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We study the one loop correction to the closed bosonic string propagator, including the possible

presence of D-branes, by discretizing the lightcone worldsheet on an M� N rectangular lattice, with

M / Pþ and N þ 1 / ixþ. The integrals over the moduli then become sums which we evaluate

numerically. The main purpose of this study is to assess the reliability of the worldsheet lattice as a

regulator of the divergences in string perturbation theory. There are two natural geometrical counterterms

for the lightcone worldsheet, one proportional to the area of the worldsheet and the other proportional to

the length of worldsheet boundaries, tracing the ends of open strings. We show that the divergences in the

closed string self-energy can be cancelled by the area counterterm and a renormalization of the Regge

slope parameter. The residual finite part is compatible with Lorentz invariance, provided a novel

regularization, natural to the lightcone worldsheet lattice and described in this article, is employed.
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I. INTRODUCTION

String theory has long been known to be a generalization
of gauge theory due to the presence of a massless spin one
state in the open string spectrum. Since all of the massive

states of the theory have masses proportional to
ffiffiffiffiffiffiffiffiffiffiffiffi
2�T0

p ¼
1=

ffiffiffiffiffi
�0p
, the string theory goes over to the gauge theory in the

infinite tension limit�0 ! 0. This, togetherwith the fact that
closed strings have a massless spin two state, has inspired
the discovery of many deep connections between string
theory on the one hand and gauge theory coupled to gravity
on the other. The AdS/CFT correspondence [1] which as-
serts the equivalence of N ¼ 4 supersymmetric gauge
theory to type IIB superstring theory on anAdS5 � S5 space
time manifold is one of the most spectacular of these.
Although motivated by the physical properties of open
string theory with �0 > 0, the final conclusion is reached
by taking �0 ! 0. The finiteness (conformal invariance)
of the N ¼ 4 theory plays a key role in justifying the
�0 ! 0 limit.

The corresponding hypothesis for an asymptotically free
gauge theory like the gluonic sector of QCD is more
obscure. However, there is little doubt that string theory
can offer important insights into some aspects of QCD. In
this article we launch a critical analysis of the possibility
that ’t Hooft’s N ! 1 limit [2] of QCD might be usefully
analyzed by replacing it with the sum of open string planar
diagrams, keeping �0 > 0. There are several reasons to
hope this helps. First, the organization of multiloop string
diagrams is dramatically simpler than the corresponding
gauge theory diagrams: there is only one planar open string
diagram at each loop order, whereas the number of planar
gauge theory diagrams grows exponentially with order.
Second, the 0 loop open string planar diagrams describe

the evolution of a ‘‘bare’’ worldsheet which becomes
‘‘dressed’’ with the inclusion of planar loops. This provides
a very natural setting for the description of a confining flux
tube which may survive the limit �0 ! 0. Finally, there
is the long-held expectation that the ultraviolet behavior
of gauge theory diagrams will be mitigated by the
‘‘stringiness’’ associated with finite �0, making the latter
better defined.
We focus on this last point in this article. It is not so

much the ultraviolet divergences themselves that concern
us here-after all those can be absorbed in coupling renor-
malization in gauge theories. Rather, it is the extreme care
that must be taken in gauge theory to preserve gauge and
Lorentz invariance in the finite part that remains after
renormalization. Order by order in perturbation theory,
this can be accomplished by employing a suitable regulari-
zation, the most popular of which is dimensional regulari-
zation. But as soon as one aims to extract the consequences
of summing all the planar diagrams, especially if one
must rely on numerical methods, the soundness of dimen-
sional regularization becomes somewhat questionable. For
example the powerful conclusions derived from lattice
gauge theory would be much less convincing if they relied
on an unphysical regularization such as ‘‘analytic continu-
ation’’ of the dimension of spacetime. It is desirable to have
a digitization scheme which can be relied on to give the
correct physical results without such an artifice. Thirty five
years ago Giles and one of us [3] (GT) proposed a digiti-
zation of the sum of planar open string diagrams based on
lightcone quantization [4,5] in its path history formulation
[6]. In the present article we set out to assess the reliability
of this specific lattice model for perturbative calculations.
Let us briefly review the GT proposal, in order to set the

stage for the rest of the paper. In lightcone quantization of

the bosonic string [5], one takes xþ ¼ ðx0 þ x1Þ= ffiffiffi
2

p
as the

quantum evolution parameter and labels points on a string

by a parameter � defined so that Pþ ¼ ðP0 þ P1Þ= ffiffiffi
2

p
is

*georgios@ufl.edu
†thorn@phys.ufl.edu

PHYSICAL REVIEW D 86, 066002 (2012)

1550-7998=2012=86(6)=066002(25) 066002-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.86.066002


uniformly distributed on the string. In effect these two
choices eliminate xþ and x� as dynamical variables, leav-
ing only theD� 2 transverse coordinates xð�Þ as quantum
operators. Mandelstam worked out the path history form of
this quantization [6] using imaginary time � � ixþ. Then
the propagator for a free string is simply the path integral
over the xð�; �Þ where 0 � � � Pþ and 0 � � � T
parametrize a rectangular region of dimensions Pþ � T.
The path integrand is simply e�S, with S the lightcone
Euclidean action

S ¼ 1

2

Z T

0
d�

Z Pþ

0
d�ð _x2 þ T2

0x
02Þ: (1)

In this language a general open string planar diagram is
calculated by integrating this same integrand over a world-
sheet with several slits of variable length and location as
depicted in Fig. 1.

The GT proposal is simply to digitize Mandelstam’s
interacting string diagrams by defining a rectangular
M� N grid with T ¼ ðN þ 1Þa and Pþ ¼ MaT0. Then
the integration variables xð�; �Þ ! xi

j and the lattice
action is simply

S ! T0

2

X
ij

½ðxijþ1 � xi
jÞ2 þ ðxiþ1

j � xi
jÞ2�: (2)

A quick look at the lattice corresponding to a multiloop
open string diagram Fig. 2, shows that a slit is nothing but a
row of missing spatial bonds (links), and summing over all
planar diagrams is simply summing over all patterns of
missing spatial bonds. One can easily incorporate the sum
over missing bond patterns into the lattice sum over histor-
ies by introducing an Ising-like variable Si

j ¼ 0, 1 on each
spatial link. Then the worldsheet action describing the sum
of all open string planar diagrams is simply

SPlanar ¼ T0

2

X
ij

½ðxijþ1 � xi
jÞ2 þ Si

jðxiþ1
j � xi

jÞ2�

�X
ij

½Sijð1� Si
jþ1Þ þ Si

jþ1ð1� Si
jÞ� lng: (3)

The purpose of the lng term is to insert a factor of g at the
beginning and end of each row of missing bonds. Then, in
addition to integrating each xi

j from�1 toþ1, one sums
each Si

j over the values 0 and 1 to obtain the sum over all
planar diagrams.
If no further adjustments were necessary, we could study

this system numerically, e.g. through Monte Carlo simula-
tion. By analyzing the largeN behavior of the path integral,
one could read off spectral information by identifying

exponential behaviors e�aE�ðMÞN , where E�ðMÞ are the
eigenvalues of P�. On general grounds we should expect
the large M behavior

E�ðMÞ � �Mþ �þ ��

M
þ � � � (4)

The �M term is a bulk worldsheet effect and the � term is
associated with boundaries. The coefficients �, � depend
on the details of the lattice model and violate the require-
ment that 2P�Pþ � p2 ¼ m2

� is a Lorentz invariant.
Fortunately there are two geometrical counterterms natu-
rally associated with the worldsheet path integral: one
proportional to the area of the worldsheet and another
proportional to the length of worldsheet boundaries. Thus
the Lorentz violating terms noted above can always be
canceled. As noted in [3] the area term is dynamically
inconsequential for the sum of diagrams because the slits
representing loops have zero area, so that the area term is
identical for all diagrams contributing to the same process.
The boundary term depends on the number and lengths of
the slits. It can be thought of as an energy cost assigned
to the disappearance of a bond. In the Ising spin description

T

p+

FIG. 1. Typical open string planar diagram on the lightcone
worldsheet. This one is a seven loop 5 string function

FIG. 2. Multiloop lattice worldsheet: each loop is a row of
missing links.
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of the sum over loops it is represented by a term
ðD� 2ÞBPijð1� Si

jÞ added to S. The boundary term is

absent for closed strings, but is required for a Lorentz
invariant free open string spectrum. This is because the
Gaussian lattice worldsheet path integral implies an open
string zero point energy

aP�ðMÞ¼ðD�2Þ XM�1

m¼1

sinh�1 sin
m�

2M
þðD�2ÞB

�ðD�2Þ
�
2G

�
MþB�1

2
sinh�11� �

24M

�
(5)

as M ! 1, where G is Catalan’s constant. Cancelling the
second term requires B ! B0 ¼ ð1=2Þsinh�1ð1Þ for g ¼ 0.
Since the � term in the energy will in general depend on g,
we can’t know the value of B at finite g a priori, so in
practice it must be left as a free counterterm parameter to
be determined by requiring that the final answer be con-
sistent with Lorentz invariance.

More generally, we can regard B as a free parameter of
the lattice model, which we don’t necessarily have to insist
is Lorentz covariant. Taking B large enough lifts the P�
of any multi-open string intermediate state above all the
g ¼ 0 closed string energy eigenstates that survive the
continuum limit.1 Then the severe infrared divergences in
loop diagrams caused by the open string tachyons are
removed, making the multi-loop expansion well defined,
albeit with a loss of Lorentz covariance. For numerical
studies we should therefore calculate for general B large
enough to remove instabilities; and only at the end of the
calculation would we scan for a value of B which restores
Lorentz covariance, if possible.

But there is no a priori guarantee that these two counter-
terms can remove all Lorentz violating artifacts from this
lattice worldsheet construction. For instance, the authors of
[7] developed a lightcone worldsheet formalism which
mapped the planar diagrams of gauge theories in lightcone
gauge to a worldsheet system with exactly the features of
the open string planar diagrams just described. String
coordinates were employed, but their dynamics were
topological in the sense that all but a single zero mode
decoupled in the path history sum. In this way the world-
sheet diagrams were designed to yield precisely the ‘‘bare’’
Feynman diagrams of the gauge theory. Digitization of this
worldsheet in the manner of GT amounted to a scheme for
cutting off the UV and IR divergences of these Feynman
diagrams. To test the reliability of this cutoff, the authors of
[8] calculated the one loop diagrams contributing to the
scattering of glue by glue regulated by the GT worldsheet
lattice. They found that the artificial divergences associated
with lightcone quantization could indeed be absorbed in

the bulk or boundary worldsheet counterterms. Further
the divergences associated with charge renormaliza-
tion (asymptotic freedom) had the correct coefficients.
Unfortunately, this was not the end of the story. There
remained gauge violating terms that could only be can-
celled by: (1) a divergent gluon self mass, (2) a finite wave
function renormalization, (3) a finite adjustment to the
three gluon function, and (4) a finite constant adjustment
to the 4 gluon function. Indeed these are precisely the
adjustments generally required when a physical cutoff is
employed in loop calculations [9]. All of these adjustments,
being polynomials in the external momenta, are consistent
with locality. The bottom line is that the lightcone world-
sheet lattice as a regulator of gauge theory diagrams is
no better than other physical cutoffs. Unfortunately this
means that we should expect the necessary counterterms to
proliferate with the inclusion of multiloop diagrams.
In this paper we begin to explore whether the GT lattice

does a reliable (or at least better) job regulating open string
planar diagrams than it does with field theory planar dia-
grams. Does keeping �0 > 0 control the proliferation of
counterterms? Is it possible that the bulk and boundary
counterterms will be sufficient by themselves? We start
with the simplest self-energy diagram: the one loop cor-
rection to the closed string propagators. This process
involves only a single intermediate open string state and
hence has the singularity structure of a tree diagram. Since
the corrections to the open string propagator involve com-
plications associated with the multi-string intermediate
states and worldsheet boundaries, we choose to defer the
open string analysis to a subsequent paper, and we restrict
our attention here to the corrections to the closed string
propagator.
Because of the tree structure of the closed string self-

energy diagrams, the sum over K, the number of time steps
that the intermediate open string exists, converges for both
the closed string tachyon and graviton, even with B ¼ B0.
Nonetheless the calculations of Secs. III and V (with
B ¼ B0) will establishLorentz violations in both the tachyon
and graviton. Fortunately, these Lorentz violations disappear
if the calculations are done holding B> B0, taking B ! B0

only at the end of the calculation. In any case, this is the only
way tomake sense ofmulti-loop diagrams, sowe don’t think
its necessity at one loop is a drawback.
The article is organized as follows. In Sec. II we obtain

explicit formulas for the one loop energy shifts of the
closed string ground state (tachyon) and the closed string
graviton state. Each term in the K summand involves
determinants of M�M overlap matrices. These formulas
are evaluated and analyzed with the help of MATHEMATICA

in Sec. III.2 In Sec. V we extend the formulas to include

1In effect with B this large one imposes confinement on the
free theory. The crucial issue is then whether or not confinement
survives as B is reduced to a value that restores Lorentz
invariance.

