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There exist two deformations of standard electrodynamics which describe Lorentz symmetry violation

in the photon sector: CPT-odd Maxwell-Chern-Simons theory and CPT-even modified Maxwell theory.

In this article, we focus on the parity-odd nonbirefringent sector of modified Maxwell theory. It is coupled

to a standard Dirac theory of massive spin-1=2 fermions resulting in a modified quantum electrodynamics

(QED). This theory is discussed with respect to properties such as microcausality and unitarity, where it

turns out that these hold. Furthermore, a priori, the limit of the theory for vanishing Lorentz-violating

parameters seems to be discontinuous. The modified photon polarization vectors are interweaved with

preferred spacetime directions defined by the theory, and one vector even has a longitudinal part. That

structure remains in the limit mentioned. Since it is not clear whether or not this behavior is a gauge

artifact, the cross section for a physical process—modified Compton scattering—is calculated numeri-

cally. Despite the numerical instabilities occurring for scattering of unpolarized electrons off polarized

photons in the second physical polarization state, it is shown that for Lorentz-violating parameters much

smaller than one, the modified cross sections approach the standard QED results. Analytical investigations

strengthen the numerical computations. Hence, the theory proves to be consistent, at least with regard

to the investigations performed. This leads to the interesting outcome of the modification being a

well-defined parity-odd extension of QED.
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I. INTRODUCTION

Modern quantum field theories are based on fundamen-
tal symmetries. This holds for quantum electrodynamics
(QED) as well as for the standard model of elementary
particle physics. Whenever physicists talk about symme-
tries, they usually think of gauge invariance or the discrete
symmetries charge conjugation C, parity P, and time re-
versal T. However, there is one symmetry that often takes a
back seat: Lorentz invariance. This is not surprising, since
until now, there had been no convincing experimental
evidence for a violation of Lorentz invariance.1

However, a violation of other symmetries is part of the
everyday life of any high-energy physicist. For example,
violations of P and CP were measured long ago [8,9], and
a broken electroweak gauge symmetry with massive

W�, andZ0 bosons is an experimental fact.Why then should
Lorentz symmetry and its violation not be of interest?
There exist good theoretical arguments for Lorentz in-

variance being a symmetry which is restored at low ener-
gies [10]. At the Planck length, the topology of spacetime
may be dynamical, which could lead to it having a foamy
structure. The existence of such a spacetime foam [11,12]
may define a preferred reference frame—as is the case for
water in a glass—and thus violate Lorentz invariance.
Since a fundamental quantum theory of spacetime is still
not known, we have to rely on well-established theories
such as the standard model or special relativity for a
description of Lorentz violation. By introducing new pa-
rameters which deform these theories, it is possible to
parametrize Lorentz violation on the basis of standard
physics. One approach is to modify dispersion relations
of particles. However, such a procedure is very ad hoc, and
it is not evident where the modification comes from.
Therefore, a more elementary possibility is to parametrize
modifications on the level of Lagrange densities. A collec-
tion of all Lorentz-violating deformations of the standard
model which are gauge-invariant is known as the Lorentz-
violating extension of the standard model [13]. The mini-
mal version of this extension relies on power-counting
renormalizable terms, whereas the nonminimal version
also includes operators of mass dimension d > 4 (see,
e.g., the analyses performed in Refs. [14–16]).
The theoretical consistency of the standard model itself

has been verified by investigations based on Lorentz-
invariant quantum field theory which were performed
over decades (see, for example, Ref. [17]). However, it is
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1At the end of September 2011, this seemed to change with the

publication of the result by the OPERA collaboration, which
claimed to have discovered Lorentz violation in the neutrino
sector [1]. A large number of theoretical models emerged trying
to explain the observed anomaly, for example, by Fermi point
splitting [2], spontaneous symmetry breaking caused by the
existence of a fermionic condensate [3], or a multiple Lorentz
group structure [4]. However, the physics community remained
skeptical, and articles were published trying to explain the result
by an error source which had not been taken into account [5–7].
Unfortunately, at the 25th International Conference on Neutrino
Physics and Astrophysics, OPERA announced that their new
measurement yields a deviation of the neutrino velocity from the
speed of light, which is consistent with zero. Now, again, all laws
of nature seem to obey Lorentz invariance.
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not entirely clear if a Lorentz-violating theory is consis-
tent. Some results on certain sectors of the standard model
extension already exist [18–25], but there still remains
a lot which we can learn about Lorentz-violating quantum
field theories. Because of this, it is very important to
check Lorentz-violating deformations with respect to fun-
damental properties such as microcausality and unitarity.
Furthermore, it is of significance whether the modified
theory approaches the standard theory for arbitrarily small
deformations. The purpose of this paper is to investigate
these questions.

Especially in the case where Lorentz violation resides in
the photon sector, it can lead to a variety of new effects, for
example, a birefringent vacuum [13], new particle decays
[26,27], and ‘‘aetherlike’’ deviations from special relativ-
ity, which are modulated with the rotation of the Earth
around the Sun (e.g., Refs. [28,29]). From an experimental
point of view, photons produce clean signals making the
photon sector very important, in bounding Lorentz-
violating parameters.

There exist two gauge-invariant and power-counting
renormalizable deformations of the photon sector:
Maxwell-Chern-Simons theory (MCS theory) [30] and
modified Maxwell theory [13,31]. Each Lagrangian
contains additional terms besides the Maxwell term of
standard electrodynamics. The consistency of the isotropic
and one anisotropic sector of modifiedMaxwell theory was
already shown in Ref. [24]. In this article, a special sector,
which violates parity and is supposed to show no birefrin-
gence, will be investigated.

The paper is organized as follows. In Sec. II, modified
Maxwell theory is presented and restricted to the parity-
odd nonbirefringent case. Additionally, it is coupled to a
standard Dirac theory of massive spin-1=2 fermions, which
leads to a theory of modified QED. In Secs. III and IV, we
review the nonstandard photon dispersion relations and the
gauge propagator, which are determined from the field
equations [22,23]. That completes the current status of
research concerning this special sector of modified
Maxwell theory. The successive parts of the article deal
with the main issue, beginning with the deformed polariza-
tion vectors, which can also be obtained from the field
equations. After setting up the building blocks, we are ready
to discuss unitarity in Sec. VI and microcausality in
Sec. VII. The subsequent two sections are devoted to the
polarization vectors themselves. Since their form is rather
uncommon—even when considering Lorentz-violating
theories—we make comparisons with MCS theory and
other sectors of modified Maxwell theory. It will become
evident that the polarization vectors have a property which
distinguishes them from the polarization vectors of stan-
dard electrodynamics, even in the limit of vanishing
Lorentz violation. To test whether or not some residue of
the deformation remains in this limit, in Sec. IX, we com-
pute the cross section of the simplest tree-level process

involving external modified photons which is also allowed
by standard QED: Compton scattering. We conclude in the
last section. Readers may skip Secs. IV, V, VI, VII, and VIII
on first reading.

