
the universality of some leading-order coefficients in the
expansion of their energies.

*Also at Lebedev Institute, Moscow.
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A. General structure of the inverse tension
expansion of the energy

Let us start with describing the general form of the
dependence of the energy E of a string state on its quantum
charges (; in the large string tension expansion
(\/X > 1).! As follows from the structure of o’ expansion
of two-dimensional (2D) anomalous dimensions of the
corresponding AdSs X S° string vertex operators [11,12],
the solution of the marginality condition should give
E = E(Q, \/A) in the following general form [1,4]:

E2 = 2JXY a;0; + 3 b;;0:0; + 3 ¢;:0;
i ij i

1
+ ﬁ(zdiijinQk + ZeijQin + ZfiQi)
ik ij i

1
+ 0(—) (1.1)
(VA)?
where Q; are supposed to be fixed in the limit JA> 1.
The highest power of charges in (le)—n term here is n + 2.

This follows, e.g., from dimensional analysis, from the fact
that higher-order terms in 2D anomalous dimension opera-
tor may contain higher derivative operators (e.g., E> comes
from SO(2,4) Casimir originating from Laplacian on
AdSs, etc.; see Ref. [12]) and also from the fact that, in
any theory, an (n + 1)-loop Feynman graph renormaliz-
ing a (vertex) operator contains at most (n + 2) Wick

"Examples of these charges discussed below are spins Sy, S, in
AdS;s and spins Jy, J,, J5 in S°.
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contractions with fields in the (vertex) operator and thus
contributes to its dimension terms like Q™/(x/A)" with
m=n+2.

More explicitly, if we consider a string state with an
orbital momentum J; = J in S° and one extra oscillator
number N (corresponding, e.g., to an intrinsic spin compo-
nent due to an extended nature of the string) which deter-
mines the value of an effective string level then (1.1) is a
consequence of the following 2D marginality condition”

1
0=N+—=(—E>+ J> + nuN* + n;;N)

24/A
1
e

(nOlNJ2 + }’103N3 + n12N2 + i’lz]N)

1
+ 0<7) (1.2)
(V/2)?
Including also some higher-order terms, the resulting
expression for E2 may be written as”

1
E2 :2\/XN+12 +n02N2 +n”N+—(n01J2N

\/_
\/—)2

+ ﬁ()z.]zNz + Vl()4N4 + l’l13N3 +n22N + l’l31N)

+nO3N3+n12N2+n21N)+ (l’l]]JN

(I”lo].] N+7’l21] N‘I’}’l]z.] N +n 1\,5 )

(\/_ A
i )

This expression follows under the assumption that in (1.2)
E? enters only in the 1-loop ﬁ term. On general grounds, as

(71, J*N + )+0( (1.3)

E may be thought of as a global charge analogous to
J, one might wonder if (1.2) should also contain terms
like (717)7(Ek+' + ...+ E™N" + ...). However, terms de-

pending only on E (or on E and J) should be 2D scheme-
dependent (like higher powers of Laplacian in 2D anomalous

?Here the (—E2? + J% + ...) term is the 1-loop correction to
the 2D (anomalous) dimension, the next term is the 2-loop
correction, etc., with all the terms at the same order in - being
here on the same footing. This expansion should emerge in the
sigma model approach upon diagonalization of the 2D anoma-
lous dimension matrix (as, e.g., in the NSR approach or in the
context of a pure spinor approach like the one discussed in
Ref. [13]). Here we ignore possible shifts of N and E by integers
that depend on a choice of a reference vacuum state [in the
bosonic string context the left-hand side of (1.2) should be equal
to 2].

*Here the coefficient of J2 in the first line should be 1 to be
consistent with the BMN limit N = 0. Again, we assume that in
general E and J may be redefined by possible constant
shifts to be consistent with positions in a supermultiplet [e.g.,
E(E—4)=J(J+4)+... is equivalent to (E—2)>=
(J +2)* + ... for simplest point-like states]. This depends on
a definition of string vacuum; see Ref. [4] for more details.
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dimension operator) and would also contradict the BMN limit
E = J in the absence of other charges (N=0) leading to
spurious 717 dependent solutions of the marginality condition;

they should thus be absent in a scheme preserving target space
supersymmetry. Terms in (1.2) involving both E and N like
(VIX)TEnN ™ with m +n=k+ 1, may be present, but in solving
the marginality condition (1.2) for E in perturbative expansion
in ﬁ they cannot modify the leading-order solution E? =

2+/AN + ..., and their perturbative treatment leads just to
redefinitions of coefficients already present in Eq. (1.3). Note
also that the presence of the mixed terms J*N™ terms reflects
the fact that in curved space the center of mass and internal
degrees of freedom do not in general decouple.

Expanding (1.3) in large VA for fixed N, J we get

AL A A3

1
E= 2JXN[1+—+ - +0< )]
VAW WA V0
(1.4)
1
A] = W‘] + — (I’lozN + l”l]]) (15)
1 2 1 2 2
A2 = _EAI + Z(HO]J + n03N + I’l]zN + }’lz])
1 1, 1
= Zl:nzl g + (’112 Mo N
1
+ (l’l03 - gnéz)Nz] + 0(.]2), (1.6)
= 7[(”?1 — 8nyyny + 32n3)
+ (37[021’!11 81’!111’112 - 87[021’[21 + 32”22)N
+ (37’102”11 - 8}’103”11 - 87’102”12 + 32}’113)N2 + .. ]
(1.7)

Substituting particular values of N and J into (1.3) and
(1.4) one can find the expansion of the corresponding
quantum string state energy, i.e., the strong-coupling ex-
pansion of the dimension of the dual gauge theory operator.
Note that the first two terms in the right-hand side of (1.3)
have direct flat-space interpretation, so that N plays the
role of string level and the spinning string states with
maximal value of N for a given value on spin belong to
the leading Regge trajectory. For example, N = O corre-
sponds to massless (supergravity) states and N =2 to
states on the first excited string level which contains the
Konishi long multiplet as its “floor”” and also its “KK
descendants” with higher values of J obtained by tensoring
with the [0, J, 0] representation [14]. The states in the
Konishi multiplet that we will consider here correspond
to N =2, J = 2; see Refs. [1,4].

The goal is thus to determine the coefficients n;, in (1.3).
To achieve this, one may use the observation [1,2] that a
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similar expansion of the string energy is also found by
starting with a solitonic string carrying the same types of
charges as the vertex operator representing a particular
quantum string state and
(1) first performing the semiclassical expansion JA>1
for fixed charge densities Q;= TQ” ie.,

(N, J) = jx(N, J), and then

I
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(i1) expanding E in small values of © ;. Indeed, the limit
Q= Q' — 0 should correspond to taking NI

for ﬁxed values of the quantum charges Q;.
Assuming that there is no order of limits problem,
the same coefficients n;,, should be found in these
two different approaches.

Writing (1.3) in terms of N, 7 as

2
<£) =2N+T*+ 11 T* N + nop N2+ ngas N> + ngg N* + iy T* N + i T* N2 +

+ ! (n1|N+ﬁ1]j2N+ﬁ]1j4N+nlzj\fz+ﬁ12J2N2+n13N3+...)

\/__
(\/_ )2

My N + iy T* N +npN*+..)+ ((\/—1/\)3)

(1.8)

one can then interpret the coefficient ny,, in (1.3) as a k-loop contribution to a term scaling as N™ in the semiclassical
expansion, i.e., 1y, can be extracted from the classical string energy, n,,,—from the 1-loop semiclassical correction, etc.

Expanding F in (1.8) in small JN for fixed J we get
N 1 1 N?
7(1+§n01j2+§n01j4+...) 2j3
1 [N 2
+—=|=m, +anJ* +anJr+ .+
\/XI:2J( 11 1 1 )

+ (ﬁlz — i

oo

273
1 1

1
(1 + (ngy — ngp) J* + ("01 figy + Z”%1>j4 +

N 1 -
—<_”11 + (”12 - 5”01"11 - "11)«72

_ _ N3 .
o T 5”01”11)74 + ) + rﬁ(3”11 +[3iiy — 2ny, + (Bng; — ngy)nyy 172

N _ . . 3 N
+ [2(n13 — fijp) — noynip + 3y + (3n01 —fgy + anl)nll + (Bng; — noz)nn]j4 + ) + :I

1

It should be noted that the quantum string sigma model
loop (i.e., a’ ~ ﬁ < 1) expansion in (1.3) is, of course,
different from the semiclassical loop expansion in (1.8):
in (1.2) or (1.3) the first-order N term is classical,
J? + ngN? + ny N are 1-loop terms, etc., i.e., the coeffi-
cients ny,,, in general, appear at different loop orders in the
two expansions.? Note also that while each ¢-loop term in
(1.3) is a polynomial of finite degree, (€ + 1), in the
charges, this does not, in general, apply to the semiclassical
expansion (1.8) where each term may contain an infinite
series of terms in the small 7, N expansion. To relate the
two expansions, one would need to reorganize or even
resum them.’ For example, the classical string energy

“Note that ny (£ =1,
both expansions.
In particular, considering J > N expansmn will lead to
inverse powers of 7 in the semiclassical expansion and thus will
require a resummation to relate it to (1.3).

2,...) are still ¢-loop coefficients in

(\/_)Q[N( o1 F AT+ )+...]+0(ﬁ).

(1.9)

term in (1.8) receives contributions from all higher loop
orders in (1.3), etc.’

Comparison of (1.9) or (1.4), (1.5), (1.6), and (1.7) to
(1.3) shows that Eq. (1.3) for the square of the energy
provides a much more ‘“‘economical’” description of the
spectrum. Computing the semiclassical expansion (1.9)
directly one finds, indeed, many relations between the

Note also that “nonanalytic” terms [1] like B,, B3, ... inthe large
VA expansion of the energy E=+2+/AN| [1+ 7—)—24- J+

By +%+(73x3)—2+ ..., which a priori could be present in the energy
found by using semiclassical expansion, should not actually
appear if this approach is consistent: they would lead to A}/*

dependent terms in E2, i.e., E2 = 2J/AN + 2\/2N[A‘f}4 + /\‘/4)3 +

..] + ... which cannot be present in the standard sigma model
perturbative computation of eigenvalues of 2D anomalous di-
mension matrix.
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coefficients there in agreement with the general structure
of EZ in (1.3).

The expression for E? in (1.3) or in (1.8) may be for-
mally organized as an expansion in small N which will
then look like an expansion in powers of N:

E?> = J2 + hy(A, J)N + hy(A, J)N? + h3(A, J)N? + ...,
(1.10)
where for fixed J and large A the coefficient functions #;
are given by
N 131

h1=2\/x+n11+\/—x+(\/x)2+...

+ (Mo | T +)+ 1.11
(a WA? WA (L1h
nyp na;
hy = ey T2 o4
: n°2+\/7\+(ﬁ)2
J2< g | A +)+ 1.12
W B/ (112
hy =0 4 T3 =M L (113

aeme T

The corresponding expansion of E in small 2N for fixed J
is then

E=J+ih1(/\,J)N+..., (1.14)

2J

i.e., h (A, J) may be called, following Ref. [10], a ““slope”
function. In Ref. [10] it was found exactly in the case of the
folded string with spin S in AdSs (in this case N = §).
While the coefficients in the “‘slope” function h; are
expected, by analogy with the case in Ref. [10], to be
rational (&; is determined [10] by the asymptotic Bethe
ansatz and is also not sensitive to the phase) the coefficients
in the next “curvature” function h, are already transcen-
dental (as we shall discuss below n;, contains {3, 71,
contains {5, etc.) and h, is expected to be sensitive to
“wrapping”’ corrections.

B. Summary of results for the coefficients

Below we shall consider the examples of ‘‘small”
semiclassical spinning string states discussed in
Refs. [1,4] that fall into the class of states described by
(1.3), (1.8), and (1.9). They correspond to quantum string
states with angular momentum J and few oscillator
modes excited that are responsible for nonzero com-
ponents of intrinsic spin. More specifically, we shall con-
sider and compare the following solutions’: two folded
string cases: (S,J) and (J/,J) and three rigid two-spin

"We shall use the following notation: S; and S, will stand for
spins in AdSs; J, = J' and J, will be spins in §3 and J; = J will
be orbital momentum in S°.
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circular string cases: (J; =J, =J"J), (S, =S, =S, J),
and (S =J;, =J',J). For lowest values of the winding
numbers these represent (in the flat-space limit) states on
the leading Regge trajectory with the string level being
N = S or N = J in the folded one-spin cases and N = 2.J’
or N = 2§ in the circular two-spin cases.