2For the interested reader, we provide the evaluation code and
a sample of our analysis in a MATHEMATICA file accompanying
the source format of this article on the arXiv.
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open strings ending on Dp-branes, and similarly perform
their numerical evaluation in Sec. V. In this case, instead of
an energy shift, the one loop correction gives the amplitude
for a closed string scattering off the Dp-brane. Additional
discussion is given in the concluding Sec. VI. Several
appendices collect a number of technical results, including
normal mode expansions, determinant formulas, and over-
lap matrices, that are useful for the discussion in the main
text. We also include additional evidence for the robustness
of our numerical results.

II. CLOSED STRING SELF-ENERGY

Before calculating the self-energy diagram on the
lattice, we briefly recall the known expression for the
continuum self-energy. In the language of conformal field
theory we need the amplitude with two closed string vertex
operators, say at 1 and1, on the complex plane fromwhich
a disk of radius q < 1 has been excised. Consulting for
example [10], we find the result for the closed string
tachyon self-energy:

� �P� ¼ C

2Pþ
Z 1

0

dq

q3
ð1� q2Þ2 (6)

which is obviously seriously divergent at q ¼ 0: there are
quadratic and logarithmic divergences in the q integration.
To get further insight into the fate of these divergences, we
do the path integral in lightcone parametrization, using the
conformal transformation methods of [11,12]. The (still
seriously divergent) result in D spacetime dimensions is

��P�¼C0PþZ 1

0
dT

�
2�

Pþ sinhð�TT0=P
þÞ
�ðD�2Þ=8

(7)

whereT is the length of the slit on the lightconeMandelstam
diagram, which is the total ixþ over which the intermediate
open string propagates. The factor of Pþ is just the result of
integrating the � independent integrand over vertical loca-
tion of the slit 0<�<Pþ. When D ¼ 26 this expression
reduces to (6) which can be seen with the change of inte-
gration variable

q ¼ 1� e��TT0=P
þ

1þ e��TT0=P
þ : (8)

We can get a rough idea of what we should get from the
lattice calculation by simply discretizing T ¼ aK and
Pþ ¼ aMT0. Then the discretization of (7) reads:

�a�P� ¼ ðC0T�2
0 ðaT0Þð26�DÞ=8ÞM

� X1
K¼1

�
2�

M sinhð�K=MÞ
�ðD�2Þ=8

(9)

Of course discretizing the result of a continuum calculation
is not the same as doing the discretized calculation from the
beginning, but it at least can serve to guide the eye. For
example, one feature we immediately see from (9) is that

the quadratic divergence seen in (6) is expected to be
reflected in the lattice calculation as a linear term in M
in P�, which can be absorbed in the bulk counterterm
described in the introduction. We turn next to the actual
lattice calculation of the self-energy.
We start with the expression for the summand of the one

loop correction to the closed string propagator, depicted in
Fig. 3. It is a product of factors, one for each of the D� 2

transverse coordinates xji . In the following we will display

only one of the factors, calling its coordinate xji :

hN þ 1; fxfgj0; fxigiclosedðK; JÞ
¼
Z

dxKi dx
L
i hL; fxfgj0; fxLgiclosedhK; fxLgj0; fxKgiopen

�hJ; fxKgj0; fxigiclosede�T0½ðxLM�xL1 Þ2þðxKM�xK1 Þ2�=4

¼ DclosedðJÞDopenðKÞDclosedðLÞ
�
Z

dxKi dx
L
i e

iW�ðK�1ÞB0�T0½ðxLM�xL
1
Þ2þðxKM�xK

1
Þ2�=4

(10)

where J þ K þ L ¼ N þ 1, and B0 ¼ ð1=2Þsinh�11 is the
counterterm which removes the boundary contribution to
the free open string P�. Regarding the intermediate open
string as a closed string with a row of missing links, we see
that K � 1 is the number of missing links, which we have
taken to be the ones linking site 1 to site M. The open and
closed string free propagators are defined in Appendix C.
The factors D, which are the corresponding propagators
for vanishing values for the initial and final coordinates, are
related to determinants of the worldsheet discretized
Laplacian, and are defined in Appendix B.
Energy eigenvalues are determined by identifying ex-

ponential time (� ¼ ixþ) dependence in the closed string

propagator e�P�� ! e�aðNþ1ÞP�
. In perturbation theory

P� ¼ P�
0 þ �P� and

e�aðNþ1ÞP� ¼e�aðNþ1ÞP�
0 ½1�aðNþ1Þ�P�þ���� (11)

J K L

M

1

FIG. 3. Lattice worldsheet for the closed string self-energy.
The dotted lines are identified. There are K � 1 missing links.
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so we identify �a�P� as the coefficient of N þ 1 in the
one loop correction to the closed string propagator. The
factor N þ 1 is associated with one of the sums over
the creation and destruction times of the intermediate
open string. In practice the factor is removed by using
time translation invariance to fix, say, the creation time,
and summing only over the destruction time.

If we desire to use this formalism to calculate the cor-
rections to excited energy levels, it is necessary to deal with
the fact that then the summand over K grows exponentially
with K. A convenient approach is to add a term�K� to the
exponent, which can be thought of as adding � to B0. Since
all of the physically meaningful excited states have an
excitation energy of order 1=M, as long as � > 0 is inde-
pendent ofM this is enough to tame the exponential diver-
gence. Actually, since B0 is a necessary counterterm which
is expected to receive corrections in perturbation theory, we
cannot know a prioriwhat its value should be. All we know
is B ¼ ð1=2Þsinh�11þOðg2Þ. Thus in the context of non-
perturbative studies of the worldsheet path integral, it
should be taken as a parameter to be tuned at the end of
the calculation to ensure Lorentz covariance.

For some states, such as the ground state and graviton
state, the absence of lower energy open string states that
couple means that the K sum converges without the need
for �. However, as we shall see later, because the conver-

gence is then only like e�K=M, ultraviolet divergences
become entangled with infrared divergences, which then
leads to violations of Lorentz invariance since M / Pþ.
Introducing an � > 0 prevents these artifacts from entering.
Thus, we should keep � > 0 even in those fortuitous cases
where it isn’t strictly necessary for convergence.

A. Correction to the closed string ground energy

Since there is only one ground state, it is uniquely
singled out by taking J, L ! 1, in which case it suffices
to simplify matters by setting xi ¼ xf ¼ 0. Then iW is
simplified to

iW ¼ �T0

2

�
qK2
0

�
1

J
þ 1

K

�
þ qL20

�
1

K
þ 1

L

�
� 2qL0q

K
0

1

K

þX
m

ðqK2cm þ qK2
smÞ sinh�c

m cothJ�c
m

þX
m

ðqL2cm þ qL2smÞ sinh�c
m cothL�c

m

þX
m

ðqL2om þ qK2
omÞ sinh�o

m cothK�o
m

� 2
X
m

qLomq
K
om

sinh�o
m

sinhK�o
m

�
(12)

In this equation �o
m ¼ 2sinh�1 sinðm�=2MÞ and �c

m ¼
2sinh�1 sinðm�=MÞ are the discrete time versions of the
normal mode frequencies for the open and closed strings,
respectively. Correspondingly, the q’s are the normal mode
coordinates of the open or closed string, defined in
Appendix A. Note that when it makes no essential differ-
ence, we shall restrict M to be odd to keep the description
of the closed string modes as simple as possible.
We change integration variables to the closed string

normal mode coordinates q0, qcm, qsm for both K and L.
The Jacobian for this variable change is unity, and we can
express the qom in terms of the closed string modes as
follows:

qom ¼
8<
: qcm=2 m even

2
M

PðM�1Þ=2
m0¼1

qsm0Umm0 m odd
(13)

where the overlap matrix Umm0 is defined in Appendix D.
We also need

xM � x1 ¼ �2

ffiffiffiffiffi
2

M

s XðM�1Þ=2

m0¼1

qsm0 sin
m0�
M

(14)

Then

iW � T0

4
½ðxLM � xL1 Þ2 þ ðxKM � xK1 Þ2�

¼ �T0

2

�
qK2
0

�
1

J
þ 1

K

�
þ qL20

�
1

K
þ 1

L

�
� 2qL0q

K
0

1

K
þX

m

qK2
cm sinh�c

mðcothJ�c
m þ cothK�c

mÞ

þX
m

qL2cm sinh�c
mðcothL�c

m þ cothK�c
mÞ � 2

X
m

qLcmq
K
cm

sinh�c
m

sinhK�c
m

þX
m

qK2
sm sinh�c

m cothJ�c
m

þX
m

qL2sm sinh�c
m cothL�c

m þ X
m odd

ðqL2om þ qK2omÞ sinh�o
m cothK�o

m � 2
X
m odd

qLomq
K
om

sinh�o
m

sinhK�o
m

þ 4

M

X
m0;m00

ðqKsm0qKsm00 þ qLsm0qLsm00 Þ sinm
0�
M

sin
m00�
M

�
(15)

Because of the equality qo2m ¼ qcm, the integration over q0 and the qcm precisely implements closure on these modes. This
means that the result of those integrations is just the contribution of those modes toDclosedðN þ 1Þ. Consulting Appendix B
for the various D’s, the outcome of the integration over q0 and the qcm can be written
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hN þ 1; fxfgj0; fxigiclosed ¼ Dclosed
cos ðN þ 1ÞDclosed

sin ðJÞDopen
odd ðKÞDclosed

sin ðLÞ
Z

dqKsmdq
L
sme

iW 0�ðK�1ÞB0

¼ DclosedðN þ 1ÞD
closed
sin ðJÞDopen

odd ðKÞDclosed
sin ðLÞ

Dclosed
sin ðN þ 1Þ

Z
dqKsmdq

L
sme

iW 0�ðK�1ÞB0 (16)

iW 0 ¼ �T0

2

�X
m

ðqK2smÞ sinh�c
m cothJ�c

m þX
m

ðqL2smÞ sinh�c
m cothL�c

m þ X
m0;m00

ðqKsm0qKsm00 þ qLsm0qLsm00 Þ

�
�
4

M2

X
m odd

Umm0Umm00 sinh�o
m cothK�o

m þ 4

M
sin

m0�
M

sin
m00�
M

�
� 8

M2

X
m0;m00

qKsm0qLsm00
X
m odd

Umm0Umm00
sinh�o

m

sinhK�o
m

�

(17)

and we remind the reader that there are D� 2 such factors. To isolate the shift in a specific energy level, we need to
identify the exponential behavior in J, L as they approach infinity.