II. MODIFIED MAXWELL THEORY

A. Action and nonbirefringent ansatz

In this article, we focus on modified Maxwell theory
[10,13,31]. This particular Lorentz-violating theory is
characterized by the action

Smod Max ¼
Z
R4

d4xLmod MaxðxÞ; (2.1a)

Lmod MaxðxÞ ¼ � 1

4
������F��ðxÞF��ðxÞ

� 1

4
���%�F��ðxÞF%�ðxÞ; (2.1b)

which involves the field strength tensor F��ðxÞ �
@�A�ðxÞ � @�A�ðxÞ of the Uð1Þ gauge field A�ðxÞ. The
fields are defined on Minkowski spacetime with global
Cartesian coordinates ðx�Þ ¼ ðx0; xÞ ¼ ðct; x1; x2; x3Þ and
metric g��ðxÞ ¼ ��� � diagð1;�1;�1;�1Þ. The first

term in Eq. (2.1b) represents the standard Maxwell term,
and the second corresponds to a modification of the stan-
dard theory of photons. The fixed background field ���%�

selects preferred directions in spacetime and, therefore,
breaks Lorentz invariance.
The second term in Eq. (2.1b) is expected to have the

same symmetries as the first. These correspond to the sym-
metries of the Riemann curvature tensor, which reduces the
number of independent parameters to 20. Furthermore, a
vanishing double trace, ���

�� ¼ 0, is imposed. A nonvan-

ishing ���
�� can be absorbed by a field redefinition [13]

and does not contribute to physical observables. This addi-
tional condition leads to a remaining number of 19 inde-
pendent parameters.
Modified Maxwell theory has two distinct parameter

sectors which can be distinguished from each other by the
property of birefringence. The first consists of 10 parameters
and leads to birefringent photon modes at leading-order
Lorentz violation. The second is made up of 9 parameters
and shows no birefringence, at least to first order with
respect to the parameters. Since the 10 birefringent parame-
ters are bounded by experiment at the 10�32 level [32], we
will restrict our considerations to the nonbirefringent sector,
which can be parametrized by the following ansatz [33]:

���%� ¼ 1

2
ð��%~��� � ���~��% � ��%~��� þ ���~��%Þ;

(2.2)

with a constant symmetric and traceless 4� 4 matrix ~���.
Here and in the following, natural units are used with
ℏ ¼ c ¼ 1, where c corresponds to the maximal attainable
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velocity of the standard Dirac particles, whose action will be
defined in Sec. IIC.

There exists a premetric formulation of classical electro-
dynamics, which is solely based on the concept of a
manifold and does not need a metric. In this context, a
tensor density F (electromagnetic field strength) and pseu-
dotensor densities H , J (electromagnetic excitation and
electric current) are introduced. Since the resulting field
equations for these quantities are underdetermined, an
additional relation between F and H has to be imposed,
which is governed by the so-called constitutive four-
tensor �. Modified Maxwell theory emerges as one special
case of this description, namely, as the principal part of
the constitutive tensor previously mentioned [34,35]. In
Eq. (D.1.80) of the book [35], the nonbirefringent ansatz
of Eq. (2.2) can be found, as well. Section D.1.6 gives a
motivation for it as the simplest—but not the most
general—decomposition of the principal part of �.

Furthermore, note that a special sector of CPT-even
modified Maxwell theory arises as a contribution of the
one-loop effective action of a CPT-odd deformation in-
volving a spinor field and the photon field [36].

B. Restriction to the parity-odd anisotropic case

The anisotropic case considered concerns the parity-odd
sector of modified Maxwell theory (2.1) with the ansatz
from Eq. (2.2). This case is characterized by one purely
timelike normalized four-vector �� and one purely space-
like four-vector 	� containing three real parameters ~�01,
~�02, and ~�03:

~���¼1

2
ð��	�þ	���Þ�1

4
�
	
�

��; (2.3a)

ð��Þ¼ ð1;0;0;0Þ; ð	�Þ�ð0;2�Þ¼ ð0;2~�01;2~�02;2~�03Þ;
(2.3b)

ð~���Þ¼
0 ~�01 ~�02 ~�03

~�01 0 0 0

~�02 0 0 0

~�03 0 0 0

0
BBBBB@

1
CCCCCA; (2.3c)

where Eq. (2.3a) is the most general ansatz for a symmetric
and traceless tensor constructed from two four-vectors.
The second term on the right-hand side of Eq. (2.3a)
vanishes for the special choice (2.3b).

With the replacement rules given in Ref. [37], we can
express our parameters in terms of the standard model
extension (SME) parameters [31,33]:

~�01 ¼ �ð~�oþÞð23Þ; (2.4a)

~�02 ¼ �ð~�oþÞð31Þ; (2.4b)

~�03 ¼ �ð~�oþÞð12Þ: (2.4c)

Hence, the case considered here includes only parity-
violating coefficients.
This parity-odd case may be of relevance, since it might

reflect the parity-odd low-energy effective photon sector of
a quantum theory of spacetime. Besides five parameters of
the birefringent sector of modified Maxwell theory, whose
coefficients are already strongly bounded, there is only one
alternative parity-odd Lorentz-violating theory for the pho-
ton sector, which is gauge-invariant and power-counting
renormalizable: MCS theory [30]. However, the MCS
parameters are bounded to lie below 10�42 GeV by CMB
polarization measurements [38].
Since the bounds are not as strong for the parity-odd case

of nonbirefringent modified Maxwell theory defined by
Eq. (2.3), a physical understanding of this case is of
importance.

C. Coupling to matter: Parity-odd modified QED

Modified photons are coupled to matter by the minimal
coupling procedure to standard (Lorentz-invariant) spin- 12
Dirac particles with electric charge e and mass M. This
results in a parity-odd deformation of QED [39–41], which
is given by the action

S
parity-odd
modQED ½~�0m;e;M�¼S

parity-odd
modMax ½~�0m�þSDirac½e;M�; (2.5)

for m ¼ 1, 2, 3 and with the modified-Maxwell term (2.1),
(2.2), and (2.3) for the gauge field A�ðxÞ and the standard

Dirac term for the spinor field c ðxÞ,

SDirac½e;M� ¼
Z
R4

d4x �c ðxÞ½��ði@� � eA�ðxÞÞ �M�c ðxÞ:
(2.6)

Equation (2.6) is to be understood with standard Dirac
matrices �� corresponding to the Minkowski metric ���.

III. DISPERSION RELATIONS

The field equations [13,31,33] of modified Maxwell
theory in momentum space,

M��A� ¼ 0;

M�� � k
k
�
�� � k�k� � 2�����k�k�;

(3.1)

lead to the following dispersion relations [22] for the two
physical degrees of freedom of electromagnetic waves
(labeled 
 ¼ 1, 2):
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!1ðkÞ ¼ ~�01k1 þ ~�02k2 þ ~�03k3 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkj2 þ ð~�01k1 þ ~�02k2 þ ~�03k3Þ2

q
; (3.2a)

!2ðkÞ ¼ ~�01k1 þ ~�02k2 þ ~�03k3 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð~�01Þ2 þ ð~�02Þ2 þ ð~�03Þ2

q
jkj; (3.2b)

for wave vector k ¼ ðk1; k2; k3Þ and with the terms linear
in the components km explicitly showing the parity viola-
tion. To first order in ~�0m, the dispersion relations are equal
for both modes, but they differ at higher order.2 With the
modified Coulomb and Ampère law, it can be shown that
the dispersion relations (3.2) indeed belong to physical
photon modes. The procedure given in Ref. [13] eliminates
dispersion relations of unphysical, i.e. scalar and longitu-
dinal, modes from the field equations. The two are given by

!0ðkÞ ¼ !3ðkÞ ¼ jkj; (3.3)

where the index ‘‘0’’ refers to the scalar, and the index ‘‘3’’
to the longitudinal degree of freedom of the photon field.

The dispersion relations (3.2) can be cast in a more
compact form by defining components of the wave-vector
k which are parallel or orthogonal to the background
‘‘three-vector’’ �:

kk ¼ k � �̂; k? ¼ jk� ðk � �̂Þ�̂j;

�̂ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið~�01Þ2 þ ð~�02Þ2 þ ð~�03Þ2p
~�01

~�02

~�03

0
BB@

1
CCA; (3.4)

where kk 2 ð�1;1Þ and k? 2 ½0;1Þ. By doing so, it is

possible to write the dispersion relations (3.2) as follows:

!1ðk?; kkÞ ¼ Ekk þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2? þ ð1þ E2Þk2k

q
; (3.5a)

!2ðk?; kkÞ ¼ Ekk þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ E2

p
jkj; (3.5b)

where the three Lorentz-violating parameters ~�01, ~�02, and
~�03 are contained in the single parameter E which is
defined as

E � j�j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~�01Þ2 þ ð~�02Þ2 þ ð~�03Þ2

q
: (3.5c)

It is obvious that E 2 ½0;1Þ, whereas each single parame-
ter ~�01, ~�02, and ~�03 can be either positive or negative.
From the first definition of Eq. (3.4), we see that negative
parameters ~�01, ~�02, ~�03 are mimicked by a negative kk.