For example, for N = 2 these represent states on the first
excited string level. In this case all states with fixed J (i.e.,
on a fixed KK level [14]) should belong to a single long
PSU(2,2|4) multiplet.8 Furthermore, the string states with
N =2, J =2 are dual to particular states in the Konishi
multiplet on the gauge theory side [1,4].

As all operators in a given supermultiplet should have
the same four-dimensional anomalous dimension, that
means that the corresponding string states should have
the same target space energy [up to constant integer or
half-integer shifts reflecting their positions in the super-
multiplet; such shifts are ignored in (1.3)], i.e., the expres-
sion for Ey—, as a function of J and A should be universal,
with Ey—,(J = 2, A) being equal to the dimension of the
Konishi multiplet.

As follows from (1.3), this expected universality of the
N = 2 value of the energy for any J and +/A imposes the
following invariance constraints on the coefficients of
states within a supermultiplet:

ng; = inv, 2ng, + nyp = inv,
47[03 + 2}’[12 + nyp = inV, (115)
2]7102 + I’~l11 = il’lV,
8]’104 + 4]113 + 21’122 + ni3; = inV, Ce (116)

Note that these conditions relate different terms in the
semiclassical loop expansion. Once the values of these
coefficients are known at least for one state in the multiplet,
then (1.15) and (1.16) constrain the coefficients for other
states.

Explicitly, these universal coefficients enter Ey—, in
(1.3) and (1.4) as follows:

Ey— = Z\ﬁ[l + % * (j% 2 (\7%)3 ! 0((\/1?)4)]’

(1.17)

1

. (1.18)

1
ay = Ay =3 + 1(2”02 + nyy),

1 1 1
a, =(Ay)y—r = _Ea% + anﬂ "‘1(4"03 +2ny5 + nyy),

(1.19)

8For example, the three circular string states in the flat-space
limit are related by Lorentz transformations and thus belong to
the same multiplet. This should remain so upon switching on the
curvature.
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| _
ay;=(A3)y— = —aa, ‘*‘1(2”02 + iy )J?

1
+Z(8I’l04 +4n13+2n22+n31). (120)

(ap)j—, are then the coefficients of the string cou-
pling expansion of the dimension of the Konishi multiplet.
a, thus depends on tree-level nyp, and 1-loop n;; coeffi-
cients; a, depends on tree-level, extra 1-loop n;, and
also 2-loop n,; coefficients; a; depends on tree-level, extra
I-loop 1y, ny3, extra 2-loop ny and also 3-loop ns3;
coefficients, etc.

In general, the highest loop order € coefficient ny; in a,
originates from the slope function %; in (1.11) and thus
should be rational (as found for the (S, J) folded string
state in Ref. [10]).° The subleading loop order coefficient
ng—y, (for €>1) originating from h, in (1.11) should
already be ’transcendental”—containing zeta function
{(2€ — 1) = &p—1. Also, ng_y3 (for € > 2) should contain
{>¢—1, etc. Then the highest transcendentality term in a, in
(1.17) should contain {5, ;.

Indeed, as we shall see below the 1-loop coefficients ny;
obey this pattern: n;, contains {3, n;3 contains (s, etc.
What is unclear at the moment is if the 2-loop and higher
coefficients in h,, h3, ... (like n,y, n3,,...) may contain
other transcendental constants as well.'® It would be im-
portant to carry out an explicit 2-loop computation of ny, to
clarify this question.

It is interesting to note that the weak-coupling expansion
of the anomalous dimension of the Konishi multiplet states
also contains ¢, constants at 4- and 5-loops (see, e.g.,
Ref. [17], and references therein) while the transcenden-
tality origin of higher loop coefficients here again appears
to be an open question (an answer should follow from an
analytic solution of TBA equations at weak coupling
[7.8]).

Let us now summarize what is known [1,3-6,10] and
what will be found below about the coefficients ny,, 7, in
(1.3) using the semiclassical approach. We will try to
identify the general universality patterns in the structure
of these coefficients. First, in all cases

. 1
oy = 1, nogp = _Z (121)

The universality of ny; is in agreement with (1.15). This
follows from the universal form of the “near-BMN” ex-
pansion of the classical string energy:

°In particular, for the (S, J) folded string state [10]: n;
1

1= _1’
— 1 _ 073
Ny ==y N3 =

_Al‘p "41:_% n51:_% ng1 = —3p» ©lC.
'For example, the 2-loop and higher-order terms in the InS
coefficient of the large S limit of the folded string energy

expanded in IA contain Dirichlet beta function constants

K = B(2), etc. (as well as ) [15,16].

PHYSICAL REVIEW D 86, 066006 (2012)
E2=J2+2NVA+J2 + ...

_p 1, 1
J+N<2\/X+\/.XJ N/

J4+ )+,

(1.22)

where we assumed that N << J < +/A. In other words, the
first term in the semiclassical expansion of the slope function
hy in (1.10) is universal: A, (A, J) = 2v2/1 + T2 + O(F).
The classical ngy,, ngs and the leading 1-loop n;; coef-
ficients are also rational [1,3]. We find that in all cases

27102 + ny = 2, (123)

verifying the first universality relation in (1.15). The value
of 71y, is determined by the term linear in N in the 1-loop
semiclassical energy computed for fixed 7 and small N
and then expanded in small J [see (1.9)]. The results for
the folded string [6,10] and the circular string results
described below imply that in all cases

iy = —ny, iy = nyp. (1.24)

More generally, these results imply the universality (for the
states on the leading Regge trajectory) of the 7 depen-
dence of the first two leading terms in the ‘“‘slope” function
hy in (1.10) expanded in the semiclassical limit JA>1
with J = \/LX held fixed:

n 1 -
h1=2\/X 1+j2+1+l‘l72+ﬁ[”21+n21j2+0(*74)]

+ o(ﬁ)

We find also that the leading term in the semiclassical
expansion of A, in (1.12) has the following general form:

Apd? 1 3
1 (sz + \/—X[”u +iipJ? + 0(JY)]

- 0<ﬁ>

Again, by inspection in all cases we observed, in agree-
ment with first relation in (1.16) we find

(1.25)

hy = ng +

(1.26)

2}7102 + ﬁll = 0, (127)
so that [using (1.23) and (1.24)]
. 1
noy = En” =1- Ry (128)

The 1-loop coefficient n, in (1.3) and (1.26) contains a
transcendental 5 part. This was first observed in the small-
spin expansion of the folded string [2,18] and pulsating
string [19] energy, indicating also that higher-order 1-loop
terms should contain {5, etc. constants. The computation
of ny, for the circular 2-spin string with J, = J, =J'
(N = 2J") in Ref. [1] and for the folded spinning string
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(N = S) in Ref. [6] led to the exactly same coefficient of {3
in n,, suggesting its universality, i.e., that''

nip = n/12 - 3£3, (129)
where n}, is a rational number depending on a particular
string state on the leading Regge trajectory. The universal-
ity of the {3 coefficient in (1.29) will be confirmed below
also for the two other examples of the “small” circular
string solutions: with two equal spins §; = S, in AdSs;
with one spin in AdSs and one spin J; = J’ in §° with
S=J', N=2S (in Ref. [1] only n;; was computed in
these cases).

As was found in Ref. [10] from the exact computation of
the “slope” function 4, in (1.10) for the *“ground-state”
(S,J) state in s/(2) sector [corresponding to the folded
(S, J) string], the 2-loop coefficient n,; is rational and
given by'?

_ ! 1.30

ny 1 (1.30)

In view of (1.15) and the observed universality of {3 in

ny, (1.29) the rationality of n,; should apply also to other

states under consideration. Indeed, using the values of

nogy = —3, nj, =3 [6] and (1.30) [10] for the folded

(S, J) string case the universality of the third combination
in (1.15) translates into

4ngy + 2ni, + ny = — 1. (1.31)
Remarkably, as we shall find below, this constraint implies
the same value (1.30) for the 2-loop coefficient n,; also
for the folded (J',J), circular (J; = J,,J) and circular
(S, = S5, J) strings. We thus suggest that this value
Ny = —}P like the value of the {3 coefficient in (1.29),
should again be the same for all the states on the leading
Regge trajectory.13 This universality of n,; may help
understand how to generalize the exact result of Ref. [10]
for the function &, in (1.10) to states outside the s/(2)
sector. While the direct 2-loop computation of n,; is yet
to be done for the circular string cases, the value (1.30) can
be indirectly obtained from the knowledge of the 1-loop
coefficients by using the expected universality of the
subleading a, coefficient in the dimension of the Konishi
state (1.19).

""The ¢; coefficient is no longer universal for an m-folded
string [6] but has simple m? dependence (see also Sec. II B below
for the corresponding circular string case).

12The simplicity of this coefficient may a priori be surprising as
it should be given by some 2-loop world-sheet theory integral
(with discrete sum over spatial momenta).

3The universality of this subleading coefficient in the slope
function is supported by the fact that while n;; is sensitive to the
curvature of subspace where string moves (i.e., it changes sign
between the AdSs and S° cases) the 2-loop correction (determin-
ing, in particular, n,;) depends on the square of the curvature.
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Note that in view of (1.29) and (1.31) the coefficients in
the Konishi multiplet energy (1.17) take the following
explicit form:

1 3
(@)= =1, (@)= = i 553- (1.32)
The universality of (a;);—, = 1, i.e., the validity of (1.23)
not only for the (S,J) folded [3] but also for the small
circular string cases was already verified in Refs. [1,4].
Assuming the universality of the value of n,; in (1.30),
we get from (1.31)
, 3
nyy, = — g - 2]’103. (133)
We shall explicitly confirm this relation (and thus the
_21; prediction) in Sec. II for the circular J; = J,
and S; = S, cases. In the case of the circular § = J' string
one has ng; = —1 and then (1.33) implies n{, = 3. The
direct computation of n/, in this case will be discussed in
Sec. IID and Appendix C. As it will be explained in
Sec. IT A, the result depends on a choice of a summation
prescription over the fluctuation frequencies. One particu-
lar summation procedure discussed in Appendix C leads to
— 1

nj, =g . While so far we were unable to identify a pre-

scription leading to the value nj, = g consistent with the
universality of (1.30), we believe it should exist. Further
support of the universality of n,; comes from the folded
(J7, J) string discussed in Appendix D where we show that
in this case ng; =§ and nj, = —3, in agreement with
(1.33).

The 1-loop result for the (S, J) folded string in Ref. [6]
[in Eq. (BS) there] and our present results for the circular
and (J', J) folded string cases all lead also to the following
universal expression for the coefficient 7i;, in (1.3):

ny =

Ml =1, +34+ 14—54“5, (1.34)
where 7i}, is a rational number depending on a particular
state. Remarkably, like in the case of n|; = —7i;; in (1.24),
the {3 term here is the same as in n;, in (1.29), up to the
sign. The coefficient 71|, contributes to a higher subleading
term a4 in the Konishi dimension (1.17).

The value of 7}, can be found from the coefficient of the
ﬁxﬂ\ﬂj term in (1.9), i.e.,

1 3
fipp — Ay — E(”m"n + figinyy) = iy — 5Ny,

8

where we used (1.21). For example, for the (S, J) folded
string the result of Ref. [6] gives (1.34) with i}, = — %.

The coefficient n;3 can be found also by starting with
solutions with J = 0, expanding in small N and compar-
ing to (1.4) and (1.7) (see Sec. II): n,3 is present in the N?
term in A in (1.7) which appears at one loop order in the
semiclassical expansion (as % = %\2). Our 1-loop re-

(1.35)

sults for the circular strings (N = 2J' = 28) imply that
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}’113 = l’lll3 + l’l/1/3§3 + ng, (136)
where n/; and n/; are rational numbers. The coefficient of
{5 is again universal. In the semiclassical expansion of the
energy at fixed J the coefficient n3 first appears in the

ﬁx %2 term in (1.9), i.e., in the combination

5 _ B 5 3
2(ny3 — fiyy) — ngynyg + 3y + By — figy + Z”%;)nn
+ (Bng; — nop)ity = 2nfy — 3)4;
+ 2n}y — 20}, — nj, — n%l + nyy, (1.37)

where we first used (1.21), (1.29), (1.30), and (1.28) and
then (1.34) and (1.36). Note that {5 terms cancel out in this
combination. The absence of {5 in the coefficient of
N3/ J term is seen in the expression for the 1-loop energy
for the AdS;5 folded string in Ref. [6]; we will also find that
the same is true for the folded string in S° and the three
circular string examples. As for the {3 term in (1.37)
appearing in the coefficient of N3/ in (1.9), the result
of Ref. [6] and our results described in Sec. II and
Appendix D imply that it depends on a particular solution.
Thus nf; is not universal (we shall list its values for differ-
ent solutions below). The results of Ref. [6] in the folded
(S, J string case lead to n; = —1, nj, =3, nf; =1,
ity = — 3%, and thus nf; = — 5%.