For the ground state energy shift, it is sufficient to directly take J, L ! 1 with K fixed. Then the cothJ, cothL ! 1 and

D closed
sin ðN þ 1Þ ! e�ðNþ1ÞPðM�1Þ=2

m¼1
�c
m=2

�
T0

2�

�ðM�1Þ=4 YðM�1Þ=2

m¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sinh�c

m

p
(18)

Dclosed
sin ðJÞDclosed

sin ðLÞ
Dclosed

sin ðN þ 1Þ ! eK
PðM�1Þ=2

m¼1
�c
m=2
�
T0

2�

�ðM�1Þ=4 YðM�1Þ=2

m¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sinh�c

m

p
(19)

Change integration variables to �qm ¼ qsm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðT0=�Þ sinh�c

m

p
. And we have

hN þ 1; fxfgj0; fxigiclosed ! DclosedðN þ 1ÞD
open
odd ðKÞeK

PðM�1Þ=2
m¼1

�c
m=2Q

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðT0=�Þ sinh�c
m

p Z
d �qKmd �q

L
me

iW 00�ðK�1ÞB0

! DclosedðN þ 1Þ eK
P

M�1
m¼1

ð�c
m��o

mÞ=2Q
M�1
m¼1;odd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2K�o

m

p YM�1

m¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh�o

m

sinh�c
m

s Z
d �qKmd �q

L
me

iW 00�ðK�1ÞB0 (20)

where iW 00 is defined below. It can be shown that

YM�1

m¼1

sinh�o
m ¼ 2�ðM�1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M

sinh2Msinh�11

sinh2sinh�11

s
¼ 2�ðM�1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M

sinhMsinh�11 coshMsinh�11ffiffiffi
2

p
s

(21)

YM�1

m¼1

sinh�c
m ¼ 2�ðM�1ÞM sinhMsinh�11 (22)

so, restoring all D� 2 factors in the amplitude and summing only over K, the time interval spanned by the open string
propagator, we infer

� a�P�
G;closed ¼ M

X
K

�hN þ 1; ð0Þgj0; f0giclosed
DclosedðN þ 1Þ

�
D�2

¼ M
X1
K¼1

�
eK
P

M�1
m¼1

ð�c
m��o

mÞ=2�ðK�1ÞB0Q
M�1
m¼1;odd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2K�o

m

p
�
cothMsinh�11

M
ffiffiffi
2

p
�
1=4 Z

d �qKmd �q
L
me

iW 00
�
D�2

(23)
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iW00 ¼ ��

2

�X
m

ð �qK2
m þ �qL2m Þ þ X

m0;m00

�qKm0 �qKm00 þ �qLm0 �qLm00ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh�c

m0 sinh�c
m00

p �
4

M2

X
m odd

Umm0Umm00 sinh�o
m cothK�o

m þ 4

M
sin

m0�
M

sin
m00�
M

�

� 8

M2

X
m0;m00

�qKsm0 �qLsm00ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh�c

m0 sinh�c
m00

p X
m odd

Umm0Umm00
sinh�o

m

sinhK�o
m

�

� ��

� X
m0;m00

ð �qKm0 �qKm00 þ �qLm0 �qLm00 ÞAm0m00 þ 2
X
m0;m00

�qKm0 �qLm00Bm0m00

�
(24)

With the definitions on the last line

Z
d �qKmd �q

L
me

iW 00 ¼ det�1=2
A B

B A

 !

¼ det�1=2ðAþ BÞ det�1=2ðA� BÞ: (25)

The last equality follows because the eigenvectors of

A B

B A

 !

can be taken to be of the form

v�
�v�

 !

where v� is an eigenvector of A� B. Finally we summa-
rize the result

�a�P�
G;closed ¼ M

X1
K¼1

��
cothMsinh�11

M
ffiffiffi
2

p
�
1=4

� eK
P

M�1
m¼1

ð�c
m��o

mÞ=2�ðK�1ÞB0Q
M�1
m¼1;odd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2K�o

m

p

� det�1=2
A B

B A

 !�
D�2

(26)

Am0m00 ¼ 	m0m00

2
þ 2

M

sinðm0�=MÞ sinðm00�=MÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh�c

m0 sinh�c
m00

p
þ 2

M2

X
m odd

Umm0Umm00 sinh�o
m cothK�o

mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh�c

m0 sinh�c
m00

p (27)

Bm0m00 ¼ � 2

M2

X
m odd

Umm0Umm00 sinh�o
mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sinh�c
m0 sinh�c

m00
p

sinhK�o
m

(28)

ðA�BÞm0m00 ¼	m0m00

2
þ 2

M

sinðm0�=MÞsinðm00�=MÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh�c

m0 sinh�c
m00

p
þ 2

M2

X
modd

Umm0Umm00 sinh�o
mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sinh�c
m0 sinh�c

m00
p �

tanh
K�o

m

2

��1

(29)

B. Correction to the graviton energy

For the shift in excited energy levels, we need to identify
the nonleading exponential behaviors in the free closed
string propagator. Since we also want to pick out a specific
spin, it is important to work with the complete amplitude,
including all D� 2 factors:

hN þ 1; fqfgj0; fqigiclosedtotal ¼ ½DclosedðN þ 1Þ�D�2eiW
closed
total

(30)

iWclosed
total ¼ �T0

2

�ðq0;Nþ1 � q0;0Þ2
N þ 1

þ XM�1

m¼1

sinh�c
m

�
�
ðq2m;Nþ1 þ q2m;0Þ cothðN þ 1Þ�c

m

� 2qm;Nþ1 � qm;0

sinhðN þ 1Þ�c
m

��
(31)

where q denotes a D� 2 dimensional vector. Here we
identify the m<M=2 modes with cosine modes and the
m>M=2 modes with sine modes. The graviton state on
the lattice has energy 2�c

1 above the ground state energy,
and involves only the 1 modes. Also since it is a symmetric
traceless OðD� 2Þ tensor, its contribution to the closed
string propagator resides in the second order term in the
expansion of

exp

�
T0ðqc1;Nþ1 � qc1;0 þ qs1;Nþ1 � qs1;0Þ sinh�c

1

sinhðN þ 1Þ�c
1

�
� 1

þ 2T0ðqc1;Nþ1 � qc1;0 þ qs1;Nþ1 � qs1;0Þ sinh�c
1e

�ðNþ1Þ�c
1

þ 2T2
0ðqc1;Nþ1 � qc1;0 þ qs1;Nþ1 � qs1;0Þ2sinh2�c

1e
�2ðNþ1Þ�c

1

(32)

as N þ 1 ! 1. The first term (the 1) propagates an
OðD� 2Þ scalar, the second term propagates an
OðD� 2Þ vector, and the third term propagates a combi-
nation of a traceless symmetric tensor, and antisymmetric
tensor, and a scalar. Since all closed string states must be
cyclically invariant, the second (vector) term is projected
out of the spectrum. But, in any case, for the shift in the
graviton energy, we may simply drop the first two terms,
and keep only the symmetric traceless, cyclically invariant
part of the third term.
To identify the contribution of the cyclically symmetric

states to the third term we consider the new coordinates
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q�
1 � qc1 � iqs1 (33)

which acquire the factor e�2�i=M under a cyclic transformation of one step. To make a cyclically invariant combination, we
must have equal numbers of þ and � factors:

qc1;Nþ1 � qc1;0 þ qs1;Nþ1 � qs1;0 ¼
1

2
ðqþ1;Nþ1 � q�1;0 þ q�1;Nþ1 � qþ1;0Þ

ðqc1;Nþ1 � qc1;0 þ qs1;Nþ1 � qs1;0Þ2 ¼
1

4
½ðqþ1;Nþ1 � q�1;0Þ2 þ ðq�1;Nþ1 � qþ1;0Þ2� þ

1

2
qþ1;Nþ1 � q�1;0q�1;Nþ1 � qþ1;0

! 1

2
qþ1;Nþ1 � q�1;0q�1;Nþ1 � qþ1;0

¼ 1

2
qþk
1;Nþ1q

�l
1;Nþ1q

�k
1;0q

þl
1;0 (34)

where the last line shows the only contribution that survives the cyclic symmetry requirements. To see the SOðD� 2Þ
content write

q�k
1;0q

þl
1;0 ¼ qck1;0q

cl
1;0 þ qsk1;0q

sl
1;0 þ iðqck1;0qsl1;0 � qsk1;0q

sk
1;0Þ (35)

The third (imaginary) term gives the contribution of the antisymmetric tensor, whereas the first two (real) terms give a
symmetric tensor, which can further be decomposed into a traceless symmetric tensor and a scalar:

qck1;0q
cl
1;0 þ qsk1;0q

sl
1;0 ¼

�
qck1;0q

cl
1;0 þ qsk1;0q

sl
1;0 �

	kl

D� 2
ðqc21;0 þ qs21;0Þ

�
þ 	kl

D� 2
ðqc21;0 þ qs21;0Þ (36)

The quantity in square brackets on the right represents the contribution of the graviton in all spin configurations. To identify
the graviton energy shift it is sufficient to simply pick one polarization with k � l so that the trace subtraction drops out.�

exp

�
T0ðqc1;Nþ1 � qc1;0 þ qs1;Nþ1 � qs1;0Þ sinh�c

1

sinhðN þ 1Þ�c
1

��
cyc inv

� 1þ T2
0q

þk
1;Nþ1q

�l
1;Nþ1q

�k
1;0q

þl
1;0sinh

2�c
1e

�2ðNþ1Þ�c
1 þ � � � (37)

¼ 1þ T2
0ðqck1;Nþ1q

cl
1;Nþ1 þ qsk1;Nþ1q

sl
1;Nþ1Þðqck1;0qcl1;0 þ qsk1;0q

sl
1;0Þsinh2�c

1e
�2ðNþ1Þ�c

1 (38)

þ T2
0ðqck1;Nþ1q

sl
1;Nþ1 � qsk1;Nþ1q

cl
1;Nþ1Þðqck1;0qsl1;0 � qsk1;0q

cl
1;0Þsinh2�c

1e
�2ðNþ1Þ�c

1 þ � � � (39)

The first 1 term can be dropped in the calculation of the graviton and also the antisymmetric tensor energy shifts, since it
contributes only for scalar states (the tachyonic ground state and the massless dilaton). Then we can take J, L ! 1 in

hN þ 1; fxfgj0; fxigiGravitontotal ðK; JÞ � T4
0sinh

4�c
1½DclosedðJÞDopenðKÞDclosedðLÞ�D�2e�2ðLþJÞ�c

1

�
Z

dqKmdq
L
i ½qckf;1qclf;1 þ qskf;1q

sl
f;1�½qckL;1qclL;1 þ qskL;1q

sl
L;1�½qck0K;1q

cl0
K;1 þ qsk

0
K;1q

sl0
K;1�

� ½qck0i;1 q
cl0
i;1 þ qsk

0
i;1q

sl0
i;1�eiWtotal�ðK�1ÞðD�2ÞB0�T0½ðxLM�xL

1
Þ2þðxKM�xK

1
Þ2�=4 (40)

The sum over K of this expression should be compared to the free closed string propagator for the graviton

½DðN þ 1Þ�D�2T2
0sinh

2�c
1e

�2ðNþ1Þ�c
1½qckf;1qclf;1 þ qskf;1q

sl
f;1�½qcki;1qcli;1 þ qski;1q

sl
i;1� (41)

to read off the graviton energy shift:

MT2
0sinh

2�c
1

X1
K¼1

�
DclosedðJÞDopenðKÞDclosedðLÞ

DðN þ 1Þ
�
D�2

e2K�
c
1�ðK�1ÞðD�2ÞB0

�
Z

dqKmdq
L
i ½qckL;1qclL;1 þ qskL;1q

sl
L;1�½qck0K;1q

cl0
K;1 þ qsk

0
K;1q

sl0
K;1�eiWtotal�T0½ðxLM�xL

1
Þ2þðxKM�xK

1
Þ2�=4

¼ �a

2
ð	kk0	ll0 þ 	kl0	lk0 Þ�P�

Graviton þ C	kl	k0l0 (42)