The phase and group velocity [42] of the above two
modes can be cast in the following form for small enough E:

vph;1 � !1

jkj ¼ 1þ E cos�þ E2

2
cos2�þ Oð"3Þ; (3.6a)

vph;2 � !2

jkj ¼ 1þ E cos�þ E2

2
þ Oð"3Þ; (3.6b)

vgr;1 �
��������@!1

@k

��������¼ 1þ E cos�þ E2

2
þ Oð"3Þ; (3.7a)

vgr;2 �
��������@!2

@k

��������¼ 1þ E cos�þ ð1þ sin2�Þ E
2

2
þ Oð"3Þ;

(3.7b)

where � is the angle between the three-momentumk and the

unit vector �̂: cos� ¼ k � �̂=jkj.
To leading order in E, the velocities above are equal:

vph;1 ¼ vph;2 ¼ vgr;1 ¼ vgr;2: (3.8)

Furthermore, Eqs. (3.6) and (3.7) show that both phase
and group velocity can be larger than 1. However, what
matters physically is the velocity of signal propagation,
which corresponds to the front velocity [42]:

vfr � lim
k�1

vph: (3.9)

Equation (3.9) can be interpreted as the velocity of the
highest-frequency forerunners of a signal. As can be seen
from Eq. (3.6), vph and hence also vfr do not depend on the

magnitude of the wave vector, but only on its direction. For
E � 1, we obtain vfr;1 ’ vfr;2 � vfr, where

vfr < 1 for 
=2< �< 3
=2; (3.10a)

vfr � 1 for 0 	 � 	 
=2 _ 3
=2 	 � < 2
: (3.10b)

Observe that, for small enough E, having vfr < 1 or vfr � 1
does not depend on the Lorentz-violating parameters but
only on the direction in which the classical wave propa-
gates. For completeness, we also give the phase velocities

for propagation parallel and orthogonal to �̂:

vph;k;1 ¼ !1ðk?; kkÞ
kk

��������k?¼0
¼ EsgnðkkÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ E2

p
¼ vph;k;2; (3.11a)

vph;?;1 ¼ !1ðk?; kkÞ
k?

��������kk¼0
¼ 1;

vph;?;2 ¼ !2ðk?; kkÞ
k?

��������kk¼0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ E2

p
;

(3.11b)

with the sign function

2It is evident that the so-called nonbirefringent ansatz (2.2) is
only nonbirefringent to first order in ~���. Nevertheless, we will
still use the term ‘‘nonbirefringent’’ in order to distinguish from
the nine-dimensional parameter sector of modified Maxwell
theory, which shows no birefringence at least to first-order
Lorentz violation, from the remaining ten coefficients. In the
latter parameter region, birefringent modes emerge already at
first order with respect to the Lorentz-violating parameters [31].
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sgnðxÞ ¼

8>><
>>:
1 for x > 0;

0 for x ¼ 0;

�1 for x < 0:

(3.12)

Note that the latter results are in agreement with the
inequalities of Eq. (3.10). We conclude that the front
velocity can be larger than 1 for the wave vector pointing
in certain directions. That leads us to the issue of micro-
causality, which will be discussed in Sec. VII.

IV. PROPAGATOR IN THE FEYNMAN GAUGE

So far, we have investigated the dispersion relations of
the classical theory. For a further analysis, especially con-
cerning the quantum theory, the gauge propagator will be
needed. The propagator is the Green’s function of the free
field equations (3.1) in momentum space. In order to
compute it, the gauge has to be fixed. We decide to use
the Feynman gauge [41,43,44], which can be implemented
by the gauge-fixing condition

L gfðxÞ ¼ � 1

2
ð@�A�ðxÞÞ2: (4.1)

The following ansatz for the propagator turns out to be
useful:

Ĝ�
jFeynman¼�ifþâ��
þ b̂k�k
þ ĉ���


þ d̂ðk��
þ��k
Þþ ê	�	
þ f̂ðk�	
þ	�k
Þ
þ ĝð��	
þ	��
ÞgK̂1: (4.2)

The propagator coefficients â ¼ âðk0;kÞ; . . . ; ĝ ¼ ĝðk0;kÞ
and the scalar propagator part K̂1 ¼ K̂1ðk0;kÞ follow from

the system of equations ðĜ�1Þ��Ĝ�
 ¼ i��

 with the dif-

ferential operator

ðG�1Þ�� ¼ ���@2 � 2��%��@%@�; (4.3)

in the Feynman gauge transformed to momentum space.
Scalar products ����, 	

�	�, and ��	� will be kept in the

result, in order to gain some insight in the covariant struc-
ture of the functions. However, we remark that, for the case
considered, �2 � ���� ¼ 1, 	2 � 	�	� ¼ �4E2, and

� � 	 � ��	� ¼ 0.

Specifically, the propagator coefficients and the scalar

propagators K̂1 and K̂2, where K̂2 appears in some of these
coefficients, are given by

K̂1 ¼ 2

2k � �k � 	 þ k2ð2� � � 	Þ ; (4.4a)

K̂2 � 4

4k � �k � 	 þ �2ðk � 	Þ2 þ 	2ðk � �Þ2 þ k2ð4� �2	2Þ ;
(4.4b)

â¼1; (4.5a)

b̂¼� 1

4k4
f�K̂2�2�ð2k ��k �	þk2ð2�� �	ÞÞg; (4.5b)

ĉ¼1

4
½k2	2�ðk �	Þ2�K̂2; (4.5c)

d̂¼k ��ð2ðk �	Þ2�k2	2Þþ2k2k �	
4k2

K̂2; (4.5d)

ê¼1

4
½k2�2�ðk ��Þ2�K̂2; (4.5e)

f̂¼k �	ð2ðk ��Þ2�k2�2Þþ2k2k ��
4k2

K̂2; (4.5f)

���2k ��k �	ð2k2�k ��k �	Þþðk �	Þ2ððk ��Þ2�k2�2Þ
þðk ��Þ2½ðk �	Þ2�k2	2�þk2½12k ��k �	þ�2ðk �	Þ2
þ	2ðk ��Þ2þk2ð4��2	2Þ�; (4.5g)

ĝ¼�1

4
½2k2þk ��k �	�K̂2; (4.5h)

where definition (4.5g) enters (4.5b).

The poles of K̂1 and K̂2 can be identified with the disper-

sion relations obtained in Sec. III. From K̂1ð!1;kÞ�1¼0,
that is

2k � �k � 	 þ k2ð2� � � 	Þjk0¼!1
¼ 0; (4.6)

the dispersion relation (3.2a) of the 
 ¼ 1mode is recovered.
Similarly, the dispersion relation (3.2b) of the 
 ¼ 2 mode

follows from K̂2ð!2;kÞ�1 ¼ 0, that is

4k ��k �	þ�2ðk �	Þ2þ	2ðk ��Þ2þk2ð4��2	2Þjk0¼!2
¼0;

(4.7)

The third pole k2 ¼ 0 corresponds to the dispersion relation
of scalar and longitudinal modes. This is clear from the fact
that this pole appears only in the gauge-dependent coeffi-

cients b̂, d̂, and f̂. These are multiplied by at least one photon
four-momentum and vanish by the Ward identity,3 if they
couple to a conserved current [44]. Since the Ward identity
results from gauge invariance, it also holds for modified
Maxwell theory, which is expected to be free of anomalies
[13]. Because of parity violation, the physical poles are
asymmetric with respect to the imaginary k0 axis.
The above result (4.2), (4.3), (4.4), and (4.5) equals the

propagator given in Ref. [23]. Every propagator coeffi-

cient, which contains the scalar propagator K̂2, is also

multiplied by K̂1. Hence, both modes appear together
throughout the propagator and the question arises whether
they can be separated. It can be shown that the propagator
can also be written in the following form:

Ĝ ��ðkÞjFeynman ¼ X
n¼1;2

�ðnÞ
��ðk0;kÞð�iĜðnÞðkÞÞ; (4.8)

where the tensor structure ��� is the same for both parts,

hence

3Assuming k2 � 0.
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�ð1Þ
�
¼�ð2Þ

�


¼þâ��
þ b̂k�k
þ ĉ���
þ d̂ðk��
þ��k
Þ
þ ê	�	
þ f̂ðk�	
þ	�k
Þþ ĝð��	
þ	��
Þ; (4.9)

with the coefficients â; . . . ; ĝ from Eq. (4.5). The scalar
propagator functions are then given by

Ĝð1ÞðkÞ ¼ 4K̂1K̂
�1
2

½ðk � �Þ2 � k2�	2 þ ðk � 	Þ2 ;

Ĝð2ÞðkÞ ¼ � 4

½ðk � �Þ2 � k2�	2 þ ðk � 	Þ2 :
(4.10)

The first part D̂ð1ÞðkÞ contains both polarization modes

encoded in K̂1 and K̂2, whereas the second part does not
involve any mode. The denominator ½ðk � �Þ2 � k2�	2 þ
ðk � 	Þ2 which appears in both parts does not have a zero
with respect to k0, hence it contains no dispersion relation.
So it does not seem that the polarization modes can be
separated, such that each propagator part contains exactly
one of the modes.