We expect the 3-loop slope coefficient 73, to be rational
for all states while the 2-loop coefficient n,, to contain
only {3 as its highest transcendentality part, i.e.,

Nyy = I’ll22 + n’2'2§3. (138)

Then the universality of the combination 8ng, + 4n3 +
2n,5, + n3; in (1.16) is consistent with the universality of
the {5 coefficient in (1.36). Thus the next-order coefficient
as in the first excited string level state energy (1.20) should
contain a 5 part.

Explicitly, as follows from the above discussion [cf.
(1.27) and (1.36)] the coefficients in the energy (1.17) for
the states on the first excited string level take the form:

1 1
=_J2+_, 1.39
aj 3 ) ( )
1 1 1 3
“2?5‘1“1’2‘1‘553
1 3 3
=———J+ -2, 1.40
128 16 2% (140)
1
asy = —apa + 2]104 + ni3 + 5}’122 + Zn3|
1 1
Z 1(2611 J2+ 1)+2n04+n'13 +§n/22+1n31
3 3 1 15
(1612+4+ 5 +§ 22)§3 — s, (1.41)
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The universality of a; implies that the coefficient of
{3 and thus nfy +1nf, should have state-independent
value. For the folded (S,J) string a;, a, in (1.39) and
(1.40) appeared in Refs. [3,6]. In this case the 3-loop
coefficient n3; can be inferred from the exact expression

(A2) for the “slope” Ay in Ref. [10], i.e., n3; = ' . Using
also that for folded string solution n04 = 2411 and the value
for ny53 in (1.36) given by nj3 = 16 + L Tt %{s (see

Ref. [6] and (D28)) we conclude that for this state we
should get

- 2 4 _ 2 11 L,
as 1024(1 +4)(J* —24J +48)+ + 5y
+l<§p+9+ );3 Sg (1.42)
2\8
To fix a; we thus need to know the 2-loop coefficient
Ny, in hy in (1.12). As the folded string is an elliptic
solution, the required direct 2-loop string computation
appears to be hard. It should be easier to find n,, for the
rational circular J; = J, solution. In that case n31 should
be again rational, while [see (2.22)] nj; = — &, n13 -3
so that the coefficient of {3 in as is 7(3 J? + ny,). The
universality of this coefficient could be checked by an
independent computation of n,, by another circular string,
e.g., S = S, one.

It would be interesting also to extend the numerical
TBA analysis in Ref. [9] to test the universal J depend-
ence of a; and extract the value of n,, for the folded string
state. The J =2, 3, 4 data in Ref. [9] suggests that
Nyy ~ —10.

Let us now list the values of few leading coef-
ficients ny,, iy, for various folded and circular spinning
strings adding question marks next to the values that were
not yet derived directly but are conjectured to be true on
the basis of the universality of (1.30) (see also table in
Appendix E). For the folded strings with one spin N in
AdSs or 3 and an S° orbital momentum J one finds:

(1) folded string in AdSs with (S, J), N = S [2,3,6,10]:

3 3 31
noi =1, ng 25, np3 = —g, Nog =a,
_ 1 N 3
”02:_5, np=-1, a;=1, nizzg,
15 1
n/1’3 =z, Ny = _Z, (143)

(i) folded string in S with (J/, J), N = J' [5,20]:

1 1 1
ng =1, nyp= 5, no3 =§: Nog = 64
5 1 - 5
nozziy np=1 na;=—1 "izz_gr
3 1
I’lll/S = _Z, Ny = _Z((’) (144)
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The value of ny, in (1.29) and (1.44) and 71,; will be
determined below in Appendix D following the
algebraic curve approach of Refs. [3,5,6]
For the circular strings with two equal spins in AdS;
or §3 and an §°> momentum J one finds:

(iii) circular string with (J; = J,,J) N =J, + J, =2/
[1,4] (see Sec. IIB):

ngy =1, np=0 ny=0 nu=0 Tigp=1,
. 3 3
ny =2, ii=-2 nl12:§’ n’1’3=—1,
1
ny = —1(?); (1.45)

(iv) circular string with (§; = S,,J), N=S,+ S, =
28 [1,4] (see Sec. IIC for 7ij; and nf,):

ny=1 np=2 np=-1, nyu=2
B 13
Aip=—1 n=-2 0a;=2 n12=§,
15
ny=— n=—70; (1.46)

(v) circular string with (S = J/, J), N = S + J' = 25"

3
Nog = Z’

1
ng=1 np=1 ny= 5,

ﬁ02=0, I’l“:O, l’l“:(),

5 3 1
ni, :g(?)’ nis —5 T _Z(?)' (1.47)

It is useful also to add the corresponding expressions
for the pulsating strings with N being the oscillation
number (see Ref. [19], and references therein)':

“Note that the values of all coefficients listed here are given by
the mean average of the values for the J;, =J, and §; = S,
circular strings: symbolically, n(SJ) = 3[n(JJ) + n(SS)]. An in-
tuitive explanation for this may be that since we are considering a
near-flat-space expansion certain leading coefficients should be
given just by sums of independent contributions of oscillators in
different dimensions. Then to leading order the AdSs and $°
directions should contribute similarly in the near-flat expansion,
modulo signs due to opposite sign of the curvature.

5To get the required 1-loop coefficients n;; it appears that one
is to take the fermions in Ref. [19] with antiperiodic boundary
conditions. The same applies to folded string cases discussed in
Refs. [18,19]; this removes In2 terms from n;; present in the
periodic-fermion results of Refs. [2,18,19]; it remains to see that
at the end one establishes the full agreement with the algebraic-
curve computation of Ref. [3].

PHYSICAL REVIEW D 86, 066006 (2012)

(vi) pulsating string in AdSs:

13
noi=1 nge =2 M=o
- 23
ny=—i;=-30), nj =§(?),
1
=——(7); 1.48
nyy 4( ) ( )
(vii) pulsating string in S
1 1
nogp =1, oy = Ty N3 = Ty
- 1
ny = —f = 3(?), ni, = _g(?),
1

As discussed in Ref. [19], for N = 2 the pulsating
strings should also represent states on the first
excited string level, i.e., in particular (for J = 2)
states from the Konishi multiplet. With the above
values of ny,, one indeed reproduces the coeffi-
cients in (1.32).

The rest of this paper is organized as follows. In the
Sec. II we first comment on the general strategy of comput-
ing one-loop correction to the energy of classical solitons
and then use it to evaluate the one-loop contributions to the
energy of the three “small” circular spinning strings. The
necessary characteristic polynomials are collected, in a
factorized form, in Appendix B. While the solutions with
two spins in AdSs or with two spins in S° yield coefficients
Ny, in line with the expectations and patterns outlined
above, the rational terms in the result for the circular string
solution with one spin in AdS5 and one spinin S are found to
be ambiguous, depending on a choice of prescription for the
summation of the characteristic frequencies. In Appendix C
we compute the one-loop correction to the energy of the same
small circular string solution using the algebraic curve ap-
proach and find a result consistent with a particular world-
sheet summation prescription. In Appendix A we discuss the
structure of the leading terms in the slope function /; [10] in
the semiclassical expansion. The one-loop correction to the
energy of folded string with spinin S° is found in Appendix D
and E contains table with values of the leading coefficients
discussed in this paper.

II. ONE-LOOP CORRECTION TO ENERGY
OF “SMALL” CIRCULAR STRINGS

Below we shall revisit the semiclassical computation of
1-loop correction to energy of “‘small” semiclassical cir-
cular strings discussed in Refs. [1,4] with the aim to extend
the expansion to next subleading order allowing one to
extract the value of the coefficient n;, in (1.3) and (1.6),
and thus n{, in (1.29). In the case of the J; = J, string this
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was already done in Ref. [1] but we will review this case as
well for completeness.

A. General comments on computation
of one-loop correction

We will be interested in computing 1-loop corrections to
the energy of rigid circular spinning strings in AdSs X S°.
While these solutions are among the simplest ones being
stationary and leading to fluctuation Lagrangian with con-
stant coefficients, this problem (addressed in the past, e.g., in
Refs. [1,21-25]) turns out to be subtle. Expanding the string
action near the solution and using a static gauge on fluctua-
tions one ends up with a quadratic fluctuation operator
A, = diag(Kp, Kr) for 8 + 8 coupled bosonic+fermionic
fluctuation modes. Equivalent result for A, (restricted to
“physical” subspace) is found in the conformal gauge where
2 massless bosonic modes decouple and their contribution is
cancelled against the conformal gauge ghost one. Since for
all solutions we will consider the target-space time is
proportional to the world-sheet one, t = k7, the 1-loop
correction to the target space energy can be found as

1

El = _E2D! (21)
K

where E,p, is 1-loop correction to energy of the world-sheet
theory on RXS'[r€(—%,1),T— o0, 0€(0,27)]
Since in our case A, has constant coefficients, E,p can be

found as 5 Indet A, = 5\ lnjztlé‘; . Even though IndetA, is

UV finite,'® the computation of its finite part on 2D cylinder
is potentially ambiguous—it may depend on how individual
fluctuation modes are defined and how their contributions
are combined together. One complication is that the space
of bosonic fluctuations is multidimensional. Also, the lack
of manifest Bose-Fermi 2D symmetry (like world-sheet
supersymmetry in the NSR case) implies an extra ambiguity
in choice of a consistent regularization. On general grounds,
the choice of a prescription for computation of this qua-
ntum correction should be governed by the requirement of
preservation of underlying symmetries of the theory (i.e.,
conserved charges, including “hidden” ones) which are
“spontaneously broken’” by a choice of a particular back-
ground we are expanding around. A practical implementa-
tion of this starting directly with the Green-Schwarz
AdSs X §° string action remains a nontrivial task.'’

To give an example of possible ambiguities, consider a
model where

16Gee Ref. [25,26] for discussions of the UV regularization of
such determinants.

Unfortunately, in more complicated 2-spin cases the
integrability-based algebraic curve approach does not appear
to help with the problem of ambiguities in the summation over
the fluctuation modes.

PHYSICAL REVIEW D 86, 066006 (2012)

E =1£c i fﬁln[(p + a,)?
2D 2r=1 rp1 - 2 0 r

— (py + k2 + m2) 2.2)
Here p, is an integer momentum in S' direction and the
sum rules 3" ¢, = 0, ¥, ¢,m? = 0 ensure that E,p, is
UV finite. The shifts a; and (integer) k, reflect particular
choice of definitions of fluctuation modes. If one splits the
sum over fluctuations into h separate 2D integrals and
formally ignores the UV cutoffs in them one may shift
the integration/summation variables so that to completely
eliminate the dependence on a,, k,. However, if one first
combines all the contributions into a single integrand the
finite result will depend on a,, k,.

To evaluate similar 1-loop expressions, one may
choose to diagonalize A, first to get its determinant over
“flavor” indices as a product over roots of the correspond-
ing characteristic polynomials, P r(py) ="“det”Kp =
[Tilpo— wﬁ-b’f )(p1)]. One particular prescription for evalu-
ating the resulting integral over p is to first Wick-rotate it
(which is equivalent to ie prescription py — po — i€)."®
Then performing the integral one gets a sum of absolute
values of the characteristic frequencies

1 16 00
Eop(mod) = 1 > > (1o ()l = 1o (p)D).  23)

i=1l pj=—»

Alternatively, one may also treat the world-sheet theory
expanded to quadratic order around the classical solution
as a collection of infinitely many coupled harmonic
oscillators (found by expanding the 2D fluctuation fields
in Fourier series in o) and evaluate the corresponding
vacuum energy using the one-dimensional Hamiltonian
(operator) quantization method. As was discussed in
Ref. [24,27], upon a diagonalization of the mixing, the
contribution of each normal mode to the energy will enter
in the sum with a sign s; = =1 determined by a minor of
the mixing matrix, i.e., in this case we get

1 16 00 )
Erps) = 1 > Y [sﬁ,",?lwﬁ")(pl) - Sgyblzlwgf)(pl)]‘ (2.4)

i=1 py=—0

While this expression is equivalent to (2.3) in some stan-
dard simple cases, this need not be true in general.'® The
computation in one-dimensional Hamiltonian quantization
setting may be sensitive to low values of p; when sign of
w; may fluctuate with p; and different treatments may
correspond to different choices of oscillator vacuum for

"1t is not clear a priori why the standard ie prescription should
be preferred given that 2D Lorentz invariance is broken by the
background.