GEORGIOS PAPATHANASIOU AND CHARLES B. THORN PHYSICAL REVIEW D 86, 066002 (2012)

066002-8



where the C term contributes to the dilaton energy shift. (If C ¼ 0 the graviton and dilaton remain degenerate.) Here iW
is the same expression (15) that we used in the evaluation of the ground state energy shift. A simple way to isolate
the graviton shift is to simply choose index values for which the C term decouples. For example, take k ¼ k0 ¼ 1 and
l ¼ l0 ¼ 2:

�a�P�
Graviton ¼ 2MT2

0sinh
2�c

1

X1
K¼1

�
DclosedðJÞDopenðKÞDclosedðLÞ

DðN þ 1Þ
�
D�2

e2K�c
1
�ðK�1ÞðD�2ÞB0

�
Z

dqKmdq
L
m½qc1L;1qc2L;1 þ qs1L;1q

s2
L;1�½qc1K;1q

c2
K;1 þ qs1K;1q

s2
K;1�eiWtotal�T0½ðxLM�xL

1
Þ2þðxKM�xK

1
Þ2�=4

¼ 2MT2
0sinh

2�c
1

X1
K¼1

�
DclosedðJÞDopenðKÞDclosedðLÞ

DðN þ 1Þ
�
D�2

e2K�c
1
�ðK�1ÞðD�2ÞB0

�
Z

dqKmdq
L
m½qc1L;1qc1K;1qc2L;1qc2K;1 þ qs1L;1q

s1
K;1q

s2
L;1q

s2
K;1�eiWtotal�T0½ðxLM�xL1 Þ2þðxKM�xK1 Þ2�=4

� 2MT2
0sinh

2�c
1

X1
K¼1

�
DclosedðJÞDopenðKÞDclosedðLÞ

DðN þ 1Þ
�
D�2

e2K�c
1�ðK�1ÞB0ðhqc1L;1qc1K;1i2 þ hqs1L;1qs1K;1i2Þ

�
Z

dqKmdq
L
me

iWtotal�T0½ðxLM�xL
1
Þ2þðxKM�xK

1
Þ2�=4 (43)

where in the second and third forms we take advantage of
the fact that the integration is over independent Gaussians,
so the language of correlations reflected in the h� � �i nota-
tion is appropriate. The correlator of cosine modes is just
that of the free closed string and is easily shown to be

hqc1L;1qc1K;1i ¼
sinhL�c

1 sinhJ�
c
1

T0 sinh�
c
1 sinhðK þ J þ LÞ�c

1

! 1

2T0 sinh�
c
1

e�K�c
1 (44)

in the limit J, L ! 1.
The correlator of sine modes is of course more compli-

cated because they involve the nontrivial overlap of the
closed and open string modes.

hqs1L;1qs1K;1i ¼
�

T0 sinh�
c
1

h �qs1L;1 �qs1K;1i (45)

h �qs1L;1 �qs1K;1i ¼
R
d �qK;md �qL;m �qsL;1 �q

s
K;1e

iW 00R
d �qK;md �qL;me

iW 00 (46)

Recall that

iW00 ¼ �� �qT
A B

B A

 !

so adding a source term JT �q, we complete the square to
evaluate

heJT �qi ¼ exp

�
1

4�
JT

A B

B A

 !�1

J

�
(47)

With the definition

A B

B A

 !�1

¼ A0 B0

B0 A0

 !
(48)

A0 ¼ ðA�BA�1BÞ�1¼1

2
ððAþBÞ�1þðA�BÞ�1Þ

B0 ¼ ðB�AB�1AÞ�1¼1

2
ððAþBÞ�1�ðA�BÞ�1Þ; (49)

we then have

hqs1L;1qs1K;1i ¼
1

2T0 sinh�
c
1

B0
1;1 (50)

III. NUMERICAL ANALYSIS

A. Closed string ground state

Here we will perform a numerical study of the 1-loop
shift in the ground state energy for the closed string in
D ¼ 26 dimensions, with the help of MATHEMATICA. In
particular, we will rescale the energy shift (26) by an
overall factor of M (notice also �P�

G;closed and 	P�
K differ

by a minus sign),

� a�P�
G;closed

M
� X1

K¼1

	P�
K ¼

¼ X1
K¼1

��
cothðMsinh�11Þ

M
ffiffiffi
2

p
�
1=4

� eK
P

M�1
m¼1

ð�c
m��o

mÞ=2�ðK�1ÞB0Q
M�1
m¼1;odd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2K�o

m

p

� det�1=2 A B
B A

� ��
24
; (51)
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where A and B are given by (27) and (28), as it will turn out
that this yields a finite quantity for M ! 1, which is just
what is expected from the bulk term in �P�. It is instruc-
tive to start by investigating the dependence of the sum-
mand 	P�

K onM and K, as a means to also set a reasonable
cutoff Kmax 	 K in the sum. For fixed M, 	P�

K decreases
rapidly for increasing K, and for K 
 M it becomes

proportional to e�9:428K=M times an M-dependent factor.
This fact is evident in Fig. 4, which also indicates that
Kmax ¼ 2M is a sufficiently large cutoff, given that the
largest term in the sum is 	P�

1 ¼ 1 for any M, and
	PKmax

� 10�12 for M 	 195, precisely indicating the

accuracy of our cutoff.
For fixed K � M, we also find a good fit to

	P�
K ¼ cK1 þ cK2

M2
þO

�
1

M3

�
(52)

where roughly cK1 � K�3 and cK2 � K�1. The particular
examples K ¼ 2, 3, 4, 5 are presented in Fig. 5. Since this
behavior changes as K becomes comparable to M, it
suggests that the sum over K should give rise to a
logM=M2 term due to

XM
K¼1

cK2 �HðMÞ � logM for M 
 1; (53)

where HðMÞ is the Mth harmonic number. Similarly the
sum of cK1 yields harmonic numbers of order 3, whose large
M expansion suggests the absence of an 1=M term.

We should also note that in both regimes we examined,
the general structure of the dependence on M and K is
correctly captured by the discretized version of the con-
tinuum amplitude (9). Denoting the summand of the latter
(up to a proportionality factor) with a prime in order to
avoid confusion, we have for D ¼ 26

	P�0
K ¼

�
�

Msinhð�K=MÞ
�
3

¼
8><
>:
�
2�
M

	
3
e�3�K=MþOðe�5�K=MÞ K
M

1
K3� �2

2KM2þO
�
1
M4

	
K�M

(54)

For K 
 M there is also approximate agreement in the
value of the exponent, although for theK � M expansions
more detailed comparison of the coefficients of 	P�0

K and
	P�

K reveals that they are not simply proportional to each
other.
Armed with this intuition, we proceed to the numerical

calculation of (51), summed up to Kmax ¼ 2M, and for
values of M ranging from 5 to 995 in steps of 10. We fit
the generated data for different subintervals between
M 2 ½195; 995� to ensure that M is sufficiently large and
to test the stability of our fits, and also calculate the value
of R2 as an estimate of their goodness. We find that indeed
the fit

� a�P�
G;closed

M
¼ c1 þ c2

1

M2
þ c3

logM

M2
(55)

with

c1 ¼ 1:158863267� 3 � 10�9; c2 ¼ 2:799� 0:011;

c3 ¼ �2:800� 0:002 (56)

matches excellently with the data, with the values of the
coefficients varying only mildly when fitting different
subintervals in M (the error estimates are precisely taking
this interval dependence into account).
Our main finding of this section, (55), is plotted against

the numerical data in Fig. 6. We’ve also included the fit
with c3 ¼ 0 to show its insufficiency in accurately describ-
ing the data. As far as the fit with c2 ¼ 0 is concerned, it
leads to values of c3 which may differ up to 7% depending
on the interval of the fit, and generally one should also
expect a constant multiplying M inside the logarithm. As
additional evidence that the M-dependence is indeed cor-
rectly captured by (55), we also mention that when fitting
the entire interval M 2 ½195; 995�, the value of R2 differs
from 1 by a mere 3 � 10�11, whereas for the c2 ¼ 0 and
c3 ¼ 0 cases the differences are 6 � 10�5 and 0.002,
respectively. Finally, our expectations for the absence of
an 1=M term is confirmed by the fact that its inclusion
yields unnaturally small values for its coefficient and does
not substantially improve the fit.
As described in the introduction, the bulk counterterm

can be chosen to cancel the contribution to P� propor-
tional to M, and what is left gives the physically signi-
ficant contribution. Lorentz invariance requires that this
residuum behave at large M as 1=M, since �m2¼
2MaT0ð�P��Bulk TermÞ. Our results (55) and (56) con-
tradict this requirement because of the lnM dependence.

0.0 0.5 1.0 1.5 2.0
10 15

10 12

10 9

10 6

0.001

1

K M

P
K

995

795

595

395

195
M

FIG. 4 (color online). Log-linear plot for the summand of the
rescaled ground state energy shift (51), with each curve exhib-
iting its dependence on K for a fixed value of M. We have
rescaled the horizontal axis to K=M in order to demonstrate that
for a large enough value of the latter, log	P�

K develops the same
slope. The plot also justifies our choice Kmax ¼ 2M for the cutoff
in the K sum.

GEORGIOS PAPATHANASIOU AND CHARLES B. THORN PHYSICAL REVIEW D 86, 066002 (2012)

066002-10



Taken literally, the result implies a logarithmically diver-
gent self mass: lnM ¼ lnPþ=aT0 ¼ lnð1=aÞ þ lnðPþ=T0Þ,
which is to be expected from the dq=q behavior in the
covariant expression for the self-energy. As is well known
this divergence can be absorbed in a renormalization of the
Regge slope parameter �0 ¼ 1=2�T0. But the lnP

þ signi-
fies a noncovariant finite part.

The origin of this lnM factor can be traced to the sum
over K of the 1=K dependence we saw in the summand
when K <<M. The lightcone lattice has cut off the
logarithmic UV divergence (small K), but the large K
behavior is cut off at K ¼ OðMÞ, because the level
spacing is of order 1=M, so

P
Kð1=KÞ ¼ OðlnMÞ. As

mentioned in the introduction, the presence of the B0

counterterm offers a way to interpret the lattice calcu-
lation that avoids the difficulty. By adding a small posi-
tive constant B0 ! B0 þ � the cutoff on the K sum
becomes 1=� instead of M, and the residuum will behave
as ð1=MÞ lnð1=�Þ which is still divergent as � ! 0, but
remains compatible with Lorentz invariance. Then the
lnð1=�Þ can be absorbed in a redefinition of T0 before
taking M ! 1. As we shall see in the next subsection,
this same interpretation leads to a zero self-energy for
the graviton state.

B. Graviton

We proceed to investigate how the lightcone lattice
handles nontachyonic states by looking at the 1-loop
mass shift of the spin-2 excitation of the closed string,
representing the graviton. Similarly to the ground state,
with the help of (44) and (50), we may rewrite (43) in the J,
L ! 1 limit as
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FIG. 6 (color online). Rescaled ground state energy shift as a
function of M. We present fits with and without a logM term, in
order to demonstrate the necessity of the latter for agreement
with the data.
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FIG. 5 (color online). Summand for the rescaled ground state energy shift as a function ofM for K ¼ 2; 3; 4; 5 � M, including fits of
the form (52).
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� a�P�
Graviton

M
¼ 1

2

X1
K¼1

½1þ ðeK�c
1B0

1;1Þ2�	P�
K

� 1

2

X1
K¼1

ð1þ CK
GÞ	P�

K ; (57)

where 	P�
K is the summand of the rescaled ground state

shift, defined in (51).
As 	P�

K has been determined in the previous section, the
only additional numerical computation that has to be done
is for the coefficient CK

G. A preliminary analysis shows that

for fixed M and varying K this is a rapidly increasing
function which for K 
 M becomes proportional to

roughly e6:28K=M, as can be seen in Fig. 7. However, given
the behavior of 	P�

K in the same regime, their product is
guaranteed to converge, albeit more slowly. As far as the
regime K � M is concerned, we observe that C1

G ¼ 1 for

any M, and more generally CK
G ¼ 1þ c=M2 þOð1=M3Þ.