Finally, we can state that the structure of the propagator
of parity-odd nonbirefringent modified Maxwell theory is
rather unusual. In the next section, we will compute the
polarization vectors.

V. POLARIZATION VECTORS

In what follows, the physical (transverse) degrees of
freedom will be labeled with (1) and (2), respectively.
For a fixed nonzero ‘‘three-vector’’ � and a generic wave
vector k, the polarization vector of the 
 ¼ 1 mode reads

ð"ð1Þ�Þ ¼ 1ffiffiffiffiffiffi
N0p ð0; �� kÞ=j�� kj; (5.1)

where N0 is a normalization factor to be given later. The
polarization vector of the 
 ¼ 2 mode is orthogonal to
Eq. (5.1) and has a longitudinal component. It is given by

ð"ð2Þ�Þ ¼ 1ffiffiffiffiffiffiffi
N00p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j"ð2Þj2 � ð"0Þ2
q ð"0; "ð2ÞÞ; (5.2)

with

"0¼1

4
ðk2�ðk��Þ2Þððk�	Þ2�	2½k2�ðk��Þ2�Þ; (5.3a)

"ð2Þ¼
�
2jkj2j�j2�jk�ðk��Þj2

jkj2 þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þj�j2

q
jkjðk��Þ

�
k�ðk��Þþ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þj�j2

q
jkjþk��

�jk�ðk��Þj2
jkj2 k: (5.3b)

The polarization vector "ð1Þ is a solution of the field equations (3.1), when k0 is replaced by !1ðkÞ from Eq. (3.2a). The
polarization "ð2Þ is the corresponding solution for k0 replaced by !2ðkÞ from Eq. (3.2b). The normalization factors N0 in
Eq. (5.1) andN00 in Eq. (5.2) can be computed from the 00 component of the energy-momentum tensor. Note that the above
polarization vectors have been calculated in the Lorentz gauge, @�A

� ¼ 0.
For the Lorentz-violating decay processes considered, both the 
 ¼ 1 and the 
 ¼ 2 polarization modes contribute.

"ð1Þ�"ð1Þ� ¼ 1

N0 f���� þ �̂1k
�k� þ �̂1ðk��� þ ��k�Þ þ �̂1ðk�	� þ 	�k�Þ

þ �̂1�
��� þ �̂1	

�	� þ 	̂1ð��	� þ 	���Þgjk0¼!1
; (5.4)

with

�̂1 ¼ 	2

Q
; �̂ ¼ 	2½2k2 þ k � �k � 	�

Qð	 � kÞ ; �̂1 ¼ � k � 	
Q

; (5.5a)

	̂1 ¼ � 2k2 þ k � �k � 	
Q

; �̂1 ¼ k2�2 � ðk � �Þ2
Q

; �̂1 ¼ k2	2 � ðk � 	Þ2
Q

; (5.5b)

N0 ¼ 1

!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2? þ ð1þ E2Þk2k

q
; Q ¼ 	2½k2 � ðk � �Þ2� � ðk � 	Þ2; (5.5c)

where !1 ¼ !1ðk?; kkÞ is given by Eq. (3.5a). The denominator Q vanishes only for ~�01 ¼ ~�02 ¼ ~�03 ¼ 0 or k? ¼ 0. If
the polarization tensor of the 
 ¼ 1 mode is contracted with a gauge-invariant expression using the Ward identity,4 it can
be replaced by 
��j
¼1:

"ð1Þ�"ð1Þ� � 
��j
¼1; (5.6a)


��j
¼1 � "ð1Þ�"ð1Þ�jtruncated ¼ 1

N0 f���� þ �̂1�
��� þ �̂1	

�	� þ 	̂1ð��	� þ 	���Þgjk0¼!1
: (5.6b)

4This means dropping terms which are proportional to at least one external four-momentum k�, which we denote by theword ‘‘truncated.’’
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The polarization tensor of the 
 ¼ 2 mode is lengthy and is best written up in terms of kk and k? defined in Eq. (3.4).

"ð2Þ�"ð2Þ� ¼ 1

N00 fþ�̂2k
�k� þ �̂2ðk��� þ ��k�Þ þ �̂2ðk�	� þ 	�k�Þ þ �̂2�

��� þ �̂2	
�	� þ 	̂2ð��	� þ 	���Þgjk0¼!2

;

(5.7)

with

�̂2 ¼ E4

N
½Ekkk2? þ ð2k2k þ k2?Þ!2�2; (5.8a)

�̂2 ¼ E4

N
ðEkkk2? þ ð2k2k þ k2?Þ!2Þfk2?jkj2 � Ekkk2?!2 � ½2k2k þ k2?�!2

2g; (5.8b)

�̂2 ¼ � E3

2N
jkj2ð2kk!2 þ Ek2?Þ½Ekkk2? þ ð2k2k þ k2?Þ!2�; (5.8c)

�̂2 ¼ E4

N
½k2?ðk2? �!2

2Þ � Ekkk2?!2 þ k2kðk2? � 2!2
2Þ�2; (5.8d)

�̂2 ¼ E2

4N
jkj4ðEk2? þ 2kk!2Þ2; (5.8e)

	̂2 ¼ E3

2N
jkj2ðEk2? þ 2kk!2Þ½k2?ð!2

2 � k2?Þ þ Ekkk2?!2 � k2kðk2? � 2!2
2Þ�; (5.8f)

N00 ¼ E4k2?
2!2

2N
jkj2½þð4k2k þ k2?Þ!4

2 þ 4Ekkk2?!
3
2 þ ð4k4k þ 2k2?k

2
k þ ðE2 � 2Þk4?Þ!2

2

þ 4Ekkk2?jkj2!2 þ k2?jkj2ðjkj2 þ E2k2?Þ�; (5.8g)

where

N ¼ j"ð2Þj2 � ð"0Þ2; (5.8h)

and !2 ¼ !2ðk?; kkÞ is given by Eq. (3.5b). Again, if the
tensor is contracted with a gauge-invariant expression, it
can be replaced by 
��j
¼2:

�"ð2Þ�"ð2Þ� � 
��j
¼2; (5.9a)


��j
¼2 � "ð2Þ�"ð2Þ�jtruncated

¼ 1

N00 f�̂2�
��� þ �̂2	

�	�

þ 	̂2ð��	� þ 	���Þgjk0¼!2
: (5.9b)

Finally it holds that

k�ð �"ð1Þ�"ð1Þ�ÞðkÞ¼0; lim
E�0

k�ð �"ð2Þ�"ð2Þ�ÞðkÞ¼0; (5.10)

where the second contraction only vanishes for E � 0 due
to the longitudinal part of "ð2Þ�.

The polarizationvector (5.2) is normalized to unit length by
N . This normalization factor cancels in
��j
¼2. Note that
themetric tensor��� does not appear on the right-hand side of
Eq. (5.9b), whereas it does on the right-hand side of Eq. (5.6b).