The expression in (2.4) may be thought of also as a result of a
generalized ie prescription: py — po — i5;€, with s;0; = §;|w;],
2 —

§:=1.
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low (zero) modes. At the same time, the signs of suffi-
ciently high mode number terms (i.e., with |p,| >n =
finite number) cannot be sensitive to them. Indeed, since
the mixing of modes is subleading (at most linear) in p;
compared to the free kinetic term, the mixing can be
ignored for large p,; in particular,

Ipi| > n: s, wi(p1) = lw(p)l. (2.5)
Since the transcendental ({3, {5, etc.) terms that may
appear in the expression for the 2D energy can originate
solely from a summation over infinite range of p; (the sum
over any finite set of modes can only produce a rational
number), it follows that the transcendental parts of the 2D
energy should be controlled by the |p;| > 1 limit and thus
should “not” depend on a sign prescription. Moreover,
fluctuations with high mode numbers have large 2D energy
and thus probe only short world-sheet distances.”’ Their
contribution is thus less sensitive to details of the classical
solution which is chosen as an expansion point for the the
world-sheet action (they will, however, be sensitive to the
“topological” features of the solution, such as winding
number). We may then expect that at least some of the
coefficients of the transcendental terms in E; should be
universal within a given Regge trajectory (parametrized by
values of spins with fixed values of windings). This ex-
plains, in particular, the universality of the {3 term in (1.29)
and of the {5 terms in (1.34) and (1.36).

The choice of signs s; may itself be sensitive to the
definition of the fluctuation modes (related to shifts in
fluctuation frequencies or choice of oscillator vacua that
may also be different in different gauge choices). In gen-
eral, one expects that the whole summation prescription
should be determined by the requirement that the target
space symmetry algebra is correctly realized on quantum
string states. There are more practical physical conditions
that are easier to verify, e.g., the vanishing of the one-loop
correction to the energy in the limit in which all charges go
to zero. The one-loop correction should also vanish in the
limit in which the classical solution becomes supersym-
metric (in cases where such limit exists),?' e.g., one may
require consistency with the BMN limit.

Another requirement one may impose is an analyticity in
the smallest charge. Indeed, in the presence of a large
charge one may expect that turning on another charge

20Classical scale invariance is broken by the background so this
notion makes sense; “‘short distance” is measured with respect
to the characteristic scale of the background which is set by the
parameters of the solution.

2ISuch a requirement may seem inconsistent with the fact that
the exact target space energy should contain a charge-
independent term which describes the position of the corre-
sponding state in a supersymmetry multiplet. However, from
the perspective of a quantum string state, this constant term is
governed by the fermionic zero mode content and should not be
accessible semiclassically.
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should be smooth; that is, the derivative of the energy
with respect to the smallest charge evaluated at zero should
not be singular. This translates into the absence in E,p of
fractional powers of small charges, Q¢ with @ < 1. Such a
requirement of the absence of ‘“‘nonanalytic” terms (see
Ref. [1]) turns out to be consistent with the structure of the
energy (1.3) and (1.4) expected to follow from the margin-
ality condition for the corresponding vertex operator.

Circular string with spins J; = J,
and orbital momentum J

We shall start with the “small” circular string in $°
described by the following classical solution [1,4,21,23]
(l = KT, Xka = 1)

X, +iX, = ae'mmo),

Xs + iXg = V1 — 2a%e™"

X5 + iX, = ae'"Tmo),

Am2 g’
E =k =12+ 4m?a? =1 + ———,
0 m? + v?
w? =m? + 12, J =7 =J7J,=a*w,
J
J=TJ;=0-2a%y, v =71 — 7 (2.6)
N

In the limit @ — O this becomes a short string with small
spin J'. m is a winding number which is to be set to 1 to
get a state on the leading Regge trajectory. For v = 0
the classical energy has the same expression as in flat-

space, £y = 2+/mJ’. Expanding the classical string energy
Ey = /A&, for J' = JTIA <1,J= ﬁ < 1 and assuming
J?> < J we getform =1

1 J? 1 J?
Eg=2\VA/|1+ = ——— - +... |
0 VA [ JA8J (\/X)Z(IZSJ’Q 4> ]

2.7)

More generally, if we expand in small 7' for fixed
p? = J*/(4mJ"), we find

. ~., 1 2y

P
Lo L @pPtpt =207 ]
(mJ/X)? 2(1 + p?)? I
J2
2
P @8

Expanding this further in the limit p — 0 we get back to
(2.7) for m = 1. An alternative expansion corresponding to
J' <« 1 with fixed J (i.e., p > 1) gives [cf. (1.10), (1.22),
and (1.26)]
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2 2m* A(m2 A + 2J7?)
Ey=J+-Nm*A+ %) — J? +
0 v " Bm2A + 1)

(2.9)

It is useful to perform the one-loop calculation in terms of
the two independent semiclassical parameters a and v. We
will first expand in small a at fixed » and then expand in ».
An important feature of this expansion is that all 1-loop
integrals are then regularized in the IR by a nonzero value
of v or J and therefore a” and thus the spin 7' will appear
in the 1-loop world-sheet energy only in integer powers,
E)p = Y fra**. A further expansion in small J can then
be carried out in the resulting coefficients.”* Then

1
E, =—Eyp
K

= %[fo(Vy m) + f1(v, m)a* + fo(v, m)a* + ...]

= eo(T,m) + &, (T, m)T" + ex( T, m)T" + ...
(2.10)

Note that as the expansion of « or the classical energy (2.9)
contains inverse powers of 7, terms of higher-order in
J~lin f; contribute to terms of lower order in the corre-
sponding expansion of ¢;. Note also that in view of (2.1) we
have

E2=E2+2VAEyp + ...
= E5 + 2N fo(v, m) + £(v, m)a?

+ folv,ma* + ...]+ ... (2.11)

To compute the 1-loop energy E, we need the quadratic
fluctuation operators Kp  or the corresponding bosonic
and fermionic characteristic polynomials. They can be
extracted from Ref. [22] and are listed in Appendix B.
As discussed in the previous subsection, we need also to

. I detK B . .
choose an appropriate definition of Ing; % O a quantization

scheme in the Hamiltonian approach. Since in the present
case the characteristic polynomials depend on p, only
through p3, for each mode number p; we have a positive
and a negative root which are equal in absolute value. In the
Hamiltonian approach it is then natural to define the vac-
uum energy as a graded sum of the positive roots [cf. (2.4)].
Such a prescription gives the same result as the path

22Note that for fixed J the small J' expansions of a and «
[over which we are to divide E,p to get E; in (2.1)] are
given by

j/l/Z jIS/ZJZ
a= (72 + m)l/4 - (72 + m2)/s

2INT+m? 2T"m* T + m?)
J THT* + m?)

+ O(g"?),

k=J+ + O(J").
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integral approach with the “‘standard” ie prescription lead-
ing to (2.3). We then find that the one-loop correction to the
energy vanishes in the limit J' — 0. This is a required
feature since for J/ = 0 (a = 0) and J' = 0 the solution
(2.6)) reduces to a BMN geodesic.23

Let us summarize the results for the 1-loop coefficients
(2.10) in the J' < J < 1 expansion. Expanding E,p, first
in a at fixed v and then expanding the result in small v we
find for the coefficients f; in (2.10) (for m = 1):

Fom ) =0,  fim1)=2— 2+ 21/4 L O0"),
folv,1) = — % — 64 + O(v?). (2.12)
Then ¢¢(7, 1) = 0 and
2
4 2/(5
er)(J, 1) = _? + ?(g_ 3(3) + O().

Comparing this with the general expression for the energy
(1.9) (here N =27J') we conclude that the resulting
values of nyy, nyy, nj,, fi;; are as given in (1.29) and
(1.45). The values of ny; and n;, were already found in
Ref. [1].

We can also find the exact dependence of f; and ¢; on J:

e (J,1)= (2.14)

2 2
(v, 1) = ———, —_—
fi J+2 J1+7T?%)
Then the coefficient of 7' in the energy, i.e., the semiclassical

expansion for the corresponding circular string analog of the
“slope” [10] function is [see (1.10) and (1.14)]

h =21+ 77+ 4

1+j2 ey l’l11=2.

(2.15)
Together with a similar expression found in the (S, J) folded
string case [6,10] this provides an evidence of the universality
of the general expression in (1.25).

Note that when formally expanded in large .7, the
function £, in (2.15) takes the following form: 7, = 2J +
%(1 + % +...) + ... Here the % term is different by a factor
of 2 from the result for the leading 1-loop finite size
correction found in Ref. [28]. This disagreement should
not, however, be surprising as the two expansions are
derived in different limits (see also Appendix A). In
the present case, relevant for ‘“‘short” strings, we as-
sumed that 7' < 1 and J is fixed. In contrast, the finite size

ZLet us note that to carry out the calculation in a path integral
approach in the case of J = 0 one should write the p, integral

as [ dpoIngogt = — [ dpopo 7= IngGx. This integration by

parts step here is legal as lng::ﬁ‘; vanishes fast enough at infinity.

The resulting rational function may then be expanded in 7' and
integrated without a difficulty.
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correction calculation of Ref. [28] assumed the standard ““fast string” limit of 7' > 1, J > 1 with Z belng fixed and then
taken to be small.**

Let us now present the results for the 1-loop coefficients f;(», m) in (2.10) in the case of higher winding numbers m = 1
(i.e., for states on subleading Regge trajectories):*>

fo fi /2
m=1 0 2 — 2+ 00 —% 6 X 1* X &5 + O(v?)
m = 0 20— H,,2 + O(v*) —9 6 X2* X &5+ O(v?) (2.16)
m= 0 602712+ 00") —3T-6X3*XG+ 002
m=4 0 3642+ 00 2693939 6 X 4* X &+ 0(v?)

Simple inspection shows that the coefficient of 3 in f, grows like m*. This dependence is changed, however, after we
express the parameters of the solution in terms of the spins, using, in particular, the relation a> = m~!'J’' + O(J?). The
coefficients e (7, m) in (2.10) are then found to be:

€q e ()
m=1 0 Z-27+0(J) —%+§(§—3x12x;3)+(9(3)
m=2 0 Y-U7+or)  -#+3(W-3x2xs)r o) 017
m=3 0 -8B 7+ 0T —@+§(%—3x32><§3)+(9(j)
m=4 0 33-FIT+OT) —% +%<21%)0386(;_ 3 X 42 X 53) +0(J)

As in the folded string case [6], the coefficient of /5 in e, grows like m?, supporting the above argument for the universality
of the transcendental terms.*®
It is possible to find higher-orders in the small N = 2.7’ expansion of the one-loop correction (2.10) to the energy:

(1 3y 1 5 1 (69 3 15
E1—<? J+ T+ )N"'I: j3+<16 253) (32 253 fs)J

(655,25, 15, 35, o [ (B a) L (-20) L

(128+16g3+ 8§5+16§7)j +‘“:|N +|:2j5+(16+2§3)j3+ 32 8§3 J

175 33 25 35
e O St + N+ 2.18
(55 5o gbtea)T ] @.18)
We notice that through O(N?) order all the transcendental terms are the same as in the case of the folded string in AdSs
[6]; we will find them also to be the same for other two circular string solutions and the folded string in $°. Comparing to
the general expansion in (1.9) where the corresponding coefficient is in (1.37) we find then the values of 7i;,, ny3 quoted in
(1.34), (1.36) with i}, = =3 nfy = =3 andnjy = — 3.

**Let us recall the distinction between the “small” and “large” circular 2-spin solutions [21,22]. The distinction is sharp at J =
J3 = 0: (i) the solution is “small” if 7, = J, = J' is such that 7' < % (here J = 0 since v = 0; this solution is stable); (ii) the
solution is ‘“‘large” if J' > ;—(here J =0 since 4% = %; this solution is unstable). For nonzero J the “small” solution may be
defined by requiring that 72 < J'; then its classical energy still starts with VAT and thus scales as A4 for fixed J'. The “large”
solution is the one with 7 ~ J’ and J > 1 so that £, = J + 27" + %e(’%) + ... Itis stable if J' < %j. While the ‘“small’ and
“large” cases are smoothly connected for the folded spinning string, that does not apply to the circular 2-spin case as the two
expansions have different origins (¢ — 0 and a — - )

*The Green-Schwarz fermions here are taken to be periodic for any m (see Ref. [29]).