The first two nontrivial examples K ¼ 2, 3 are plotted in
Fig. 8. The fact that the constant term is independent of K
and equal to one guarantees that the leading divergence for

the ground state and the graviton is the same, as it should
for all states.
Before evaluating the entire sum (57), it is again useful

to examine CK
G	P

�
K for fixed K. As can be seen in Fig. 9,

for individual K � M the latter has an expansion in M of
the form (52), where cK1 are roughly equal and cK2 are
roughly opposite between the ground state and the gravi-
ton. Then the sum in K is depicted in Fig. 10 similarly
described by a fit of the form (55), where again the coef-
ficients c1 and c3 are found to be equal and opposite
respectively within our margins of error, however c2 ¼
�1:93� 0:04. This is a first hint that although additional
cancellations occur for the graviton, which may remove the
divergent logM terms, the lattice regularization, in the
absence of the � prescription, still leaves an unphysical
finite mass shift for the graviton. Moving now to the entire
summand (57), from Fig. 11 we infer it behaves as

1

2
ð1þ CK

GÞ	P�
K ¼ ~cK1 þ ~cK2

M4
þO

�
1

M5

�
(58)

with ~cK1 ’ cK1 � K�3 and ~cK2 � K, which is consistent with
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FIG. 7 (color online). Coefficient CK
G in the rescaled graviton energy shift (57) as a function of K=M, with each curve corresponding

to varying K for a fixed value of M. On the left-hand side we plot the entire range of summation for K=M, it is evident that curves for
differentM values are indistinguishable. On the right-hand side we zoom into a small region in order to see the mild dependence of the
logCK

G offset on M.
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FIG. 8 (color online). Coefficient CK
G in the rescaled graviton energy shift (57) as a function M for fixed K ¼ 2; 3 � M.
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XM
K¼1

~cK2 �M2=2 for M 
 1; (59)

introducing an additional contribution that changes the c2
coefficient for the graviton, compared to the ground state.
Finally, we find that the fit for the entire rescaled energy
shift (see Fig. 12)

� a�P�
Graviton

M
¼ ~c1 þ ~c2

1

M2
; (60)

with

~c 1 ¼ 1:158863276� 1:5 � 10�8

~c2 ¼ 0:454� 0:004;
(61)

is in very good agreement with the numerical data3 and our
previous quantitative and qualitative observations.

Our results indicate the absence of the lnM Lorentz
violating effect we found for the tachyon,4 but still the K
sum with a cutoff of OðMÞ, leads to the undesirable con-
clusion that the graviton would gain a (necessarily finite)
nonzero mass at one loop order. This is a (more subtle)
violation of Lorentz invariance. However, with the � pre-
scription introduced to interpret the tachyon mass shift,
this difficulty is avoided. Putting B0 ! B0 þ � cuts off the
K sum at �1=�, so the large M expansion at fixed �
encounters no 1=M2 contribution and hence no shift in
the graviton mass. It is important to appreciate that this
interpretation requires taking the continuum limit before
taking � ! 0.

IV. D-BRANES

We extend the discussion to the case when several of the
transverse open string coordinates satisfy Dirichlet condi-
tions. In current popular terminology this is known as
closed string theory in the presence of D-branes [13]. To

avoid confusion we will call such coordinates yji . We shall
follow [14] in adapting the lightcone lattice to Dirichlet
boundary conditions. Starting from the closed string
potential energy for one such coordinate

Vclosed ¼ T0

2

XM
i¼1

ðyiþ1 � yiÞ2 (62)

we pass to the potential energy for a Dirichlet open string
with say yl ¼ 0 by the following substitution

ðylþ1 � ylÞ2 þ ðyl � yl�1Þ2 ! y2lþ1 þ y2l�1 þ 2
y2l : (63)

In other words we keep all M degrees of freedom on the
lattice. Instead of trying to set yl ¼ 0, we decouple it from
the other coordinates and give it a potential T0
y

2
l that

makes it produce an energy of Oð1Þ in lattice units. This
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FIG. 10 (color online).
P

KC
K
G	P

�
K as a function of M. Again

fits with and without a logM term are presented, so as to
demonstrate its necessity for matching with the data.

0 200 400 600 800 1000

0.10450

0.10452

0.10454

0.10456

0.10458

M

P 2
C

G2

0.104484
1.31238

M 2

Numerical data

0 200 400 600 800 1000
0.02770

0.02772

0.02774

0.02776

M

P 3
C

G3

0.0277004
0.957389

M 2

Numerical data

FIG. 9 (color online). CK
G	P

�
K as a functionM for fixed K ¼ 2; 3 � M. Comparing with Fig. 5, we notice that the constant terms are

equal, and the 1=M2 coefficients roughly opposite.

3In particular when fitting on the range M 2 ½195; 995�, R2

differs from 1 by 10�5. Including an additional logM=M2 term
yields an unnaturally small coefficient and does not improve R2

significantly.

4A lnM divergence in the graviton self mass could not be
absorbed in the Regge slope parameter because at zeroth order
the graviton is massless.
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means that excitations of yl will have infinite energy in the
continuum limit, which therefore locks this degree of free-
dom in its ground state. The normal modes for the Dirichlet
open string coordinates qDm are defined in Appendix A. In
this case it is convenient to alter the corresponding normal
mode expansion for the closed string, which forM odd are

yk¼ 1ffiffiffiffiffi
M

p q0þ
ffiffiffiffiffi
2

M

s XðM�1Þ=2

m¼1

�
qcmcos

2m�k

M
þqsm sin

2m�k

M

�
:

(64)

The modification forM even can be found in Appendix A.
We can express the open string normal modes in terms of

the closed string ones

qDm ¼
8<
: qsm=2 for m even

2
M

PðM�1Þ=2
m0¼0

qcm0UD
mm0 for m odd;

(65)

where we have defined qc0 � q0=
ffiffiffi
2

p
, and UD

mm0 is given in

Appendix D.
In constructing the one loop diagram, we would like

the j ¼ 0, N þ 1 sites of the open string propagator be
assigned half the closed string potential energy. We have

Vc � VD ¼ T0

2
ððyM � yM�1Þ2 þ ðy1 � yMÞ2

� y21 � y2M�1 � 2
y2MÞ
¼ �T0yMðy1 þ yM�1 þ ð
� 1ÞyMÞ
� �2UðyÞ: (66)

Thus the loop integrand is given by the product of the three

propagators times the factor eUðyÞ at each vertex. In terms
of the closed string normal modes

yM ¼ 1ffiffiffiffiffi
M

p q0 þ
ffiffiffiffiffi
2

M

s XðM�1Þ=2

m0¼1

qcm0 �
ffiffiffiffiffi
2

M

s XðM�1Þ=2

m0¼0

qcm0

(67)

y1 þ yM�1 ¼ 2ffiffiffiffiffi
M

p q0 þ 2

ffiffiffiffiffi
2

M

s XðM�1Þ=2

m0¼1

qcm0 cos
2m0�
M

� 2

ffiffiffiffiffi
2

M

s XðM�1Þ=2

m0¼0

qcm0 cos
2m0�
M

(68)

UðyÞ¼T0

M

XðM�1Þ=2

m0;m00¼0

qcm0qcm00

�

�1þcos

2m0�
M

þcos
2m00�
M

�

(69)

where we defined qc0 � q0=
ffiffiffi
2

p
. Then the one loop correc-

tion to the closed string propagator is

X
K

Z
dyKi dy

L
i e

�ðK�1ÞBD
0 þUðyKÞþUðyLÞhL; fyfgj0; fyLgiclosed

� hK; fyLgj0; fyKgiDhJ; fyKgj0; fyigiclosed
¼ X

K

DclosedðJÞDDðKÞDclosedðLÞ

�
Z

dyKi dy
L
i e

iW�ðK�1ÞBD
0 þUðyKÞþUðyLÞ
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FIG. 11 (color online). Entire summand of rescaled graviton energy shift (57) as a function M for fixed K ¼ 2; 3 � M.
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FIG. 12 (color online). Rescaled graviton energy shift as a
function of M.
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where as before we display only one factor for the Dirichlet coordinate y. Note that we expect BD
0 � B0 because of the

different boundary conditions.

A. Closed string tachyon scattering off D-brane

For the case where yi ¼ yf ¼ 0 we have, for each Dirichlet coordinate y, a term

iW þUðyKÞ þUðyLÞ ¼ �T0

2

�
qK2
0

1

J
þ qL20

1

L
þX

m

ðqK2cm þ qK2
smÞ sinh�c

m cothJ�c
m þX

m

ðqL2cm þ qL2smÞ sinh�c
m cothL�c

m

þX
m

ðqL2Dm þ qK2
DmÞ sinh�D

m cothK�D
m � 2

X
m

qLDmq
K
Dm

sinh�D
m

sinhK�D
m

� 2

M

XðM�1Þ=2

m0;m00¼0

ðqKcm0qKcm00 þ qLcm0qLcm00 Þ
�

� 1þ cos

2m0�
M

þ cos
2m00�
M

��
:

The next step is to change integration variables to the closed string normal modes, q0 ¼ qc0
ffiffiffi
2

p
, qcm, qsm. The Jacobian for

the change of variables yk ! q0, qcm, qsm is unity, and further changing q0 ! qc0 gives a factor
ffiffiffi
2

p
. The equality qD2m ¼

qsm means that integrating over the closed string sine modes simply implements closure on these modes. Thus we can write

hN þ 1; fxfgj0; fxigiclosed1loop ¼ Dclosed
sin ðN þ 1ÞDclosed

cos ðJÞDD
oddðKÞDclosed

cos ðLÞ
Z

2dqKcmdq
L
cme

iWD0�ðK�1ÞBD
0

¼ DclosedðN þ 1ÞD
closed
cos ðJÞDD

oddðKÞDclosed
cos ðLÞ

Dclosed
cos ðN þ 1Þ

Z
2dqKcmdq

L
cme

iWD0�ðK�1ÞBD
0 (70)

where

iWD0 ¼ �T0

2

�
qK2
0

1

J
þ qL20

1

L
þX

m

qK2cm sinh�c
m cothJ�c

m þX
m

qL2cm sinh�c
m cothL�c

m

þ XM
m¼1;odd

ðqL2Dm þ qK2
DmÞ sinh�D

m cothK�D
m � 2

XM
m¼1;odd

qLDmq
K
Dm

sinh�D
m

sinhK�D
m

� 2

M

XðM�1Þ=2

m0;m00¼0

ðqKcm0qKcm00 þ qLcm0qLcm00 Þ
�

� 1þ cos

2m0�
M

þ cos
2m00�
M

��
: (71)

Taking J, L large, the factors in front of the integral reduce to

Dclosed
cos ðJÞDD

oddðKÞDclosed
cos ðLÞ

Dclosed
cos ðN þ 1Þ !