Furthermore, note that each truncated polarization ten-
sor 
��j
¼1 and 
��j
¼2 can be written in a covariant
form. This behavior is different from the polarization
vectors of standard QED,5 where only the whole polariza-
tion sum is covariant.

It is now evident that not only is the structure of the
photon propagator uncommon, but the polarization vectors
are unusual as well. In the next section, we will analyze
how both results are connected.

VI. THE OPTICAL THEOREM AND UNITARITY

In order to investigate unitarity, the simple test of reflec-
tion positivity used in Ref. [24] for the isotropic case of
modified Maxwell theory cannot be adopted, because
there are now essentially two different scalar propagators,

namely, K̂1 and K̂2 from Eq. (4.5). Hence, we could either
examine reflection positivity of the full propagator or study
the optical theorem for physical processes involving
modified photons. As unitarity of the S–matrix results in
the optical theorem and the latter is directly related to
physical observables, we choose to proceed with the sec-
ond approach.
The optical theorem will also show how the modified

photon propagator in Sec. IV is linked to the photon polar-
izations from the previous section. The following compu-
tations will deal with the physical process which we
already considered for isotropic modified Maxwell theory
[24] in the context of unitarity: annihilation of a left-
handed electron e�L and a right-handed positron eþR to a
modified photon ~�. The fermions are considered to be
massless particles, which renders their helicity a physically
well-defined state. Neglecting the axial anomaly, which is
of higher order with respect to the electromagnetic cou-
pling constant, the axial vector current j�5 ¼ �c���5c is

conserved: @�j
�
5 ¼ 0. This is the simplest tree-level

process including a modified photon propagator. It has no

5Also in the isotropic and the parity-even anisotropic sector of
modified Maxwell theory, the polarization tensor of one single
transversal mode cannot be decomposed covariantly [24].
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threshold and is allowed for both photon modes. We assume
a nonzero Lorentz-violating parameter E. Furthermore, the
four-momenta of the initial electron and positron are not
expected to be collinear.

If the optical theorem holds, the imaginary part of the
forward scattering amplitudeMðe�L eþR ! e�L eþR Þ is related
to the cross section for the production of a modified photon
from a left-handed electron and a right-handed positron:

Herein, d
1 is the corresponding one-particle phase space element. By performing an integration over the four-momentum
of the virtual photon, the forward scattering amplitude M1̂ � Mðe�L eþR ! e�L eþR Þ is given by

M1̂ ¼
Z d4k

ð2
Þ4 �
ð4Þðk1 þ k2 � kÞe2 �uðk1Þ�
 1� �5

2
vðk2Þ �vðk2Þ�� 1� �5

2
uðk1Þ 1

K̂�1
1 þ i�

ðþ��
 þ b̂k�k
 þ ĉ���


þ d̂ðk��
 þ ��k
Þ þ ê	�	
 þ f̂ðk�	
 þ 	�k
Þ þ ĝð��	
 þ 	��
ÞÞ; (6.2)

with the propagator coefficients b̂; . . . ; ĝ from Eq. (4.5).
Recall, that the physical poles have to be treated via
Feynman’s i� prescription. Hence, the denominator K̂�1

2

from Eq. (4.4b), which appears in the coefficients b̂, ĉ, d̂, ê,
f̂, and ĝ, also has to be replaced by K̂�1

2 þ i�.
The first contribution to the imaginary part of the matrix

element M1̂ comes from the physical pole of the scalar

propagator function K̂1 and corresponds to the dispersion
relation (3.5a) of the 
 ¼ 1 polarization mode. Using the
positive and negative photon frequency of the parity-odd
case considered,

~!þ
1 � Ekk þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2? þ ð1þ E2Þk2k

q
;

~!�
1 � Ekk �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2? þ ð1þ E2Þk2k

q
;

(6.3)

the scalar part of the propagator is

1

k � �k � 	 þ k2 þ i�
¼ 1

ðk0 � ~!þ
1 þ i�Þðk0 � ~!�

1 � i�Þ :
(6.4)

The pole with a positive real part can be cast in the
following form:

1

k0 � ~!þ
1 þ i�

¼ P
1

k0 � ~!þ
1

� i
�ðk0 � ~!þ
1 Þ: (6.5)

Because of energy conservation, only ~!þ
1 and not

~!�
1 contributes to the imaginary part. We define M̂1̂ �

Mðe�L eþR ! ~�Þ and obtain

2 ImðM1̂Þj
¼1 ¼
Z d3k

ð2
Þ32 ~!þ
1

�ð4Þðk1 þ k2 � kÞe2 �uðk1Þ�� 1� �5

2
vðk2Þ �vðk2Þ�� 1� �5

2
uðk1Þ

� 1

N0 ð���� � ĉ���� � ê	�	� � ĝð��	� þ 	���ÞÞ

¼
Z d3k

ð2
Þ32 ~!þ
1

�ð4Þðk1 þ k2 � kÞðM̂y
1̂
Þ�ðM̂1̂Þ�ð
��j
¼1Þ

¼
Z d3k

ð2
Þ32 ~!þ
1

�ð4Þðk1 þ k2 � kÞjM̂1̂j2j
¼1; (6.6)

with

M̂ 1̂j
¼1 � "ð1Þ� ðkÞðM̂1̂Þ�ðkÞ; (6.7)

and k0 replaced by the dispersion relation ~!1 from Eq. (6.3). Furthermore,
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N0 ¼ 1þ k � 	
2 ~!þ

1

¼ 1

~!þ
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2? þ ð1þ E2Þk2k

q
: (6.8)

Using the Ward identity, in the first step of Eq. (6.6), we
could eliminate all propagator coefficients which are mul-
tiplied by at least one photon four-momentum. Then, we

employed the truncated 
 ¼ 1 polarization tensor from
Eq. (5.6b).
The second contribution to the imaginary part of the

matrix element comes from the 
 ¼ 2 mode given by the

dispersion relation (3.5b). That mode is contained in K̂2

from Eq. (4.4b), where Feynman’s i� prescription leads to

1

4K̂�1
2 þ i�

¼ 1

4k � �k � 	 þ �2ðk � 	Þ2 þ 	2ðk � �Þ2 þ k2ð4� �2	2Þ þ i�
¼ 1

4ðk0 � ~!þ
2 þ i�Þðk0 � ~!�

2 � i�Þ ; (6.9)

with

~!þ
2 � Ekk þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ E2

p
jkj; ~!�

2 � Ekk �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ E2

p
jkj: (6.10)

The pole with the positive real part results in the following contribution to the imaginary part of the matrix element M1̂:

1

k0 � ~!þ
2 þ i�

¼ P
1

k0 � ~!þ
2

� i
�ðk0 � ~!þ
2 Þ: (6.11)

Again, the pole ~!�
2 with a negative real part does not contribute because of energy conservation. Using the Ward identity

leads to

2 ImðM1̂Þj
¼2 ¼
Z d3k

ð2
Þ32 ~!þ
2

�ð4Þðk1 þ k2 � kÞe2 �uðk1Þ�� 1� �5

2
vðk2Þ �vðk2Þ�� 1� �5

2
uðk1Þ K̂1ð ~!þ

2 ;kÞ
2ð1� ~!�

2 = ~!
þ
2 Þ

� f½ðk � 	Þ2 � k2	2����� þ ½ðk � �Þ2 � k2�2�	�	� þ ½2k2 þ k � �k � 	�ð��	� þ 	���Þg

¼
Z d3k

ð2
Þ32 ~!þ
2

�ð4Þðk1 þ k2 � kÞðM̂y
1̂
Þ�ðM̂1̂Þ�ð
��j
¼2Þ

¼
Z d3k

ð2
Þ32 ~!þ
2

�ð4Þðk1 þ k2 � kÞjM̂1̂j2j
¼2; (6.12)

where

M̂ 1̂j
¼2 � "ð2Þ� ðkÞðM̂1̂Þ�ðkÞ; (6.13)

and k0 is to be replaced by ~!þ
2 from Eq. (6.10). Moreover,

we have used that for k0 ¼ ~!þ
2 ,

K̂1ð ~!þ
2 ;kÞ

2ð1� ~!�
2 = ~!