2An interesting open question is how the quantum string states corresponding to folded and circular spmmng strings with m > 1 fit
into supermultiplets at higher excited string levels. Note, however, that the pattern of the -1 7 terms in e, in (2.17) appears to be different
from the one in Ref. [6].

066006-12



“SHORT”” SPINNING STRINGS AND STRUCTURE OF ...

Let us now present the result for the 1-loop correction to

. .. / 2 _ JZ
the energy in the limit of small 7’ and fixed p 7

At fixed p and J' < 1 the relation between the parameters
of the solution and the charges is

J 4T’ - 1)
m2

1/=2me[7’|:1+27
j/2
Kk =24m \[1+p|:1+ w1+ 27

J"2p*(4 + p* = 2p*)
2?1+ g2 + O(jB)]’

a2 :‘7_/2[1 _2J’p2 N j/2(6p4 — sz)
m m m?

+ @(.7’3)],

+ (9(j’3):|.
(2.19)

We may use these expressions and f; in (2.10) given in
(2.16) to find the fixed-p expansion of E;. Indeed, since
a® « J'? contains only positive powers of 7' while « and
v do not contain inverse powers of 7', higher-orders in the
small a and small v expansion cannot affect lower orders.
For m = 1 we then find

/ 3+ 43p% + 32p*
E1=£2|:1+(— A"+ SCp —353)j'
Ny 81+ p)
+ @(j’2)]. (2.20)

Taking the limit p — 0 we may read off the value of the
coefficient n, in (1.4) and (1.6) (here ng, = 0)

3
n2 = Tg T 34, 2.21)

which is in agreement with (1.29) and (1.45).

It is possible also to determine the transcendental part of
the next terms in the small J’ expansion of the one-loop
energy directly at J = 0, extending the p = 0 limit of the
expression in (2.20) and showing that this limit can be
safely taken in that equation:

3
(ED g -g-.5-0 =T 1+ (-5~ 36:)7
e =226+ 26)0

+ O(j’3)]. (2.22)

Comparing to (1.7) (where the transcendental part of the
N? term is contained in n,5 — %nogn 12) we find the value of
ny3 to be in agreement with (1.36) again with nf; = —
and ny = — 3 (here np, = 0).
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C. Circular string with spins S; = S, and
orbital momentum J

Let us now consider the small string with 2 equal spins in
AdSs orbiting big circle in §° [1,4,21,23] (Y3 + Y2 —
Y,Y,=1):

YO + lY5 = Vl + 2]‘26“(7,

Y| + iY, = reltvrimo),

Y+ iYy = remmo) X, +iX, = e,
w? = k2 + m?, K2 =4m?*r? + 12,
2kS
E=0+2)Kk =K+ —es,
‘ Vm? + K?
S§=8 =38, =rw, J = (2.23)

Short string limit corresponds to » — 0 when the solution
approaches its flat-space limit (for » = 0). The parameter
k determined from the conformal gauge condition may be
written as
4m?
K= eS8+ J~

— (2.24)
m K

Below we shall consider the case of m = 1. For small S
and small 7 we get the following ‘“‘short” string expansion
of the classical energy (Ey = \/XEO):

jQ
50=2\/_<1+3+—S+ ) (2.25)
In the limit of small S with fixed J we get
82
=J+= \/1 +J —_— 3).
(2.26)

At small S with fixed p? we find instead

11 11
50=\/§[<——3+—+2p)—(—3———2p)8
p P 207 p

+ (% _o 4p — 2p3)82 + @(83)].
P> p

(2.27)

As in the previous J; = J, case it is convenient to carry out
the 1-loop calculation in terms of » and r and then evaluate
the result in the two limits: (i) small S with fixed J or
(ii) small S with fixed p. As in (2.10) the 1-loop correction
to the energy may be written as

1
E, =—Eyp
K

1
= ;[fo(Vy m) + f1(v, m)r? + fo(v, m)r* +...]

= eo(J, m) + e,(T, m)S + es(T, m)S* +
(2.28)
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Using the expressions for the characteristic polynomials in
Appendix B?” and the “standard” choice of summation
prescription (2.3) in which we keep unspecified the signs of
the terms that vanish in the 2 ~ S — 0 limit, we found
that expanding first in 7 and then in » the expansion of the
world-sheet energy E,p in (2.28) contains the following
terms:

E>p = Espiow T Eophighs

_[_a_7, 235 2 4]
Esplow [ > 375167 + O(v*)
q 1565 2 ] 6
+ I:_V3 157 + O(?) [r* + O(r°), (2.29)

1 19
Esphigh = [— — oVt @(V4)]

3 216
" [%629 ~ 66+ 06N |+ 009, 230)

We split the result into the contribution of few ‘“low”
modes (p; = 0, =1, £2) and the rest of “higher”” modes.
The coefficient ¢ of the singular in ¥ — O contributions
depends on the signs s, of low fermionic frequencies
which vanish at »r =0 for pr==l,ie,q=2+s +
s_1. There is thus a choice of a sign prescription that
ensures the absence of unwelcome singular terms in v.
The natural value for this coefficient is ¢ = 0 as the
complete two-dimensional energy of the solution, whose
1-loop part is E,p above, is the right-hand side of Eq. (1.2)
and is therefore expected to contain only even powers of
J = v. Setting thus g = 0, the resulting values of the
coefficients f; in (2.28) are

folv, 1) =0, filv, 1) = =2+ v* + O(v*),

13 (2.31)
fo(v, 1) = T 643 + O(v?).
Using that v = 7 and
5 S 28?2
re= - 55t
1+72 (1+J7) 2.32)
2 2(1+37%) '
k=J+ —— V) s
TN+ Ta+7J9)
it follows that ¢, in (2.28) are given by
w=0. =242 +0)
4 2 (5

27They can be obtained from those in the J; = J, case as the
two solutions are related by an analytic continuation effectively
interchanging the AdSs and S° parts, a> — —r2, kK — v, etc.
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Comparing to (1.9) (here N' = 28) we find, in agreement
with (1.29) and (1.46), that in the present case ny = 1,

nyp =2, nyp = =2, i = 2, and
13
ny = ? - 353 (234)

The value of n;; was previously found in Ref. [1]. The
value nj, =¥ is the expected one, i.e., is in agreement
with (1.33), 1mply1ng the universality of the value of the
energy for the corresponding (Konishi-multiplet) state with
J = § = 2 on the lowest massive string level.

Asin (2.18) we may determine the transcendental part of
the higher-order terms in the small S expansion of the
energy (N = 25)*:

El:(_%+‘7_j3 )N+[;3 (156 253)
(el

a7 (f3 076457

(5

363 43 35
— 505 — —g>j+ ] 34

(2.35)

Comparing to (1.9) and (1.37) the O(JN?) term here
gives the value of /i, in (1.34) with i}, = — 1% Together
with the absence of /5 at O(N?3/ J ) this determines 7,3 as
quoted in Eq. (1.36) with n{; = — 3% and nf; = 2.

Next, let us mention the case of Small S expanswn for
fixed p? = ‘47—;. Since the expressions in (2.32) contain the

exact J dependence, we may get the corresponding E;
from E,p in (2.28) and (2.31) [cf. (2.20)]

S
V1 + p?

E = [—1 + (281 +ap? - 3@)5 + (9(52)]

(2.36)

Taking the limit p — 0 we may read off again the value of
the coefficient 1, in (1.4), (1.6), and (2.34).%°

Summing up the small » expansion of the function
f1(v, 1) in (2.31) we may find the exact form of ¢;(7, 1) in
(2.33):

2 2
fite D G (e
(2.37)

81t is interesting to mention that, in a small » expansion of the
coefficient f,(, 1) in E,p, at O(2°) there is only {5 term and at
O(v?) there is only {5 for both J; = J, and §; = S, cases. This
implies that {3 in 71|, has the same origin as {3 in n,: the only
difference in its coefficient comes from the expansion of “—4 Vs. —4

Note that in (2. 36) we have the following comblnatlon nh, —
41111’102 = + 1=%
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These expressions are just negative of the corresponding
functions in the J; = J, case in (2.14), in agreement with
the general expression (1.25) and the opposite signs of the
ny, coefficients in (1.45) and (1.46).

One may also perform the computation of E; by setting
J =0 directly from the start.*® While similarly to the
J1 = J, string case the characteristic polynomials here
depend only on p} and thus for each mode number there
are two roots equal in absolute value and opposite in sign, a
sign prescription similar to that of the J; = J, case in
which the one-loop energy is given by the graded sum of
the positive roots of the characteristic polynomial (2.3)
leads to an unwanted feature: a nonzero value for E,p in
the S — 0 limit (see also Eq. (3.35) in Ref. [1]). As dis-
cussed in Appendix A of Ref. [1], this constant term may
be removed by a specific reorganization of modes together
with a change of integration variables, leading to a cancel-
lation of the problematic term at the level of the p
integrand (so that a specific ie prescription was not neces-
sary). The same result may be obtained by adjusting the
sign of just one root of each of the two fermionic character-
istic polynomials F; and F, which for p; = %=1 scale as
VS in the limit S — 0: their signs should be such that their
contribution adds up to zero.>! Then the “low” modes with
p; = 0, £1, =2 contribute to the sum over the roots of the
characteristic polynomial as

1
E, = P (Expiow + E2phigh);

7> 1565r*
E =——- + O(r° 2.
2Dlow 3 432 (9(7‘ ): ( 38)
or 4
E i - [ 2
— 2
4—17py + 1371’1 4301’1 44 (O(rf’)]
pi@ = pH(1 — p})
(2.39)
USing that EZDhigh = %rz + % - 1253)}’4 + @(i"6) we
find
21 ,
E = @[—1 + (§ - 353)5 +Os )], (2.40)

which is the same as the p = 0 limit of (2.36).

It is possible also to find the analog of (2.22), i.e., to
determine the transcendental part of the next terms in the
expansion of the one-loop energy of the §; = S, string at
J = 0, extending (2.40) to next order:

3OFor J = v = 0 one has k = 2r = 2+/S — 283%/2 4 985/2 +
0O(S77?), etc.

*Interestingly, the only effect of this choice is to remove the
problematic term and thus to restore the expected S — 0 limit
(all related higher integer powers of S are simultaneously
removed).
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21
(E1)s,=8,=8,7-0 = \/g[ -1+ (@ - 353)3
59 21
+ 2<—§+ &+ — {S)SZ + (0(83)]
(2.41)
Comparing to (1.7) we conclude that the highest transcen-

dental coefficient {5 at the next order is again universal,

leading to the expression for n;; in (1.36) again with

/ // — 15
niy=—2and nfy; = L.

D. Circular string with spins S = J'
and orbital momentum J

The “mixed” AdSs X $° circular solution is described
by (we set the two windings equal to 1)
Yo+ i¥s = V1 + r2e®7, Y|+ i¥, = reltmto),
w? =Kk + 1, X, + iX, = ae'™'7"9),
,/1 _ azeiur

X; + iXy = w?2=12+1 (242

K2 —12=2r+2a% r*w=daw,
Eo=k(1+7?), S=rPrw=adw'=7, T=10-a*v.
(2.43)

Note that this solution is “‘self-dual”” under the analytic
continuation interchanging AdSs and S parts: k < v, r <
ia,w — —w'. The parameters x and » may be expressed in
terms of the spins by solving the equations

25 28
i+ V1+2

Ty=v——2S
V1 + 22

The classical energy has the following expansions:

2 2
+ N1+ TS — 8+ 0(S),

J J

(2.45)
1+2p?
2\/1 + 1+—S§
g J—[ 201+ p?)

_5+8p2+12p*+8p°
8(1+ p?)?