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

JL

s
e
KðPðM�1Þ=2

m¼1
�c
m�

P
m;odd

�D
mÞ=2

Q
m;odd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2K�D

m

p ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ

m;odd

sinh�D
mQðM�1Þ=2

m¼1 sinh�c
m

vuuuut �
T0

2�

YðM�1Þ=2

m¼1

T0

�
sinh�c

m

�
(72)

Meanwhile

iWD0 ! �T0

2

� XðM�1Þ=2

m0¼1

ðqK2
cm þ qL2cmÞ sinh�c

m þ XðM�1Þ=2

m0;m00¼0

ðqKcm0qKcm00 þ qLcm0qLcm00 Þ
�
4

M2

XM
m¼1;odd

UD
mm0UD

mm00 sinh�D
m cothK�D

m

� 2

M

�

� 1þ cos

2m0�
M

þ cos
2m00�
M

��
� 8

M2

XðM�1Þ=2

m0;m00¼0

qKcm0qLcm00
XM

m¼1;odd

UD
mm0UD

mm00
sinh�D

m

sinhK�D
m

�
: (73)

Just as in the Neumann case it is convenient to absorb the factors in square brackets into a rescaling of the integration
variables �qm ¼ qcm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðT0=�Þ sinh�c
m

p
for m ¼ 1; � � � ðM� 1Þ=2 and �q0 ¼ q0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T0=2�

p ¼ qc0
ffiffiffiffiffiffiffiffiffiffiffiffi
T0=�

p
.
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hN þ 1; fxfgj0; fxigiclosed1loop

DclosedðN þ 1Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðN þ 1Þ

JL

s
eKð

PðM�1Þ=2
m¼1

�c
m�
P

m;odd
�D
mÞ=2�ðK�1ÞBD

0Q
m;odd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2K�D

m

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ

m;odd

sinh�D
mQðM�1Þ=2

m¼1 sinh�c
m

vuuuut Z
d �qKmd �q

L
me

iWD0
(74)

BD
0 ¼ B0 � �D

M

2
¼ 1

2
sinh�11� sinh�1

ffiffiffiffi



2

r

¼ 1

2
ln

1þ ffiffiffi
2

p

1þ 
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð
þ 2Þp : (75)

Comparing the prefactors in this formula with the corre-
sponding factors for the Neumann case we see that the
extra factors are

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðN þ 1Þ

JL

s
e�K�D

M=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh�D

M

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2K�D

M

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

JL

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�K�1 1� �2

1� �2K

s

(76)

where for brevity we have defined � � 1þ 
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2þ 
Þp ! 2� ffiffiffi

3
p � 0:268 for 
 ¼ 1. TheffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN þ 1Þ=JLp

factor just reflects the fact that the inter-
mediate open string has its ends fixed in space. In the
Neumann case this factor would instead be 1. The factor
�K�1 can be absorbed in the boundary counterterm, con-
verting its zero coupling value back to B0. The expansion
in powers of � represents excitations of order Oð1Þ in
lattice units, which will be suppressed in the continuum
physics.

Finally, we turn to the matrix determinant that results
from the execution of the Gaussian integration. For this we
need to spell out WD0 which remains after integrating out
the closed string sine modes. Expressed in terms of the new
variables �qm0 , we write

iW00
D � ��

� X
m0;m00

ð �qKm0 �qKm00 þ �qLm0 �qLm00 ÞAD
m0m00

þ 2
X
m0;m00

�qKm0 �qLm00BD
m0m00

�
(77)

AD
00¼

2

M2

XM
m¼1;odd

UD
m0U

D
m0 sinh�

D
mcothK�D

m�1þ


M
(78)

AD
0m0 ¼ AD

m00

¼ 2

M2

XM
m¼1;odd

UD
mm0UD

m0

sinh�D
m cothK�D

mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh�c

m0
p

� 
þ cos2m0�=M
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh�c

m0
p (79)

AD
m0m00 ¼	m0m00

2
þ 2

M2

XM
m¼1;odd

UD
mm0UD

mm00

� sinh�D
mcothK�

D
mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sinh�c
m0

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh�c

m00
p

�
�1þcosð2m0�=MÞþcosð2m00�=MÞ
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh�c

m0
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sinh�c
m00

p (80)

BD
00 ¼ � 2

M2

XM
m¼1;odd

UD
m0U

D
m0

sinh�D
m

sinhK�D
m

(81)

BD
0m0 ¼ BD

m00 ¼ � 2

M2

XM
m¼1;odd

UD
mm0UD

m0

sinh�D
m

sinhK�D
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh�c

m0
p

(82)

BD
m0m00 ¼ � 2

M2

XM
m¼1;odd

UD
mm0UD

mm00

� sinh�D
m

sinhK�D
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh�c

m0
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sinh�c
m00

p (83)

For a Dp-brane there are D� p� 1 ! 25� p coordi-
nates satisfying Dirichlet boundary conditions. Putting
everything together we have for the zero energy amplitude
for a closed string tachyon scattering off a Dp-brane:

�aMG;closed¼M
X1
K¼2

��
cothMsinh�11

M
ffiffiffi
2

p
�
1=4

�eK
P

M�1
m¼1

ð�c
m��o

mÞ=2�ðK�1ÞB0Q
M�1
m¼1;odd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�e�2K�o

m

p
�
24

�
�
det�1=2

A B

B A

 !�
p�1

�
� ffiffiffiffiffiffiffiffiffiffi

2�

MT0

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

1��2K

s
det�1=2

AD BD

BD AD

 !�
25�p

(84)

� ¼ 1þ 
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð
� 1Þp

(85)

where the scattering amplitude is obtained from the one
loop correction to the two closed string function by strip-

ping off the factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MT0ðN þ 1Þ=2�JLp

for each Dirichlet
dimension, as explained at the end of Appendix C. The
K ¼ 1 term is not included in the scattering amplitude
since it contributes to the I term of the S-matrix.
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B. Graviton scattering off D-brane

Let us take the graviton polarizations to lie within the
Dp-brane. Then in parallel to the derivation of (43) we
must simply insert the factors

2T2
0sinh

2�c
1ðhqc1L;1qc1K;1i2 þ hqs1L;1qs1K;1i2Þe2K�c

1

¼ 1

2
ð1þ ðB0

11e
K�c

1Þ2Þ (86)

into the K summand for the closed string tachyon scatter-
ing amplitude.

V. NUMERICS OF D-BRANES

In the case of a closed string tachyon scattering off a
Dp-brane, it is convenient to define the quantity

rK ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðAþ BÞ detðA� BÞ
M detðAD þ BDÞ detðAD � BDÞ

s
; (87)

such that the corresponding zero energy amplitude (85)
may be rewritten as

� aMG;closed

M
¼ X1

K¼2

	P�
K

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

1� �2K

s
rK

�
25�p

; (88)

where 	P� is the summand of the tachyon energy shift
(51). For simplicity we have set T0 ¼ 2� and also 
 ¼ 1,
as we have checked that varying its value does not sub-
stantially change our results.
Hence the ratio rK essentially encodes the difference

between Neumann and Dirichlet boundary conditions, and
we find that for K 
 M it falls off exponentially to a value
ofOð1Þ which depends very mildly onM, as can be seen in
Fig. 13. For fixed K � M we find that the fit

rK ¼ aK1 þ aK2
M2

þO
�
1

M3

�
(89)

matches very well with the data (see Fig. 14 for indicative
values of K), and by further examining the fitted coeffi-
cients for different values of K, we infer that they roughly
vary as

aK1 � 0:724þ 0:115

K � 1
; (90)
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FIG. 13 (color online). Linear plot and Log-linear plot of rK and its first difference respectively, where each curve corresponds to
fixed M and varying K. On the left we see that for K 
 M rK approaches a value which only depends on M, and on the right in
particular that the difference of rK from this value is proportional to e�6:28K=M for any M in this regime.
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FIG. 14 (color online). rK as a function of M for K ¼ 2, 15, including fits of the form (89).
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aK2 � �0:204þ 0:369K; (91)

see also Fig. 15. By factoring out the constant term in aK1 ,
which dominates rK, we can infer that the leading depen-
dence of the entire amplitude (88) on p will be equal to

ð0:724 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p Þ25�p or equivalently 0:69725�p.
In fact, it is evident that the only 1=ðKM2Þ term in the

summand (88) can arise when the aforementioned
p-dependent factor multiplies the Oð1=M2Þ term in 	P�
(52), and given (53), our analysis constitutes a definite
prediction for the relation of the logM=M2 term of the
entire sum in the absence or presence of D-branes.
Furthermore, the structure of rK is such that no 1=K2 or
K2n�2=M2n terms appear in the summand (88),5 and con-
sequently no 1=M terms appear in the sum, so that its
expansion to next-to-next-to-leading order in M is ex-
pected to be of the the same form as in (55). Having gained
this insight from the analysis of rK and the summand, we
proceed to evaluate and fit the entire zero energy amplitude
(88), and find that its leading large M behavior is indeed
captured by an expansion of the form

� aMG;closed

M
¼ c1 þ c2

1

M2
þ c3

logM

M2
: (92)

In Fig. 16 we compare the fit with the numerics and for
sample values ofp, and give for these cases the values of the
p-dependent coefficients. It’s worth taking a closer look at
the dependence of c3 on p in order to see the effect of the
presence of D-branes on the undesirable logarithmic diver-
gence, and also verify the prediction for its value based on
the aforementioned rK analysis. Plotting logð�c3Þ as a
function of p 2 ½1; 25� (see Fig. 17) we identify a clear
linear dependence, which we can fit in order to obtain

c3 ¼ �2:800 � ð0:697Þ25�p: (93)

This is precisely the coefficient of the corresponding term in
the closed string tachyon energy shift (56) times the factorwe

identified below (91). The dependence of c3 on p shows that
the presence of D-branes only softens the divergence in the
sense of reducing its coefficient, but cannot remove it com-
pletely. Furthermore, these results serve as additional evi-
dence that the existence of the divergence is solely due to the
summation of the term in the summand of the closed string
tachyon self-energy, which behaves as 1=K for small K.
Finally, let us conclude by briefly examining what

changes when instead of a tachyon we have a graviton
whose polarizations lie within the D-brane. We first recall
that in the absence of D-branes, the summand for the
graviton rescaled energy shift (58) has no 1=M2 term,
meaning that the graviton remains massless at short dis-
tances. On the contrary here we notice that the presence of
such a term in rK (89) will carry through to the graviton
summand, which can in turn be interpreted as mass gen-
eration due to the explicit breaking of Lorentz invariance
by the Dirichlet boundary conditions. Although in this
particular case the mass is tachyonic, generally having a
mechanism for mass generation may be viewed a desirable
feature, as we are ultimately interested in using open string
theory to probe QCD phenomena. Thus the massless spin-1
states of the former will have to acquire a mass if they are
to be put in correspondence with massive gluonic states.
In more detail, if our previous fits (58)–(89) have cap-

tured theM-dependence of each factor correctly, we should
have

�aMGraviton

M
¼ X1

K¼2

�
1

2
ð1þ CK

GÞ	P�
K

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

1� �2K

s
rK

�
25�p

(94)

¼ X1
K¼2

�
~cK1 þ

~cK2
M4

þO
�
1

M5

��

�
�
aK1 þ

aK2
M2

þO
�
1

M3

��
25�p

¼ X1
K¼2

�
~cK1 ðaK1 Þ25�pþð25�pÞ~cK1 ðaK1 Þ24�paK2

� 1

M2
þO

�
1

M3

��
: (95)
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FIG. 15 (color online). Values of the fitted coefficients aK1 , a
K
2 in (89) for K ¼ 1; . . . ; 30 plotted against their estimates (90) and (91).

51=K2 would require that aK1 has at least a linear term in K,
whereas the Kl=M2n terms that appear always have l � n� 3
for any n.
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In particular, the ratio of the second to first term should be a
linear function of p with slope aK1 =a

K
2 which always be-

comes zero for p ¼ 25, as we will now explicitly confirm.
We fit the summand in (94) for p ¼ 1 . . . ; 25 and K ¼
2; . . . ; 10 to inverse powers of M up to Oð1=M4Þ, take the
ratio of the coefficients of the first two terms and perform
linear regression in terms of p for each value of K. As can
be seen in Fig. 18, the dependence of the ratio of the
coefficients on p is clearly linear with the right intercept,
and comparing the slope to aK1 =a

K
2 we find that in all cases

it differs less than 0.1%.