þ
2 Þ

f½ðk � 	Þ2 � k2	2�����

þ ½ðk � �Þ2 � k2�2�	�	� þ ½2k2 þ k � �k � 	�
� ð��	� þ 	���Þg ¼ 
��j
¼2; (6.14)

with the right-hand side given by Eq. (5.9b). Adding the
two contributions from Eqs. (6.6) and (6.12) leads to

2 ImðM1̂Þ ¼ 2 ImðM1̂Þj
¼1 þ 2 ImðM1̂Þj
¼2

¼ X

¼1;2

Z d3k

ð2
Þ32 ~!


�ð4Þðk1 þ k2 � kÞjM̂1̂j2j
:

(6.15)

But the right-hand side of the previous equation is just the
total cross section of the scattering process. Hence, the
optical theorem is valid for the parity-odd sector of modified
Maxwell theory. Furthermore, it reveals the connection

between the modified photon propagator [cf. Eq. (6.2)] and
the polarization tensors [cf. penultimate line of Eqs. (6.6)
and (6.12)]. The optical theorem thus provides a good
cross check for the obtained results of Eqs. (4.4), (5.6b),
and (5.9b). Since the process itself only plays a role at the
level of providing a valid Ward identity, the obtained
result is consistent with having a unitary theory, at least
for a tree-level process involving conserved currents.
As a final remark, we state that the unphysical pole

k2 ¼ 0, which appears in the propagator coefficients b̂, d̂,

and f̂, is prevented from being reached by energy conser-
vation. Hence, it plays no role in the calculation.

VII. MICROCAUSALITY

In order to decide whether or not the particular case of
parity-odd modified Maxwell theory considered satisfies the
condition of microcausality, we have to compute the commu-
tator of physical fields at different spacetime points y and z.
The latter can be derived from the commutator of vector
potentials:

½A�ðyÞ; A�ðzÞ� ¼ ½A�ðy� zÞ; A�ð0Þ� � ½A�ðxÞ; A�ð0Þ�
¼ i���D̂ðxÞ; (7.1)
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where the second step follows from translation invariance.
The tensor structure of this expression is to be put into the
function ���. The causal structure of the commutator is
completely determined by the scalar commutator function

D̂ðxÞ, which corresponds to the scalar part of the Feynman
propagator (see, for instance, Refs. [19,24]). For this reason,

we will restrict our considerations solely to D̂ðxÞ and forget
about the tensor structure. Looking at the propagator (4.2) of

Sec. IV, it is clear that there are two scalar parts, K̂1 from

Eq. (4.4a) and K̂2 from Eq. (4.4b), one for each photon

polarization. We begin with K̂1:

D̂1ðxÞ ¼
I
C

dk0
2


Z d3k

ð2
Þ3
2

2ðk � �Þðk � 	Þ þ k2ð2� � � 	Þ
� expðik0x0 þ ik � xÞ

¼
I
C

dk0
2


Z d3k

ð2
Þ3
1

k20 � k2? � k2k � 2Ek0kk

� expðik0x0 þ ik � xÞ

¼
I
C

dk0
2


Z d3k

ð2
Þ3
1

ðk0 � ~!þ
1 Þðk0 � ~!�

1 Þ
� expðik0x0 þ ik � xÞ; (7.2)

where positive and negative energies are defined in Eq. (6.3).

These are the poles of the scalar propagator K̂1, where
~!þ
1 delivers the first contribution to the imaginary part

of the forward scattering amplitude considered in the pre-
vious section.

The evaluation of the contour integral gives

D̂1ðxÞ ¼ i
Z d3k

ð2
Þ3
�
expði ~!þ

1 x0Þ
~!þ
1 � ~!�

1

þ expði ~!�
1 x0Þ

~!�
1 � ~!þ

1

�
expðik �xÞ

¼�
Z d3k

ð2
Þ3
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2?þ ð1þE2Þk2k
q

� sin

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2?þ ð1þE2Þk2k

q
x0

�
� expðik?x?þ iðEx0þ xkÞkkÞ: (7.3)

Substituting kk ¼ k0k=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ E2

p
, the integral results in

D̂1ðxÞ ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ E2

p
Z d3k0

ð2
Þ3
sinðjk0jx0Þ

jk0j expðik0 � XÞ;

(7.4a)

with

X �
x?
0

ðEx0 þ xkÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ E2

p

0
BB@

1
CCA: (7.4b)

Hence, Eq. (7.4a) is of the same form as an integral which
appears in the context of the standard propagator [see, e.g.,
Eq. (26a) in Ref. [39]]. This leads to the final result:

D̂1ðxÞ ¼ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ E2

p sgnðx0Þ

� �ðx20 � 2Ex0xk � ð1þ E2Þx2? � x2kÞ

¼ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ E2

p sgnðx0Þ

� �ððx0 � ExkÞ2 � ð1þ E2Þx2? � ð1þ E2Þx2kÞ:
(7.5)

Just as for the isotropic case of modified Maxwell theory,
whose consistency was discussed in Ref. [24], the commu-
tator function (7.5) vanishes everywhere except on the
modified null cone

ðx0 � ExkÞ2 � ð1þ E2Þx2? � ð1þ E2Þx2k ¼ 0: (7.6)

An analogous calculation for the scalar part K̂2 from
Eq. (4.4b) delivers the following final result for the com-

mutator function D̂2ðxÞ:

D̂2ðxÞ ¼ � 1

2
ð1þ EÞ3=2 sgnðx0Þ

� �ððx0 � ExkÞ2 � x2? � ð1þ E2Þx2kÞ; (7.7)

which corresponds to a second modified null cone,

ðx0 � ExkÞ2 � x2? � ð1þ E2Þx2k ¼ 0: (7.8)

Both null cones coincide to linear order in E. This is not
surprising, since the theory is birefringent to quadratic order
in the Lorentz-violating parameters. Each of the Eqs. (7.6)
and (7.8) corresponds to a null cone, whose rotation axis is
different for the past and future null cone. Neither axes
coincides with the time axis, but each is rotated by a small
angle, as shown in Fig. 1. Since there are two modes with
two different dispersion relations, one may wonder, if this
result is sufficient for taking a decision about microcausality.
For this reason, we tried to separate both modes in Sec. IV
with the result (4.8), (4.9), and (4.10). Therefore, we should

investigate Ĝð1ÞðkÞ and Ĝð2ÞðkÞ from Eq. (4.10):

Ĝð1ÞðxÞ �
I
C

dk0
2


Z d3k

ð2
Þ3 Ĝ
ð1ÞðkÞ

¼
I
C

dk0
2


Z d3k

ð2
Þ3
4K̂1K̂

�1
2

½ðk � �Þ2 � k2�	2 þ ðk � 	Þ2
� expðik0x0 þ ik � xÞ

¼
I
C

dk0
2


Z d3k

ð2
Þ3
4K̂�1

2

½ðk � �Þ2 � k2�	2 þ ðk � 	Þ2

� expðik0x0 þ ik � xÞ
ðk0 � ~!þ

1 Þðk0 � ~!�
1 Þ

: (7.9)

Using
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4K̂�1
2

½ðk � �Þ2 � k2�	2 þ ðk � 	Þ2
��������k0¼ ~!þ

1

¼ 4K̂�1
2

½ðk � �Þ2 � k2�	2 þ ðk � 	Þ2
��������k0¼ ~!�

1

¼ 1 (7.10)

then leads to the intermediate result of Eq. (7.3), and the rest

of the computation is the same. Since Ĝð2ÞðkÞ is a constant
function with respect to k0, the evaluation of the contour
integral in the complex k0 plane in

Ĝ ð2ÞðxÞ �
I
C

dk0
2


Z d3k

ð2
Þ3 Ĝ
ð2ÞðkÞ (7.11)

will immediately give zero. Hence, the dispersion relation
corresponding to the second mode does not seem to play any
role here. The 
 ¼ 1 mode seems to be preferred compared
to the 
 ¼ 2mode, which follows from forcing a parity-odd
theory to be nonbirefringent via the ansatz (2.2). The trans-
versal polarization vectors can be interpreted as two distinct
polarization modes: left- and right-handed. In a parity-
violating theory, they are expected to behave differently,
for example, with respect to their phase velocity. This would
automatically lead to birefringence, which is suppressed by
using Eq. (2.2) as a basis.