2= 2=

(2.44)

(50)s<<1,j:ﬁxed =J

(50)S<<1,p2=‘47—§=f

St (9(53)],

(2.46)

2
(E0) st = 2\/_(1 +ler Iy ) (2.47)

8S
As in the previous cases we shall carry out the 1-loop
computation in terms of the parameters v and r and then
evaluate the result in the small S limit with fixed 7 or fixed
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‘475 , 1.e., we will define f} and ¢, as in (2.28). We will

need the following small S expansions of the parameters:

2+6J*+3J ,
k=J+ S T+ 27 S +...,
_ 2+ T 2 32

(] + j2)l/4 2(1 + j2)7/4

2

Jgs ., Js§
Jirr a7y
The corresponding characteristic polynomials are given in
Appendix B. The summation prescription in (2.4) may be
fixed as follows. All frequencies which are nonzero in the
BMN limit (r — 0) are summed with uniform signs such
that at p; >> 1 they contribute positively to the energy (this
guarantees the vanishing of 1-loop correction to the BMN
vacuum state). The signs of some remaining frequencies
are fixed by requiring the absence of ’—Vz terms in the
frequency sum. Few other signs are fixed by requiring
that all O(r?) terms vanish (such terms are expected to
cancel due to opposite curvatures of AdSs and S3). Then as
in (2.29), (2.30), and (2.38) we may split the contribution of
modes with p; = —2,...,2 from that of the higher ones

. _[1(_961_9 >+1<141337+21)2
wiow = | 5{ 772 7 8") T2\ 10368 " 16")"

+ @(V4)]r4 + 0(5),

v=J+ (2.48)

(2.49)

< [4p* +11p? -3
Exomian = [% T (9(#)];»4 + 0
1033
_ [ S _ 6+ (9(,,2)}4 + 005, (250)
144
Here the parameter u represents the still unfixed sum
of 4 bosonic p; = *2 frequency signs; it can take values
u=—4,-2,0,2,4 Then f; in the analog of (2.28) are
folw, 1) =0, fily, 1) =0,
1 9
falo 1) =5~ % — 645+ O(?). @2.51)

Expanding E| first in small S at fixed 7 and then in small
J we get

E= = [ TR v o] o), es)

8 —9u
32

This gives nf, = (&, 12,1 for u = (—4,-2,0). The

816
choice of nj, = i ¢ appears to be preferred in the algebraic

curve approach that we discuss in Appendix C. None

of these choices leads to n’12 :% consistent with the

np = nh, = 34, n, = (2.53)
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universality of (1.30) observed for four other (two folded
and two circular) examples of the solutions. This suggests
that a consistent summation prescription in this S = J’
case is yet to be identified.

Expanding in S for fixed p when

v =2pS'2 +2pS¥? + O(S/?),

(2.54)
=241 + p2S'/2 S” + 0(8?)
) e |
we get [cf. (2.20) and (2.36)]
S
E, = VS [(n}, = 35)S + O(S?)], (2.55)

J1+p?

where n/, is the same as in (2.53).

Similarly to the J; = J, and §; = S, cases in (2.18) and
(2.35), the transcendental parts of the higher terms in the
small S expansion of E| here are found to be (N = 28)

El:[(m —§3> (1 %§3+§§5)J+...]N2

q I ¢
o[ 36)7+5
3, 15, 35 ;
+<qs 553 16{5 16§7>j+...]3v +...,
(2.56)

where ¢, are rational numbers. The coefficient of 7 N2
term again leads to the same universal value of 7ij, in
(1.34) with i}, = 2g;. At O(N?) we should find that
g2 =3n;; = 0 and that g5 = — 1n/,. The absence of {s
in N3 /7 term confirms again the universality of {5 in n,3
in (1.36), the absence of {3 implies that niy =3 and the
rational term fixes n{y = 2(q; + q4) + 3n},.

It is also possible to determine unambiguously the
transcendental part of E; in the small S expansion at
J =0 [cf. (2.22) and (2.41)]

(EN)s—srg—0= Jﬁ[maz ~34)S

9 15
+ 2<k3 +Z§3 +Z§5)82 + :I (2.57)
where k; is a rational number. This again leads to ny3
in Eq. (1.36) with nfy =k; +1nf, and nfy; =3 (here
ngy = 1). Consistency of the two values for nj, requ1res
then that k3 = 2(‘]1 + Q4) + nlz

ACKNOWLEDGMENTS

We would like to thank B. Basso, N. Gromov, and A.
Tirziu for useful discussions. R.R. and A. A. T. would like
to thank Nordita for hospitality during part of this work
while participating in the program on Exact Results in
Gauge-String Dualities. S.G. is supported by Perimeter

066006-16



“SHORT”” SPINNING STRINGS AND STRUCTURE OF ...

Institute for Theoretical Physics. Research at Perimeter
Institute is supported by the Government of Canada
through Industry Canada and by the Province of Ontario
through the Ministry of Research “and” Innovation. The
work of R.R. was supported by the U.S. Department of
Energy under Contract No. DE-FG02-201390ER40577
(OJI). The work of A.A.T. was supported by the ERC
Advanced Grant No. 290456

APPENDIX A: COMMENTS ON SMALL AND
LARGE J EXPANSIONS OF F£,(A, J) IN EQ. (1.10)

Let us comment on the exact expression for the slope
function /,(A, J) in (1.10) proposed in Ref. [10] in the case
of the folded spinning string state in the s/(2) sector and its
possible generalizations for other string states. One moti-
vation to try understand the structure of £, better is that it
determines, in particular, the value of the 2-loop coefficient
nyp in (1.11) that is still to be derived by a direct world-
sheet computation.

It was suggested in Ref. [10] that the exact form of
function in the energy (dimension) (1.10) of the s/(2)
sector ground state corresponding in the semiclassical limit
to the (S, J) folded string in AdSs is given by

d
h, = NXm InZ,(/2) (A1)
W+ 7% - i 7
= 2V1
R e i (e
1 _ QJZ + j4
“Wvar (A2
AGA— )
_ 2 _ 4
—2WA+J : +J2 TENOLE
132 _ 572 4
AN =AY A3

+ ...,
A+ TH*
where [; is the modified Bessel function and 7 = 7& The

second line corresponds to the string semiclassical expan-
sion: A > 1 for fixed J; the first term in it is the classical
string contribution, the second is 1-loop term, the third is
2-loop one, etc. The third line is found by rewriting the
semiclassical result back in terms of J.

Starting with E = 4/J? + hy(A, J)N + ... in (1.10) and
expanding it in semiclassical regime with fixed 7 and
small N we get

N
E=J+5mA )+
—J+—|:2\/)\+12

The 1-loop term —

/\+J2 ]+ (A4)

ﬁ T j2 was found directly in the
semiclassical limit in Ref. [6]. As was mentioned in
Sec. I, this term is universal, i.e. found also for other
semiclassical states [see (1.25)]. This expression can be
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expanded in several different limits and interpolates be-
tween some previously known results. If we assume that
J > 1,ie., J>> A, then we get from (A2)

1 1

A
h=2J+—-(1—=+—=+...)+..., A5
: J< J ) ) (A3)

implying that the expansion of E in the large J, small %
limit is

E=sN+on(1-5 )+ o((5))
2J? J J) )
(A6)

This matches the known tree level plus 1-loop result in

string semiclassical expansion.®? Notice that in (1 — % +
& +...) in (A5) the string 1-loop term — } came from the
— 2 term in (A2) while the string 2-loop term + -; came

from the — ()‘/\(i Jz);/z term in (A2).

These two leading terms are, in fact, protected, i.e. are
the same as on the 1-loop gauge theory (spin chain) side
where the } term is the leading finite size correction [31].
The structure (1 — %) of the leading correction appears to
be universal: it is found also for the circular (S, J) string
[24,31].>This is consistent with the relations (1.24) and
(1.25). The linear in % term comes only from the zero-mode
contribution on the string side or only from the non-
anomalous finite- size correction on the 1-loop gauge
theory side. The next 5 correction (1-loop on gauge theory
side and 2-loop on the semiclassical string theory side)
which should again be protected was computed on the spin
chain side in Ref. [32] (to all orders in %).34

If instead we consider the opposite limit of J < 1, i.e.
J? < A, then we get from (1.6) [10]

\/_ le_JZ i J2
hy=2/A—1-4+
! A )
@ 13J2+ J4+ (A7)
W
implying the values ny; = —1, ii;; = 1 and ny; = _% in

(1.11) and (1.43). This value for the 1-loop coefficient n;
in the small S semiclassical expansion (matching the one

**For folded string the 1 term was found in Appendix D of
Ref. [30].

3To see that there is no linear in S/J = N/J term in the
“anomalous” part of the 1l-loop correction E,om = # X
(Zle[n\/m —n* —2M?*] where M*>=3(1+3) one
needs to differentiate this over M? (the first derivative vanishes).

“"As we have checked explicitly from the results in the
Appendix of Ref. [32], the same subleading 1/J? finite-size
term as in (A6) appears also for the circular (S, J) string state
in the s1(2) sector (here J is the momentum along the circle in §°
which the string is wound on). This suggests the universality of
the terms given explicitly in (A6) in the sI(2) sector.
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directly computed using the algebraic curve approach in
Ref. [3]) has the same origin in (A2) as the % string term in
(A6): both come from two different limits of the the 1-loop
semiclassical term — 1%\72 there. This confirms that this

term should not be sensitive to wrapping (Luscher) correc-
tions, being at the same time the origin of a finite-size (and
even nonanomalous) term at large J. This also suggests
that, like the coefficient of the — %term, ny; may be coming
only from the zero-mode contributions in the near folded-
string expansion. This supports the claim [10] that (A, J)
has its origin just in the asymptotic Bethe ansatz and is not
even sensitive to the string phase.

One may expect to find similar expressions for the
corresponding (J’, J) folded string state in the su(2) sector.
Indeed, the folded string in S’ is related to its AdS;
counterpart by an analytic continuation [33], implying
(up to signs) (E S;J)— (E;J,J), E=—J, S=J,
J = —E. In this case N = J' so we may expect to get
similar relations as above up to some sign changes, i.e.,*

E2 =7+ (A DI +
hy =21+ J2 +

1
T 7 + (A8)
Changing the of sign of the subleading term in (AS8)
compared to (A2) has two implications: the signs of ny,
of 71;; and of the leadmg term also change. Now n;; =
1 = —ii; as in (1.44) in agreement with Refs. [1,5] (see
also Appendix D).* For large J we get

A 1,1
E=J+J+50(1+5+
27 J

7 +)+ (A9)

where the (1 + %) term is in agreement with the result for
the finite size corrections from the spin chain and the
string sides (cf. Egs. (7.33, 7.34) in Ref. [30]). As in the
s1(2) sector case in (A2) and (A5), the subleading term le

in (A9) should originate from the next (string 2-loop)
term in h; in (AS8). The coefficient of this j—l, term should

be universal in the su(2) sector, i.e., the same also as for
the circular string. Indeed, for the circular string in the
su(2) sector we get (A9) with the same terms in the
bracket (1 + § + 1—12 + ...), as one can see from Ref. [34]
(these terms come from nonanomalous finite size contri-
bution only). Such a correction in the near-BMN expan-
sion was found also in Ref. [30]. It came out the same

3>Note that this analytic continuation is not useful if J is fixed,
while E ~ A4 > 1 so there is no way of interchanging E and J.
It still works at large J and thus large £ and explains why the
sign of first finite size correction changes: E=J+4X
(1 —J7'+J7?) translates into J =E— 21+ E' +E?)
and then using that E = J + ... we get the requlred result.
3The change of sign of the leadmg 1-loop string correction can

be attributed to the change in sign of the curvature between AdSs
and S5 [1].
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from the Bethe ansatz and the Landau-Lifshitz approach,
so it should be a protected one.>’ Direct check of the
universality of the % term requires a 2-loop computation
on the string side. The knowledge of this % term provides
a priori only a weak constraint on a possible next term in

the expansion of #; in (AS8), but there is a natural guess:

. AGA=T?)
the direct analog of the — m

both the term and the expected universal value of n,; in
(1.30) [see (1.44)].

In the case of ““small” circular strings with 2 internal
spins we again find

term in (A3) reproduces

np
hy =23AN1 + J% + +...,
= 2V% I r e
where, e.g., for (J, = J, = J,J)case N =J, + J, =2J'
and n;; =2 = —7qy; [see (1.45)]. Indeed, according to
(2.37), in this case

(A10)

N
JA+T%

A
2J?