VI. DISCUSSION AND CONCLUSION

In this article we have made a modest beginning to a
critical study of the effectiveness of the worldsheet lattice,
introduced in [3], for implementing a regulated bosonic
string loop expansion. We have limited our analysis to the
one-loop corrections to the closed string two point function
in the presence of D-branes, but we plan to analyze the
open string self-energy in a second paper.
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FIG. 16 (color online). Rescaled zero energy amplitude for a closed string tachyon scattering off a Dp-brane for p ¼ 3, 10, 15, 20 as
a function of M.
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FIG. 17 (color online). Log-linear plot of the logM=M2 coef-
ficient c3 in the large M expansion of the tachyon-Dp-brane
scattering amplitude (92), as a function of p.
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FIG. 18 (color online). Ratio of the first two coefficients in the
large M expansion of the summand of the tachyon-Dp-brane
scattering amplitude (95), as a function of p. Each line repre-
sents the Kth term in the sum, K ¼ 2; . . . ; 10, and the value of
the corresponding slope is also provided in the legend.
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A convenient way to summarize our results is to reca-
pitulate the lightcone lattice interpretation of the divergen-
ces in the well-known covariant expression for the closed
string tachyon self-energy (6):

� �P� ¼ C

2Pþ
Z 1

0

�
dq

q3
� 2

dq

q
þ qdq

�
(96)

The first term dq=q3 gives a quadratic divergence, which in
the covariant description is associated with the closed
string tachyon disappearing into the vacuum. On the light-
cone worldsheet lattice, we have seen that this divergence
is interpreted as a contribution to P� ���M, which can
be cancelled by the bulk counterterm proportional to the
area MðN þ 1Þ of the worldsheet lattice. The only states
that survive the continuum limit are those with the smallest
value of �. Since only energy differences are physically
significant, this shows that the quadratic divergence is
physically inconsequential.

The second term dq=q gives a logarithmic divergence,
associated with the disappearance of a closed string dilaton
into the vacuum. This divergence can be absorbed into a
renormalization of the Regge slope parameter �0. Our
analysis using the worldsheet lattice has shown that this
divergence shows up as a contribution to P� behaving as
ðaMÞ�1 lnM ¼ ðT0=P

þÞ lnðPþ=aT0Þ. The noncovariance
of the finite residuum was caused by a cutoff on the
K ¼ T=a sum proportional to M. If the cutoff were M
independent, the noncovariance would disappear. We then
noted that such a cutoff is naturally introduced by adding
a small positive number to the boundary counterterm
B0 ! B0 þ �. Then the lnM is replaced by lnð1=�Þ which
can then be covariantly absorbed in a renormalization of
�0, before the continuum limit M ! 1.

This same � prescription also prevents the graviton from
gaining a mass in the absence of D-branes. Interestingly, in
the presence of a D-brane the low energy amplitude for a
graviton scattering off the D-brane, which can be thought
of as a ‘‘self-energy’’ for a graviton propagating parallel to
the D-brane, suggests a nonzero graviton ‘‘mass’’ in spite
of the � prescription. This is a consistent outcome since
Lorentz invariance is broken by the Dirichlet boundary
conditions. This is important in applying these ideas to
large N QCD, since the closed string is supposed to model
glueballs, all of which should be massive.

At a more fundamental level, we can recognize � as a
natural and bona fide physical parameter of the lightcone
worldsheet system: it is simply a measure of the boundary
energy B � B0 þ � associated with the disappearance of a
link. It is also the minimum energy assigned to a free string
bit. The free open string has a Lorentz invariant spectrum
for only one value B ¼ B0 (or � ¼ 0), but it makes sense to
study the physics of the system as a function of B (or �).
For sufficiently large B,

B>
2G

�
; �>

2G

�
�1

2
sinh�1ð1Þ�0:1424350145; (97)

M free string bits will have an energy greater than the
ground state energy of a closed string of sizeM. In fact, for
B this big, any system of open strings with total bit number
M has energy larger than P�

closed;G. Thus for B> 2G=�, the

free closed string is stable against decay into any number
of open strings, and our scheme to sum planar diagrams
should make good physical sense.
Dialing the value of B gives us a new tool to analyze the

fate of open string tachyons in the bosonic string on the
lightcone worldsheet lattice. One can attempt to simulate
the sum over all patterns of missing links, as explained in
the introduction, in the closed string propagator for a range
of B values, and then study how the physics changes as B
is gradually decreased. If the dynamics is favorable, the
system should find the true vacuum with all traces of
tachyons removed. Of course it is possible that the dynam-
ics does not stabilize the theory lending weight to the
prevailing opinion that the presence of tachyons of the
bosonic string theory is an incurable disease which can
only be cured by replacing the bosonic string with the
superstring.
By introducing a D3-brane and suitable orbifold projec-

tions, it is possible to arrange the gauge boson sector of the
open string to enjoy the same dynamics as gauge field
theory in 4 space-time dimensions. Of course the open
and closed string tachyons are still present, but they could
simply be a symptom that perturbation theory is being
attempted about the ‘‘wrong’’ vacuum. If so, analyzing
the worldsheet lattice system as a function of B could
provide a way to find the ‘‘right’’ vacuum. It will be an
interesting exercise to apply these techniques to the prob-
lem of quark confinement.
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APPENDIX A: NORMAL MODES

A string with Pþ ¼ MaT0 is described at a fixed time by
M coordinates xi or yi, i ¼ 1; � � �M. In this article we
require several normal mode decompositions depending
on the boundary conditions.
Neumann open string

xi ¼ 1ffiffiffiffiffi
M

p q0 þ
ffiffiffiffiffi
2

M

s XM�1

m¼1

qom cos
m�ði� 1=2Þ

M
(A1)

q0 ¼
ffiffiffiffiffi
1

M

s XM
i¼1

xi; qom ¼
ffiffiffiffiffi
2

M

s X
i

xi cos
m�ði� 1=2Þ

M

(A2)
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Closed string (Neumann) M odd:

xi ¼ 1ffiffiffiffiffi
M

p q0 þ
ffiffiffiffiffi
2

M

s XðM�1Þ=2

m¼1

�
qcm cos

2m�ði� 1=2Þ
M

þ qsm sin
2m�ði� 1=2Þ

M

�
(A3)

M even:

xi ¼ 1ffiffiffiffiffi
M

p ðq0 þ qsM=2ð�ÞiÞ

þ
ffiffiffiffiffi
2

M

s XM=2�1

m¼1

�
qcm cos

2m�ði� 1=2Þ
M

þ qsm sin
2m�ði� 1=2Þ

M

�
(A4)

qcm ¼
ffiffiffiffiffi
2

M

s X
i

xi cos
2m�ði� 1=2Þ

M
;

qsm ¼
ffiffiffiffiffi
2

M

s X
i

xi sin
2m�ði� 1=2Þ

M

(A5)

qsM=2 ¼
ffiffiffiffiffi
1

M

s XM
i¼1

ð�Þixi; for M even; q0 ¼
ffiffiffiffiffi
1

M

s XM
i¼1

xi

(A6)

Dirichlet open string

yk ¼
ffiffiffiffiffi
2

M

s XM�1

m¼1

qDm sin
m�k

M
for k ¼ 1; � � � ;M� 1;

yM ¼ qDM (A7)

qDm ¼
ffiffiffiffiffi
2

M

s XM�1

k¼1

yk sin
m�k

M
; 0<m<M;

qDM ¼ yM (A8)

Closed string (Dirichlet) M odd:

yi ¼ 1ffiffiffiffiffi
M

p q0 þ
ffiffiffiffiffi
2

M

s XðM�1Þ=2

m¼1

�
qcm cos

2m�i

M
þ qsm sin

2m�i

M

�
(A9)

M even:

yi¼ 1ffiffiffiffiffi
M

p ðq0þqcM=2ð�ÞiÞ

þ
ffiffiffiffiffi
2

M

s XM=2�1

m¼1

�
qcmcos

2m�i

M
þqsm sin

2m�i

M

�
(A10)

qcm ¼
ffiffiffiffiffi
2

M

s X
i

yi cos
2m�i

M
; qsm ¼

ffiffiffiffiffi
2

M

s X
i

yi sin
2m�i

M

(A11)

q0 ¼
ffiffiffiffiffi
1

M

s XM
i¼1

yi; qcM=2 ¼
ffiffiffiffiffi
1

M

s XM
i¼1

ð�Þiyi;

ðfor M evenÞ (A12)

APPENDIX B: DETERMINANTS

Define the normal mode frequencies of a one dimen-
sional harmonic chain

�n � 4sin2
n�

2ðN þ 1Þ ; n ¼ 1; 2; . . . ; N (B1)

�n � 4sin2
m�

2M
; m ¼ 0; 1; . . . ;M� 1 (B2)

�k � 4sin2
ðkþ 1=2Þ�
2K þ 1

; k ¼ 0; 1; . . . ; K � 1 (B3)

	n � 4sin2
m�

M
; m ¼ 0; 1; . . . ;M� 1 (B4)

where �, �, �, 	 are the modes of a Dirichlet-Dirichlet,
Neumann-Neumann, Dirichlet-Neumann, closed chain re-
spectively. Then we are interested in the following deter-
minants: (see, for example [15])

DDDDD ¼ YN
n¼1

YM�1

m¼1

ð�n þ �mÞ�1=2;

DDNDN ¼ YN
n¼1

YM�1

m¼0

ð�n þ �mÞ�1=2

DDDDN ¼ YM�1

m¼1

YK�1

k¼0

ð�m þ �kÞ�1=2;

DDNNN ¼ YM�1

m¼0

YK�1

k¼0

ð�m þ �kÞ�1=2

DDD ring ¼
YN
n¼1

YM�1

m¼0

ð�n þ 	mÞ�1=2;

DN Dring ¼
YN�1

n¼0

YM�1

m¼0

ð�n þ 	mÞ�1=2

(B5)

where the subscripts denote Dirichlet (D) or Neumann (N)
boundary conditions on each of the four edges of the
rectangle. The cylinder determinant with Neumann bound-
ary conditions must be defined to exclude the overall zero
mode:
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DNN ring �
ffiffiffiffiffiffiffiffiffi
MN

p Y
ðn;mÞ�ð0;0Þ

ð�n þ 	mÞ�1=2

¼ ffiffiffiffiffiffiffiffiffi
MN

p YM�1

m¼1

	�1=2
m DDD ring ¼

ffiffiffiffiffi
N

M

s
DDD ring (B6)

The following product identities can be easily derived:

YN
n¼1

ð�n � zÞ ¼ sinðN þ 1Þ

sin


;

YK�1

k¼0

ð�k � zÞ ¼ cos½ð2K þ 1Þ
=2�
cos½
=2�

(B7)

YM�1

m¼1

ð	m � zÞ ¼ sin2ðM
=2Þ
sin2ð
=2Þ ;

YM�1

m¼1

ð�m � zÞ ¼ sinM


sin


(B8)

where z and 
 are related by z ¼ 4sin2½
=2�. Applying
these identities at z ¼ 0, 
 ¼ 0 shows immediately that

DDNDN ¼ DDDDD=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

p
and DDNNN ¼ DDDDN.

For convenience we collect here the expressions for the
open and closed string propagators at vanishing initial and
final coordinates [3]. These quantities are the determinants
just discussed in their various guises. For exampleDopen is
simply related to DDNDN, with one of the products per-
formed using the identities (B8).