The result of Eq. (7.5) establishes microcausality for the
following parameter domain:

E � j�j 2 ½0;1Þ; (7.12)

where � is defined in terms of the SME parameters by
Eqs. (2.3b) and (2.4). Hence, the parity-odd nonbirefrin-
gent sector of modified Maxwell theory is unitary and
microcausal for the full parameter range.

VIII. COMPARISON TO OTHER
LORENTZ-VIOLATING THEORIES

In the previous sections, we have seen that both the
modified photon propagator and the polarization vectors
have an uncommon structure. For this reason, we want to
have a general look at the photon propagator and polariza-
tion vectors in other Lorentz-violating theories. We start
with the photon polarizations of MCS theory. Besides
modified Maxwell theory, MCS theory is another possible
example of a gauge-invariant and power-counting renor-
malizable theory which violates Lorentz invariance in the
photon sector. MCS theory is characterized by a mass scale
mCS and a fixed spacelike6 ‘‘four-vector’’ 	�, which plays
the role of a background field. The Chern–Simons mass
mCS gives the amount of Lorentz violation. MCS theory
exhibits two photon modes, which we call ‘‘
’’ and ‘‘�’’.
They obey different dispersion relations [30], which results
in birefringence. The polarization vectors follow from the
field equations, and, in temporal gauge A0 ¼ 0, they are
given by

ð"
�Þ¼ 1ffiffiffiffiffiffi
N0p
�
0;�2½ðk �	Þ2þk2�; i 2!

mCS

k2;2kkk?
���������!¼!


;

(8.1a)

ð"��Þ¼ 1ffiffiffiffiffiffiffi
N00p

�
0;�2½ðk �	Þ2þk2�;i 2!

mCS

k2;2kkk?
���������!¼!�

;

(8.1b)

with the normalization constants

N0 ¼ 4
!2k2

m2
CS

½2k2 þm2
CS	

2�j!¼!
 ;

N00 ¼ 4
!2k2

m2
CS

½2k2 þm2
CS	

2�j!¼!� :

(8.1c)

Using the temporal gauge fixing four-vector ðn�Þ ¼
ð1; 0; 0; 0Þ, the polarization tensor for each of the two
modes can be cast in the following form (see Ref. [45]
for the truncated versions):

�"
�ðkÞ"
�ðkÞ ¼ 
��
MCSj!¼!
 ; (8.2a)

�"��ðkÞ"��ðkÞ ¼ 
��
MCSj!¼!� ; (8.2b)

where


��
MCS ¼ 1

2k2 þm2
CS	

2

�
�k2��� � k2

ðk � nÞ2 k
�k�

þ k2

k � n ðk
�n� þ n�k�Þ �m2

CS	
�	�

� imCS"
��%�

�
k � 	
k � n k%n� � k2

k � n 	%n�
��

: (8.2c)

FIG. 1 (color online). Null cone of the standard theory (blue
solid lines) and one of the modified null cones (red dashed lines)
in configuration space ðx0; x?; xkÞ. Their rotation axes are shown
as well (thin lines).

6We assume the four-vector 	� to be spacelike, since timelike
MCS theory is expected to be nonunitary and noncausal [19].
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The polarization sum of standard QED is expected to be
recovered for vanishingmCS. For the truncated polarization
sum, this is, indeed, the case:

lim
mCS�0

f �"
�ðkÞ"
�ðkÞ þ �"��ðkÞ"��ðkÞgjtruncated ¼ ����:

(8.3)

From

lim
mCS�0

�"
�ðkÞ"
�ðkÞjtruncated ¼ lim
mCS�0

�"��ðkÞ"��ðkÞjtruncated

¼ ����

2
; (8.4)

it is evident that both modes deliver equal contributions to
the polarization sum. This even holds for nonvanishing
mCS. Hence, the behavior of MCS theory with respect to
the polarization modes is completely different compared to
parity-odd nonbirefringent modified Maxwell theory. For
mCS � 0, there is no residual dependence from the pre-
ferred spacetime direction 	� in the polarization tensors of
the individual modes, which can be seen from Eq. (8.4).

Furthermore, for MCS theory, the photon propagator in
the axial gauge has been shown to be of the following
form [19]:

G��ðkÞjaxialMCS ¼ �i
k2

P ðkÞ ð��� þ . . .Þ; (8.5)

where further terms with the index structure composed of
the four-momentum, the preferred spacelike four-vector
	�, the axial gauge vector, and the four-dimensional
Levi-Civita symbol have been omitted. The denominator
P ðkÞ is a fourth-order polynomial in k0, with its zeros
corresponding to the two different physical dispersion
relations. For a special case of parity-odd birefringent
modified Maxwell theory,7 we could show that the propa-
gator in Feynman gauge looks like

G��ðkÞjFeynman
birefringent mod Max ¼ �i

P 1ðkÞ
P 2ðkÞ ð��� þ . . .Þ; (8.6)

where P 1ðkÞ is a second-order polynomial in k0, involving
the Lorentz-violating parameters, and P 2ðkÞ is of fourth
order in k0. The two distinct physical dispersion relations
of this birefringent theory follow from P 2ðkÞ ¼ 0. Again,
remaining propagator coefficients multiplied by combina-
tions of the four-momentum and preferred four-vectors
have been omitted.

Hence, we see that our result for the propagator for
parity-odd nonbirefringent modified Maxwell theory given
by Eqs. (4.2), (4.3), (4.4), and (4.5) is rather unusual. For
MCS theory and birefringent modified Maxwell theory (at

least for the special case examined), both physical modes
emerge as poles of the coefficient before the metric tensor
���. However, in the case of parity-odd nonbirefringent

modified Maxwell theory, the dispersion relation for the

 ¼ 2 polarization mode is not contained in the coefficient

K̂1 of Eq. (4.4a), which is multiplied with ���. This

peculiarity is also mirrored in the polarization tensors,
where we have shown the interplay in the previous section.

IX. LIMIT OF THE POLARIZATION TENSORS
FOR VANISHING LORENTZ VIOLATION

Taking the limit E � 0 followed by the limit k? � 0
[see the definition (3.4)] for the physical polarization
vectors (5.1) and (5.2) leads to

lim
E�0
k?�0

ð"ð1Þ�Þ ¼

0

0

1

0

0
BBBBB@

1
CCCCCA; lim

E�0
k?�0

ð"ð2Þ�Þ ¼

0

1

0

0

0
BBBBB@

1
CCCCCA: (9.1)

Taking into account the limit of the four-momentum,

lim
k?�0

k?
0

kk

0
BB@

1
CCA ¼

0

0

kk

0
BB@

1
CCA �

0

0

k

0
BB@

1
CCA; (9.2)

the physical polarization vectors reduce to the standard
transversal QED results. Note that for both vectors in
Eq. (9.1), the order in which the limits are taken does not
play any role. As we will see below, this is not the case for
the gauge-invariant parts of the polarization tensors from
Eqs. (5.6b) and (5.9b), that is, if the polarization vectors are
coupled to conserved currents. For E � 0, these tensors
result in

lim
E�0


��j
¼1 ¼ ���� � k2k
k2?

���� � jkj2
k2?

	̂�	̂�

� jkjkk
k2?

ð��	̂� þ ��	̂�Þ; (9.3a)

lim
E�0


��j
¼2 ¼
k2k
k2?

���� þ jkj2
k2?

	̂�	̂�

þ jkjkk
k2?