The term 1 + "—J” with n;; = 2 here appears to be in contra-
diction with the form of the finite size correction—(1 + })
times the classical z—j‘zN term—found earlier [28,31].%% As
already mentioned below Eq. (2.15) this is not really a
disagreement as, in the 2-spin case, the two expressions are
derived in different limits: here we have J' < 1 for fixed
J, while in the standard discussions of finite-size correc-
tions in the thermodynamic limit one first assumes 7/ >>1,

J > 1, with % = fixed, and then may expand in %’

E] = + 0(N2))

hl(J>>\/X)=2J[1+ S0+ "“)+ ] (A11)

APPENDIX B: CHARACTERISTIC
POLYNOMIALS FOR CIRCULAR STRING
FLUCTUATION FREQUENCIES

Rigid circular strings with two equal spins and orbital
momentum J in S° discussed in this paper are homoge-
neous solutions for which the quadratic fluctuation opera-
tor has constant coefficients. In Fourier transformed form
this is a matrix depending on 2D momenta (pg, p;) [with
p; being integer as o € (0, 277)] whose determinant is thus

¥The fact that it comes out of the Landau-Lifshitz approach
means that one does not need the full superstring computation to
reproduce it, provided one regularizes properly (in addition, only
zero modes are expected to contribute to this term).
38This structure from expansion of Eq. (2. 23) in Ref. [31] to
linear order in JN: again only the analytic spin chain side part or
0-mode string side part is contributing to it. It appears that the
analytic finite size correction to the linear in JN term is univer-
sal: 1+ in compact [su(2), etc.] sector and 1 — 7 in non-
compact [sI(2), etc.] sector. Here L = J + N is total length, its
difference from J is irrelevant to leading order in N. The sign
difference is due to the analytic continuation between the
sectors.
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a finite-order polynomial in (pg, p,). The roots of this
characteristic polynomial determine the fluctuation fre-
quencies p, = w(p,) that appear in the 1-loop correction
to 2D energy [see (2.3) or (2.4)]. While we focused on the
solutions with unit winding number, m = 1, a nontrivial
value of m may be introduced in the characteristic equa-
tions for all three circular string solutions through the
formal rescaling

Po P K v
Po—=—5  PoT o KT, v
m m m m
/
/ w
w— —, w — — r—r, a—a
m m

This rescaling may be identified in the classical solutions
(2.6), (2.23), and (2.42).

1 J 1=

The characteristic polynomials for this circular string

have been derived in Refs. [21,22]. The AdS;5 fluctuations

have the standard BMN type form with mass « [expressed

in terms of the other independent parameters a and v; see

(2.6)] while the characteristic polynomial for the S3 part is
more complicated. Explicitly,

Bgds5 = (—pj + p} + v* + 4m?a?)4,
B =[(p5 — p})* —4v* pj I = 16(2a> = Dm*(pj — p})?
+8m’[(a® = D(pg— p1)*(p5 + P1)
— 4 pil(a® = Dpg + (1= 3a*)pil] (B2)
As discussed in Refs. [21,22], the determinant of the
fermionic quadratic operator is the square of the determi-
nant of an operator expressed solely in terms of six-
dimensional Dirac matrices. We note here that, due to the

chirality of six-dimensional spinors, this determinant (over
spinor indices) further factorizes:

detK ;%% = (detK$P)%, detK§® = F\ F,,

J, string

(BI)

(B3)

where F|, are the corresponding fermionic characteristic
polynomials

Fy=(p3—pH*+ p3lv(—V4a*m* + v* = 3v)
—2(a®+ )m?] + p%[v(v —V4a?m? + 1v?)
+(6a® —2)m?]+ (a* = 1)*m* + m*v[v+ (a®> — 1)

1
X V4a*m? + v?] +§V3(l/ —V4a’m? + 1),

Fy=(p2— p?)? + p2[v(V4a’m® + v2 —3v) — 2(a + 1)m?]
+p1[v(v+\/4azmTv)+(6a —2)m?]
+(a®? = 1)*m* + m*v[v—(a®> — l)m]
42 +AaP ),

(B4)

(B5)
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Using the relations between the parameters of the solution,
one can check that the product F;F, reproduces the fer-
mionic characteristic polynomial in Ref. [22].

2. §; = 8, string

As was mentioned in Sec. II, this solution may be
obtained from the J; = J,, J by the analytic continuation

2 2 (B6)

K<, a= — —r-,

This observation may be used to find the corresponding
characteristic polynomials from their J; = J, counter-
parts. The bosonic ones are then

Bg™ =[(pf — p}? — 42 p 1 — 16(2r2 = )m*(p§ — p})?
+8m*[(r* = D)(p§ — p1)*(p5 + P}

— 4k pil(r* = Dpg + (1 =3r7)p] (B7)

Bgs = (—p(z) + p% + )4, (B8)

The fermionic determinant has factorization property simi-
lar to that in the J; = J,, J solution (B3) with

= (p3 — pD)* + p3—«k(v + 3k) — 2(—r* + 1)m?]
+ pilk(k — v) =237 + )m?] + (©* + 1)’m*

+ m?k[k — (P + Dv] + %K3(K —v), (B9)
Fy = (p§ — p})* + pile(v — 3k) = 2(—=r* + m?]
pilv(y + k) =232 + Dm*] + (r* + 1)’m*

1
+ m?k[k + (P2 + 1)V]+5K3(K+ V). (B10)
Upon setting v = (0 we may recover the characteristic
polynomials in Ref. [35].

3. S = J string
Here the AdS5 bosonic characteristic polynomial can be
directly extracted from Ref. [24] (from the expression
found before using the conformal gauge constraint).>
Then its S° counterpart can be found by using the
“self-duality” property of the solution (2.42) under

K<, r e ia, w e —w'. (B11)
We end up with
B?dss_( P0+P1 w —m2)2
X[(p§— pD)? —4m?* pi(1+r?) + 8mpop (1 + r*)w
—4p%[—:<2r2 +(1+r)w?]] (B12)

*One can check directly that the massless mode decouples in
the characteristic polynomial for three coupled AdSs fluctuation
modes that follows from the fluctuation Lagrangian in Eq. (4.13)
in Ref. [24].
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5
Bg = (—p(z) + p% + w2 — m?)?
X[(p§— p1)* —4m*p3(1 —a?) —8mpyp (1 — a*)w'
—4p3[—v?a® + (1 —a*)w?]]. (B13)
As in the previous cases here the fermionic operator can be
put into a block-diagonal form where each block may be
written in terms of the six-dimensional Dirac matrices.
While the two blocks are not identical, parity invariance
requires that their determinants are the same. The fact
that six-dimensional spinors are chiral implies that the

determinant of each block further factorizes as in (B3),
where now

Fy=(p5—pi)’ + 2mp0p1[2a2(w’ + ﬂ) +(w = W')]
+ pil—kv + 302 + (w = 2w)(w + w')] — p3lkv
+ 2+ wlw + w)] + Z[—ZKV[W/(W +w') — 2]

+ 204 + V2w = 3w)(w + w') + w(w + w')?],
(B14)

KV
Fy=(p§—p})*+ 2mpop1[2a2<W’ - 7) +(w - w’)]

+ p%[KV + 32 + (w—2w)(w + w')] — p(z)[—KV

+ 2+ ww+w)]+ %[2KV[W/(W +w') — 2]

+ 2% + 2w = 3w)(w + W) + w2(w + w')?].
(B15)
Let us comment on derivation of these expressions [that
reduce to the ones in Ref. [24] for a = 1 in (2.42)]. In the
Kk-symmetry gauge 6, = 0, the quadratic part of the fer-

mionic Lagrangian is (see, e.g., Ref. [22,24], and referen-
ces therein)

L = —2in*Pef0T* Dy — e*FOT I Ts0e5ef, (B16)

where D = d + w"PTp is the usual spinor covariant
derivative. For the solution (2.42) the 2D projected combi-
nations ¢4I", and w4l are

AT, = ToV1 + 2k + Tyrw + TsV1 — a?v + Toaw’,
etTy = m(Tyr — Toa),
0BT 5 = 2krTy — 2(mwr14

+ avl'sg + mw’f‘@),
@T 5 = m(=2V1 + 2Ty + 241 — a?Ty),

where I'y are the ten-dimensional (10D) Dirac matrices;
one should project the quadratic operator onto its chiral
part thus rendering it a 16 X 16 matrix. To evaluate the
determinant of the quadratic fermionic operator we first

(B17)
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notice that the matrices I', and I'; in Iy, = il7y;034 in (B16)
do not appear elsewhere in the quadratic operator. The
product I'y; may therefore be diagonalized; its diagonal
entries are *i. In this representation the quadratic operator
is block-diagonal and each block may be obtained from
(B16) and (B17) by using for I'; and I';; the d = 6 Dirac
matrices and I',, = *1I;4. Since the sign of I, affects only
the sign of the Wess-Zumino term which can also be
changed by parity transformations, the determinants of
the two blocks are equal and thus the 10D determinant is
a perfect square, as in the first equation in (B3). Since the
six-dimensional (6D) spinors are chiral, there exists a
representation of the 6D Dirac matrices in which each
block of the quadratic operator is itself block-diagonal.
Thus, the determinant of each block further factorizes;
each block is only a 4 X 4 matrix and its determinant can
be easily evaluated leading to the two factors F| and F, in
Eq. (B3) given by (B14) and (B15).

In Sec. IID we discussed the small r expansion of the
energy of the § = J' string with angular momentum J. For
this purpose, we need that

2r? 5 5 4r4
a=r 1+ﬁ, K=4|v°+4r +m, (Blg)
14 14

44
=\/l+1/2+4r2+ d 5
1+vw

1+22. (B19)

Plugging these expressions in F| and F, and dividing by a
factor of r* we find that

Fip,= cf)l 2 4 6(21’2);’2 + cgll‘z)r4 + (B20)
with
cgl) = ng) = (»? — p(z) + p% —2p; +1)
><(v2—p3+p%+2p1 +1)
1
0(2)—(1 2)3/2[\/ v+ 1(— 2p04v +p1+3)
+ pg + (pt — D) + 4% + 1)?popi] (B21)
S N Y
C2 (1 2)3/2 v PoP1
+ V2 + 1030 + v¥( —4p(2) + 4p% +6)
+ Po - 21)0([)1 +2)+ p1 + 3)], (B22)

4
(1 3 2
Cy V2(1 + V2)5/2[32(V + V) PoP1

+ 12+ 1404 (p? —6p3) + v (pf — 2p§(p} + 10)
+pt+ap?+3)+2(p3+ p2+1))] (B23)
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e 4
4 v2(1 + v?)5/2
+ V12 + 1(130° + v (—14p} + 14p3 + 24)
+ v2(p§ — 2p3(p} + 8) + p} + 8pl +9)
—2(p§ + pi + D)1

It is not difficult to construct higher-order terms in the
small r expansion at fixed ».

[16(»* + 1)v? pop;

(B24)

APPENDIX C: ONE-LOOP ENERGY OF § =J'
CIRCULAR STRING FROM THE ALGEBRAIC
CURVE APPROACH

Here we shall revisit the computation of the 1-loop
correction to the energy of the § = J’ circular string solu-
tion (2.42) discussed in Sec. II D using the algebraic curve
approach [25,36] to determine the fluctuation frequencies.

In order to focus on a near flat-space expansion in
the short string limit we will consider the limit S — 0 for

PHYSICAL REVIEW D 86, 066006 (2012)
In Sec. IID in (2.46) we used instead

T i) @
P 2\/S \/1+4928'

Note also that

w1 + 20%w + *w* — w(l + 20%w — P*w?)
S = )
2(1 + 20%w)?

(C3)

1. Quasimomenta

The quasimomenta can be obtained by explicit diago-
nalization of the monodromy matrix [25]; for the S° part
the basic single cut quasimomenta vanishing at infinity are
determined by

fixed o plx) = —m + WiZ__xll (x — %) (x — %), (C4)
v
0 =—=. (C1)
2JS where the two roots ¥, ¥, are given by
J
o 1 o, WTT3g8 + 20VWTT40°S +2SWTT4@°S -8 ~25) o
205+ Tras JTT4g’s |

The four S quasimomenta can be identified looking at the asymptotic x — oo behavior of f(x) and p(x~!), which is related

to the conserved global charges:

2 —=S—T+...,
2

iIyi(x‘l)—»—l—S—jJr... (C6)
2
Hence, we can identify
pilx) = =27 — p(x7),  ps(x) = px),
p3(x) = —pr(x), pi(x) = —p;(x). (o))
For the AdS5; quasimomenta, the basic function is given by
. x— X = =
plx) = Gl i(\/x —Rx =% - 1), (C3)
where the X; are
% = B, 5= — 28 +w — 2/S(S + w)’
ww — Vw? — 1)
B=w—Vw?— 1 (C9)
Again, comparing with the asymptotic, the identification of the quasimomenta goes as follows:
pix) = —px7),  ps(x) = px),
p3(x) = —p(x), pax) = p(x~). (178)
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2. Off-shell frequencies

Due to the symmetry of the circular string solution,
all the fluctuation energies can be conveniently written
as combinations of only two independent functions

Q4 (x) = Q23(x) and Qg(x) = Q23(x) [36]:

0, (1) = 01 () = — (") +05(0),

2, (2) = 03() = Q1)
3[04~ 05 +050))

0,0 = Q0 =~ 0, () =2,

0, (3) = 023(x) = 0130 = [0, ()~ 0, ] - 1,

0, () = 03 = Q1)
10,0 - 05 + 250)]

07, () = 030 = 0130 = {050~ 0,4 D] 1,

07, () = Q1) = 130
3050 = 0,67 + 0501 - 1,

07, (0 = 080 = 030 = 0,0 - 0, (0] (€I

Following [36], the two functions ) 4(x) and (¢(x) can be
uniquely fixed imposing the correct analytical and asymp-
totic properties for the perturbed quasimomenta p + dp:

0,00 =g L1 _ ) SO )
)

Q4 (6) = Q) = 2( >
x =1
where the two functions f(x) and f(x) are defined as

(C12)

F) = x = B)x — %),
FO) = yf(x = 2)(x — 1),

with a suitable choice of the cuts.