D openðN þ 1Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

p
�
T0

2�

�
M=2

� YM�1

m¼1

�
sinhðN þ 1Þ�o

m

sinh�o
m

��1=2

� Dopen
evenD

open
odd (B9)

D open
odd ðN þ 1Þ ¼

�
T0

2�

�ðM�1Þ=4

� YM�1

m¼1;odd

�
sinhðN þ 1Þ�o

m

sinh�o
m

��1=2
(B10)

D closedðN þ 1Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

p
�
T0

2�

�
M=2

� YM�1

m¼1

�
sinhðN þ 1Þ�c

m

sinh�c
m

��1=2

� Dclosed
cos Dclosed

sin (B11)

D closed
sin ðN þ 1Þ ¼

�
T0

2�

�ðM�1Þ=4

� YðM�1Þ=2

m¼1

�
sinhðN þ 1Þ�c

m

sinh�c
m

��1=2

(B12)

where, for simplicity, we have written these formulas
assuming M is odd. If M were even, appropriate adjust-
ments to the limits of the products must be made.

APPENDIX C: PROPAGATORS

1. Neumann open string propagator

hN þ 1; fxfgj0; fxigiopen ¼ DopenðN þ 1ÞeiWopen (C1)

iWopen¼�T0

2

�ðq0;f�q0;iÞ2
Nþ1

þ XM�1

m¼1

sinh�o
m

�
ðq2m;iþq2m;fÞ

�cothðNþ1Þ�o
m�2

qm;iqm;f

sinhðNþ1Þ�o
m

��
(C2)

�o
m ¼ 2sinh�1

�
sin

m�

2M

�
(C3)

Where the qm’s are the normal mode coordinates for the
x’s. The right side is the result of doing the integrations

over all the xji with i ¼ 1; � � � ;M and j ¼ 1; � � �N.
The propagator spans N þ 1 time steps and this result
corresponds to assigning half the potential energy

T0

P
M�1
i¼1 ðxjiþ1�xji Þ2=2 to time j ¼ 0 and half to j¼Nþ1.

2. Dirichlet open string propagator

The Dirichlet open string propagator over a time of
K ¼ N þ 1 steps is evaluated to be

hN þ 1; fqfgj0; fqigiD ¼ DDðN þ 1ÞeiWD
(C4)

where

iWD ¼ �T0

2

�XM
m¼1

�
ðqf2Dm þ qi2DmÞ sinh�D

m cothK�D
m

� 2qfDmq
i
Dm

sinh�D
m

sinhK�D
m

��
(C5)

DDðN þ 1Þ ¼
�
T0

2�

�
M=2 YM

m¼1

�
sinhðN þ 1Þ�D

m

sinh�D
m

��1=2
(C6)

�D
M ¼ 2sinh�1

ffiffiffiffi



2

r
; �D

m ¼ �o
m ¼ 2sinh�1 sin

m�

2M
;

m ¼ 1; � � �M� 1 (C7)

We recall that the above expressions give the the result of

integrating over all the variables yji , for j ¼ 1; � � � ; N, with
half the potential energy assigned to j ¼ 0, N þ 1, which
is consistent with the closure requirement.
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3. Closed string propagator

hNþ1;fxfgj0;fxigiclosed¼DclosedðNþ1ÞeiWclosed (C8)

iWclosed¼�T0

2

�ðq0;f�q0;iÞ2
Nþ1

þ XM�1

m¼1

sinh�c
m

�
ðq2m;iþq2m;fÞ

�cothðNþ1Þ�c
m�2

qm;iqm;f

sinhðNþ1Þ�c
m

��
(C9)

�c
m ¼ 2sinh�1

�
sin

m�

M

�
(C10)

where the qm’s are the normal mode coordinates for the x’s.
When we divide the closed string normal modes into sine
and cosine modes, we arbitrarily call the m>M=2 modes
sine modes and the m<M=2 modes cosine modes. When
M is even, the M=2 mode is not doubled. The right side is

the result of doing the integrations over all the xji with
i ¼ 1; � � � ;M and j ¼ 1; � � �N. The propagator spans
N þ 1 time steps and this result corresponds to assigning

half the potential energy T0

P
M
i¼1ðxjiþ1 � xji Þ2=2 to time

j ¼ 0 and half to j ¼ N þ 1. In sums like these it is

understood that xjMþ1 � xj1. Whenever we concatenate at

a time j propagators with different numbers of missing
links, we will understand that we add terms T0ð�xÞ2=4 in
the exponent so that the potential assigned to time j is that
of the system with the least number of missing links. For
example, the concatenation of an open string propagator
with a closed string propagator entails the addition of

T0ðxjM � xj1Þ2=4 to the exponent.
Finally, we resolve the zero mode dependence of the

propagators in momentum space

Z dp

2�
e�p2T=2Pþ

eiðx
CM
f

�xCMi Þp

¼
ffiffiffiffiffiffiffiffiffiffi
Pþ

2�T

s
e�PþðxCM

f
�xCMi Þ2=2T

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MT0

2�ðN þ 1Þ

s
e�MT0ðxCMf �xCMi Þ2=2ðNþ1Þ

�
Z dp

2�
e�p2T=2Pþ

eiðx
CM
f

�xCMi Þp

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MT0

2�ðN þ 1Þ

s
e�T0ðq0;f�q0;iÞ2=2ðNþ1Þ; (C11)

where xCM � P
kxk=M ¼ q0=

ffiffiffiffiffi
M

p
is the center-of-mass

coordinate. From this we see that in extracting eigenstate
amplitudes from propagators defined with Dirichlet con-
ditions on initial and final states, we must not include the

factors
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MT0=2�ðN þ 1Þp

.

APPENDIX D: OVERLAP FORMULAS

Neumann open-closed

qom ¼
8<
: qcm=2 m even

2
M

PðM�1Þ=2
m0¼1 qsm0Umm0 m odd

(D1)

Umm0 ¼ sinðm0�=MÞ cosðm�=2MÞ
sin2ðm0�=MÞ � sin2ðm�=2MÞ (D2)

Dirichlet open-closed

qDM ¼ 1ffiffiffiffiffi
M

p q0 þ
ffiffiffiffiffi
2

M

s XðM�1Þ=2

m0¼1

qcm0 �
ffiffiffiffiffi
2

M

s XðM�1Þ=2

m0¼0

qcm0

(D3)

qDm ¼ qsm=2; for m even (D4)

qDm ¼
ffiffiffi
2

p
M

q0
XM�1

k¼1

sin
m�k

M
þ 2

M

XðM�1Þ=2

m0¼1

qcm0

� XM�1

k¼1

sin
m�k

M
cos

2m0�k
M

� 2

M

XðM�1Þ=2

m0¼0

qcm0
XM�1

k¼1

sin
m�k

M
cos

2m0�k
M

(D5)

where, for convenience, we have defined qc0 � q0=
ffiffiffi
2

p
.

The sum over k is easily done

XM�1

k¼1

sin
m�k

M
cos

2m0�k
M

¼ 	m odd

2

sinðm�=MÞ
sin2ðm�=2MÞ � sin2ðm0�=MÞ

� 	m oddU
D
mm0 (D6)

for odd m<M. We can unify the treatment of the m ¼ M

mode by defining UD
Mm0 ¼

ffiffiffiffiffiffiffiffiffiffi
M=2

p
for m0 ¼ 0; 1; � � � ;

ðM� 1Þ=2:

qDm ¼
8<
:
qsm=2 for m even

2
M

PðM�1Þ=2
m0¼0

qcm0UD
mm0 for m odd

(D7)

Open-2 Open

qð1Þ0 ¼
ffiffiffiffiffiffiffi
M1

M

s
q0 þ

ffiffiffiffiffiffiffiffiffiffiffiffi
2

MM1

s XM�1

m0¼1

qm0Uð1Þ
m00;

qð1Þm ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffi
MM1

p XM�1

m0¼1

qm0Uð1Þ
m0m

(D8)
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qð2Þ0 ¼
ffiffiffiffiffiffiffi
M2

M

s
q0 þ

ffiffiffiffiffiffiffiffiffiffiffiffi
2

MM2

s XM�1

m0¼1

qm0Uð2Þ
m00;

qð2Þm ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffi
MM2

p XM�1

m0¼1

qm0Uð2Þ
m0m

(D9)

Uð1Þ
m0m¼XM1

i¼1

cos
m0�
M

�
i�1

2

�
cos

m�

M1

�
i�1

2

�

¼ð�Þm
2

sinðm0�M1=MÞsinðm0�=2MÞcosðm�=2M1Þ
sin2ðm0�=2MÞ�sin2ðm�=2M1Þ

(D10)

Uð2Þ
m0m ¼ XM

i¼1þM1

cos
m0�
M

�
i� 1

2

�
cos

m�

M2

�
i�M1 � 1

2

�

¼ � 1

2

sinðm0�M1=MÞ sinðm0�=2MÞ cosðm�=2M2Þ
sin2ðm0�=2MÞ � sin2ðm�=2M2Þ

(D11)

and we note the identity qð1Þ0

ffiffiffiffiffiffiffi
M1

p þ qð2Þ0

ffiffiffiffiffiffiffi
M2

p ¼ q0
ffiffiffiffiffi
M

p
, as

expected from the fact that q0=
ffiffiffiffiffi
M

p
is the center of

momentum of the open string.

We can also express the q’s in terms of the qð1Þ, qð2Þ’s:

q0 ¼ qð1Þ0

ffiffiffiffiffiffiffi
M1

M

s
þ qð2Þ0

ffiffiffiffiffiffiffi
M2

M

s
(D12)

qm0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2

MM1

s �
qð1Þ0 Uð1Þ

m00þ
ffiffiffi
2

p XM1�1

m¼1

qð1Þm Uð1Þ
m0m

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
2

MM2

s �
qð2Þ0 Uð2Þ

m00þ
ffiffiffi
2

p XM2�1

m¼1

qð2Þm Uð2Þ
m0m

�
(D13)

APPENDIX E: ROBUSTNESS OF
NUMERICAL RESULTS

In this appendix, we perform additional tests which
verify the correctness of our numerical results, within the
stated accuracy. In particular, we recalculate 	P�

K with
more significant digits6 for indicative values of M and K,
and examine the improvement in its accuracy.

We will use the difference in 	P�
K between the calcu-

lations with different number of significant digits,�ð	P�
K Þ,

as a measure of our numeric error. We first notice that
�ð	P�

K Þ decreases almost exponentially when K increases
for fixed M, as can be seen in the example of Fig. 19.

The decrease is so rapid that we can clearly consider the
error of theK ¼ 1 term as the error of the entire sum, giving
the rescaled ground state energy shift �P�

G;closed in (51).

Fortunately, in this case we know the exact value 	P�
1 ¼ 1

for anyM, allowing us to also obtain the exact deviation of
our numerical results from it, which we present in Fig. 20.
We first notice that the deviations are centered around zero,
implying that no systematic error that offsets the value of
	P�

1 is present. Furthermore, it is evident that the deviation
increases with M, and for the range M 2 ½195; 995� we
have based our fits on, it lies between 10�11–10�10.
Let us now compare this with the error in the fit for

�P�
G;closed (55) as a result of the uncertainty in the coef-

ficients (56),

�c1 � 10�9; �

�
c2
M2

�
� 10�8;

�

�
c3 logM

M2

�
� 10�8 for M� 103;

(E1)

where we estimated the smallest possible contribution of
the last two terms by replacing M with roughly the largest
value we used in our numerical analysis. Clearly these
uncertainties are at least one order of magnitude larger
than the errors due to our choice for the number of signifi-
cant digits, so the effect of the latter on the determined
values for the coefficients ci will be negligible. This suc-
cessfully completes the investigation of the robustness of
our numerical results.

0 2 4 6 8 10

1 10 14

5 10 14
1 10 13

5 10 13
1 10 12

5 10 12
1 10 11

K

P
K

M 205

FIG. 19 (color online). Log-linear plot of the change in accu-
racy �ð	P�

K Þ as a function of K for M ¼ 205.

0 200 400 600 800 1000

1. 10 10

0

1. 10 10

2. 10 10

M

P 1

FIG. 20 (color online). Plot of the leading change in accuracy
�ð	P�

1 Þ as a function of M.

6In particular, we now keep 20 significant digits compared to
the 16 we had initially.
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