(C13)

3. One-loop energy

Given the above set of off-shell frequencies ), = Q%/,

I €{A S, B1234 F1234), the corresponding physical

on-shell fluctuations energies associated to the (i, j) exci-

tations with mode number n, are given by

o = o) = QH(x), (C14)

where, for any pair (i, j), x4/ is determined as the solution
of the equation

pixi’) = p;(xi)) = 2mn. (C15)
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The one-loop correction to the energy can be obtained as a
. . 4
sum over n and polarizations*’

El—— Z 2. (=D~ v

n=—00 i,j

(C16)

This sum is sensitive to integer shifts in the labeling of the
frequencies n — n + §; following [25] here we propose to
use the following choice:

+o00

1
Elzzz[("1)+w("1)+ ('lll)+w(n1)
n=—o0
(H‘H) + oW 206 (" 1) 20)5;12)
—zwg? 2wg‘“]. (C17)

Then the final result in the short string limit has the same
form as in (2.55)

u_ 3
E1=8 53
Q +1

corresponding to the rational part of ny, in (1.29) and
(2.53) being

S32 + O(S?), (C18)

nh, = %1 (C19)
The prescription (C17) thus does not lead to the preferred
choice nf, = 3 consistent with the universal value (1.30) of
the 2-loop coefficient n,;. The value in (C19) together with
universality of Konishi dimension implying Eq. (1.31) then
leads to Ny = — % (n03 = - %)
Making a natural guess about the structure of the lead-
ing term in the 2-loop correction to the slope function, we

then get
E:E()+E1 +E2+

— o1+ sz/X\/gl:l + ms

896_494_1692_582+ ]
8(0% + 1)?
+ ni, — 34 S32 4 1 JS + .

f(e

1)’5/2

N

(C20)

APPENDIX D: ONE-LOOP ENERGY
OF THE (/J/, J) FOLDED STRING FROM THE
ALGEBRAIC CURVE APPROACH

Here we shall derive the 1-loop coefficients in (1.44)
in the small spin expansion of the energy of a folded
string with spin J; = J’ and orbital momentum J; = J

“OIn the algebraic curve formalism, the on-shell energies w(’)

enter directly E; and do not require 1/k factors.
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representing a state in the su(2) sector on the dual gauge
theory side. This will a direct counterpart of the computa-
tion done for the (S, J) folded string in Ref. [6].

1. Quasimomenta

The classical solution [37] for the folded string with spin
J' and orbital momentum J in S° is related to the folded
string with spin S in AdSs and orbital momentum J in S°
by an analytical continuation [33] implying a relation
between the string profiles and the global conserved
charges

(E;J',J)— (=J;S, —E). (D1)

In the algebraic curve approach the quasimomenta for the
(J', J) string can then be obtained by an analytical continu-
ation of the quasimomenta for the (S, J) string given in
Ref. [3]. According to [5], the S° quasimomentum ps asa
function of the branch points is expressed in terms of the
elliptic functions:

a X
() =7 —i2 _L
p3(x)=1 17750<a2_1 x2—1)
><\/baz—l lal—iaa—x glal—idd +x
ab*—1\|al—iaa—x\a lal—ia a+x
8mabJ’ 27Ey(a—D)
———————F(x)— L F,(x),
(b—a)(ab+1) NN
(D2)
Y S _a—ba—x(a+b)2)
F,(x) l[F(lsmh atbatr@-b7) (D3)
e _a—ba—x(a+b)2)
F2(x) 1[E(zs1nh a+ba+x(a—0b)?) ®4)
where Re(a), Im(a) >0, b = —a and
1 ab—1 a? a?
- bE(1— L) + aks(1 - &
I =2 ab [ ( b2> “ ( bz)]’
1 ab+1 a? a?
e bE(1-2) —ak(1-%) |
I = ab[ ( b2> “( bz)]
& =—i\/(a2— 1)(b2—1)K(1 —“—2) (D5)
0 b b))

The inversion symmetry provides the other sphere quasi-
momenta through the relations

p3(x) = —p3(x) = —p;(x~1) = pz(x7 ). (D6)

Since the motion in the AdSs part is trivial, the correspond-
ing quasimomenta are simply

X

pis(¥) = —p3;(x) = 27E, (D7)

x2-1
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2. Off-shell frequencies

The symmetry of the solution allows to express all the
off-shell fluctuation frequencies as combinations of only
two independent functions [5]:

_ 2 f) = f(=1)
00 == ( o) O
_ 4 fx)
R e e i) S

where (f(x))> = (x — a)(x — @)(x — b)(x — b). The com-
plete list of the frequencies is given by

05(0) = Qs(x), 070) = Q)
QM) = —Q5(x7") + Q(0),
0%() = 010 = [05() — O ) + 0(0)]
QM) = Q¥ (x) = QB = 0B (),
Qifl(x) — Qm(x) — Qm(x) — QM()C)
= [Q4(x) — Q7" + Q40)]
Qifl(x) - Qiﬁ(x) - Qii(x) — Qié(x)

= 2104 + 0,1 (D10)

The off-shell frequencies provide the fluctuation energies
when evaluated on the solutions of the equations:

pi(xkdy — pj(xi;j) = 27n. (D11)

3. One-loop correction to the energy

We have computed the one-loop energy correction E| in
the two limits. The first one is motivated by the analysis in
Ref. [38] and is defined as

J .
J'—0, t = — = fixed. D12
Noxg 12
In this limit, the classical energy is given by
2+
bo_Erie 2t
2J' 8VE2 + 1
—32t5 — 16t* +28¢ +3 _
+... (D13
128(t2 + 1)3/2 J (D13)
For the one-loop correction, we find
E = Y a,0)(7")r 0/
p=0
= a (TN + ai ()T +..., (D14
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1
f) = —n,
%ot 2W2EC T 1) i
(t)=_16t4+25t2+6_ 3 : (D15)
“ 822+ VP2 2@+ D)

Adding the classical energy and re-expanding at large A for
fixed J', J, this gives

1 111
E?=2 )LJ’+7J'2+J’+J2+—[7J'3 +J'J?
VA 2 JaLs

5 1
+-=- 2+ ’]+
( 8 3§3>J g/

leading to the values of the coefficients n;;
resulting value

(D16)

in (1.44). The

/
nyp =

5

= D17
2 (D17)
is perfectly consistent with the universality of the two-loop
coefficient n,; in (1.30), i.e., as follows from (1.31),

1

As in Ref. [38], expanding E;| at large t we recover the
expansion in small 7' for fixed small J:
)

] —§—3§3
)‘7+< 27 a7

3 3+34 5
+<4—\75+—2\73 +)j

5 —3-94
(- T+
(Cam—i )

J = fixed.

1
E=(z727+

(D19)

The second limit is

J'—0, (D20)

In this limit, the classical energy reads*!
\/\72—1—1‘7/_ 37242
J 4T3(TJ* + 1)
15‘76 +3374+287%+8
16j5(j2 1)5/2
For the one loop correction, we find
E; =e(0)T + e)(T)T"? + e3(T)T"* +

and, at order J72,

go=j+ ‘_7/2

TR+ ...

(D21)

(D22)

*'Equivalently, £ =72+ 2N+ T2 T+ zl(;rfgi J"?+...For
comparison, in the (S,J) folded string case & = 7>+

W+ T8 + 22D 82 +

PHYSICAL REVIEW D 86, 066006 (2012)
J’ 2174 —-297%+1
E = 2 +[ 3 72 5/2
270+7%) L 1673(7*+1)Y
e  nAJ*+2nr-1) ]J,er
;1:2t73(”2 _ 1)2(._72 + n2)3/2

(D23)

This expression is very similar to the one for the (S, J)
folded string found in Ref. [6]:

S _ S [3j4 +117% + 17

290+ 7% L16J3(J* + 1)3?
& n?(J? +2n* - 1) ]82
= j3(n2 _ 1)2(j2 + n2)3/2

(D24)

The only differences are in the sign of the first term [i.e.,
the sign of the 1-loop term in the ““slope” function (1.25)]
and in the coefficients of the contributions of low modes in
the second term.

Extending the calculation to the order [J 3 we find the
following correction to E;:

15078 +4567° +2027* + 872 —
647 (T + 1)*
ad 1

n:22j5(*72 + 1)3/2(n2 _ 1)4(j2 + n2)5/2
X[BT*+177%2+10)n' +2(107% + 974
— 1372~ 14)n¥ + 2378 - 197° - 43 7*
— 1772+ T)n® = 2(67°% +27° - 137*
—972+2)n* — JPUAT*+5T*+ 1) T?> +T)n?].

(D25)

63(j):

+

Expanding the coefficients of each power of 7' in (D23) in
small 7 we get explicitly [here N = J'; cf. (2.18), (2.35),
and (2.56)]

LRV SR VR SR B N
El_(zj 27 2 “')‘7+[ 2j3+j( 16 2§3>
9 125 25
+j( 0 2§3+ 55) (ﬁg_ﬁé

—%3——57) o+ [435*%(1%*%53)

1 1 35 35
+j(32 8§3) ( +3§3+R§5_T6§7)
TP+ (D26)

This is in perfect agreement with the expansion (D19)

found in the case of fixed t = \/‘27—3/

From this expansion one extracts, in particular, the
following values [cf., (1.9), (1.35), and (1.37)]:
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TABLE I. Summary of coefficients in Eq. (1.3).
i (S,J) ", J) (Jy = N, J) (S; = 8$5,J) (S=J.J)
nop 1 1 1 1 1
oy —i ~i —3 ~3 ~3
noyp % % 0 2 1
ﬁ()z - % % 1 _1 0
103 —3 5 0 -1 —3
o4 o o 0 2 3
ny -1 1 2 -2 0
ﬁll 1 _1 _2 2 0
iy -1 1 2 -2 0
niy % - % - % % %(?)
i 27 _3 _ 57 105 _
12 16 16 16 16
o _9 _1 _3 _ 8 _
13 16 16 16 16
n'! 15 _3 _3 15 3
13 4 1 1 4 2
N -1 -1 -1 -1 -1
3, . 3 3+ 15 the {5 term in ny3 in (1.36). Note also that the highest
2 = 7¢ £} N2 = 16 g Z§5’ transcendentality /; term in the coefficient of 77" in
7 3 15 (D26) is also universal, i.e., has the same value (—35/16)
m3s= 16T 153 + Zfs- (D27)  as in Ref. [6] and in all circular string cases [cf., (2.18),

For comparison, the corresponding values for the (S, J)
folded string that follow from the analog of (2.6) in Ref. [6]
are

3 B 27 15
n12=§—3§3, nlzz_ﬁ+3§3+zgsy
9 15 15
m3= T g +I§3 + ng- (D28)

The value of n{; = — %in (1.36) for the folded (J/, J) string
in (D27) is the same as for the J; = J, circular string found
in sect I B; n{; = 14—5 for the folded (S, J) string in (D28) is
the same as for the §; =S, circular string found in
Sec. IIC.

Similarly to the cases of the (S, J) folded string [6] and
the circular strings discussed in Sec. II, the coefficient of
JB/J in (D26) does not contain (s, supporting the uni-
versality of the transcendental terms in 7i;, in (1.34) and of

(2.35), and (2.56)].

APPENDIX E: SUMMARY OF COFFICIENTS

Here we summarize the known values of the leading
coefficients in E? in (1.3) for two single-spin folded and
three equal-spin circular solutions. We omitted the values
of 71{,, n{; for the circular § = J' solution that appear to be
scheme-dependent (see Sec. IID). We added question
marks to the values that were not computed directly but
are expected on the basis of universality of the Konishi
multiplet dimension. Let us recall the definitions of nj_,
ny, as rational coefficients in ny,, 7iy,, ny3:

~ ~ 15
np = nh, — 34, iy =i}, + 34 + Zfs,

15
miz =y TGt ZKS'
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