ð��	̂� þ ��	̂�Þ; (9.3b)

with ð	̂�Þ ¼ ð0; �̂Þ and jkj ¼ ðk2k þ k2?Þ1=2. For complete-

ness, after inserting the explicit four-vectors, we obtain the
following matrices:

7With nonzero parity-odd parameters �0213, �0123 [correspond-
ing to the first two entries of the ten-dimensional vector from
Eq. (8) in [31]] plus those related by symmetries and all others
set to zero.
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lim
E�0

ð
��j
¼1Þ¼ 1

k2?

�jkj2 0 0 �jkjkk
0 k2? 0 0

0 0 k2? 0

�jkjkk 0 0 �k2k

0
BBBBB@

1
CCCCCA; (9.4a)

lim
E�0

ð
��j
¼2Þ¼ 1

k2?

k2k 0 0 jkjkk
0 0 0 0

0 0 0 0

jkjkk 0 0 jkj2

0
BBBBB@

1
CCCCCA: (9.4b)

Note that these matrix representations only hold for the

special choice �̂ ¼ ð0; 0; 1Þ. It is evident that the additional
limit k? � 0 does not exist for each contribution
��j
¼1

or 
��j
¼2 separately, but only for the truncated polariza-
tion sum

P

¼1;2


��j
, which leads to the standard QED

result. For this reason, the polarization vectors are not only
deformed—unlike for the isotropic case which was exam-
ined in Ref. [24]—but their structure completely differs
from standard QED. Besides that, no covariant expression
exists for each polarization tensor in standard QED,
where only the sum

P

¼1;2


��j
 can be decomposed

covariantly.

X. PHYSICAL PROCESS: COMPTON
SCATTERING WITH POLARIZED PHOTONS

A. Description of the process

The results obtained for the polarization vectors in
Sec. V together with the observations which followed
forces us to think about the consistency of the modified
theory. The form of the propagator, the polarization vec-
tors, and tensors observed in Secs. IV, V, and IX reveal the
following uncommon properties:

(1) one of the two physical photon modes seems to be
preferred with respect to the other,

(2) both polarization vectors are interweaved with the
spacetime directions �� and 	�, even for vanishing
Lorentz-violating parameters,

(3) each physical polarization tensor can be written in
covariant form,

(4) and one of the physical polarization vectors has a
longitudinal part.

One the one hand, these peculiarities may emerge from
the fact that a parity-odd QED is combined with the claim
of being nonbirefringent. Two physical photon polariza-
tions can be interpreted as two distinct polarization modes:
‘‘left-handed’’ and ‘‘right-handed.’’ These are supposed to
behave differently because of parity violation, for example,
with respect to the phase velocity of each mode. Hence,
birefringence would result from this, which clashes with
the nonbirefringent ansatz of Eq. (2.2).
On the other hand, the above properties may have

emerged from a bad gauge choice and could possibly be
removed by picking a more appropriate gauge. For this
reason, a physical process will be considered, whose cross
section does not depend on the gauge. If the mentioned
behavior of the polarization modes is not a gauge artifact,
it will show up in the results for polarized cross sections.
The simplest tree-level process involving external photons,
which also occurs in standard QED, is Compton scattering.
We consider an electron scattered off a photon in the 
 ¼ 1
polarization and in the 
 ¼ 2 polarization, respectively.
Hence, we want to compute cross sections for the pro-
cesses e�ðp1Þ~�1ðk1Þ!e�ðp2Þ~�1ðk2Þ, e�ðp1Þ~�1ðk1Þ !
e�ðp2Þ~�2ðk2Þ, e�ðp1Þ~�2ðk1Þ ! e�ðp2Þ~�1ðk2Þ, and
e�ðp1Þ~�2ðk1Þ ! e�ðp2Þ~�2ðk2Þ, where ~�1;2 denotes a

modified photon in the 
 ¼ 1 or 
 ¼ 2 polarization state,
respectively. The corresponding Feynman diagrams are
shown in Fig. 2.
For a review of Compton scattering experiments, refer to

Ref. [46]. Furthermore, Ref. [47] gives a new bound on two
of the three parameters of parity-odd nonbirefringent
modified Maxwell theory from the study of Compton
scattering kinematics at the GRAAL experiment8 on the
European Synchrotron Radiation Facility at Grenoble in
France.

B. Numerical results for polarized
Compton scattering cross sections

We choose special momenta p1, k1 for the initial
electron and photon. The outgoing photon momentum
configuration is described in spherical coordinates with

FIG. 2. Contributions to Compton scattering for polarized modified photons ~�1;2, where the subscript refers to the photon
polarization. The photon momenta are denoted as ka and the electron momenta as pa, where the label a ¼ 1, 2 refers to the initial
and final state, respectively.

8Whereas the experiment has been stopped by now.
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polar angle # and azimuthal angle ’. We consider the
initial momentum configuration, for which the electron is
rest: ðp�

1 Þ ¼ ðm; 0; 0; 0Þ, ðk�1;
Þ � ð!
ðkÞ;kÞ with k ¼
ð0; 0; jkjÞ ¼ ð0; 0; k1Þ.

Values for the modified polarized Compton scattering
cross sections ~�11, ~�12, ~�21, and ~�22 are obtained. These
correspond to the processes 1 � 1, 1 � 2, 2 � 1, and
2 � 2, where the numbers give the initial and final photon
polarization, respectively. To form gauge-invariant expres-
sions, the sum over final photon polarizations has to be
performed:

~�1X � X

0¼1;2

~�1
0 ; (10.1a)

~�2X � X

0¼1;2

~�2
0 : (10.1b)

Our calculation is based on the assumption that only the
initial photon state can be prepared, especially its polariza-
tion. However, the final photon polarization can only be
measured if the photon is observed or scattered at a second
electron. Sincewe consider the final photon as an asymptotic
particle according to the Feynman diagrams in Fig. 2, it is not
observed, and one has to sum over final photon polarizations
[43,44]. Hence, what can be measured in this context are
only the quantities ~�1X and ~�2X, so we also give them.

Finally, we list the sum of all cross sections, which is
averaged over the initial photon polarizations:

~� � 1

2

X

;
0

~�

0 ¼ 1

2
ð~�11 þ ~�12 þ ~�21 þ ~�22Þ

¼ 1

2
ð~�1X þ ~�2XÞ: (10.2)

For comparison with the modified Compton cross sections,
the cross sections for unpolarized and polarized Compton
scattering in standard QED are presented in Table I and II,
respectively, for different initial photon momenta k1.
An important issue has to be mentioned first: the calcu-

lation of the modified cross section in the parity-odd theory
can be performed in two different ways. The first possi-
bility is to calculate the matrix element squared à la
Sec. (11.1) of Ref. [40] by directly using the modified
polarization vectors from Eqs. (5.1) and (5.2). For com-
pleteness, we give this equation in a compact form:

X

0 ¼ 1

4
Tr

��
1

�1

6"ð
0Þð6p1 þ 6k1 þmÞ6"ð
Þ

� 1

�2

6"ð
Þð6p1 � 6k2 þmÞ6"ð
0Þ
�
ð6p1 þmÞ

�
�
1

�1

6"ð
Þð6p1 þ 6k1 þmÞ6"ð
0Þ

� 1

�2

6"ð
0Þð6p1 � 6k2 þmÞ6"ð
Þ
�
ð6p2 þmÞ

�
; (10.3a)

where

�1 ¼ 2p1 � k1 þ k21; �2 ¼ 2p1 � k2 � k22;

p2 ¼ p1 þ k1 � k2: (10.3b)

Here, 
 denotes the initial and 
0 the final photon
polarization. For standard QED, Eq. (10.3a) results in
Eq. (11-13) of Ref. [40] (which we transform to fit our
conventions):

XQED


0 ¼ 1

2

�
�

�0 þ
�0

�

�
� 1

þ 2

�
"ð
Þ � "ð
0Þ � 2ð"ð
Þ � p1Þð"ð
0Þ � p2Þ

�

þ 2ð"ð
Þ � p2Þð"ð
0Þ � p1Þ
�0

�
2
; (10.4a)

� ¼ 2p1 � k1; �0 ¼ 2p1 � k2: (10.4b)

Alternatively, the computation can be performed with the
matrix element squared which is obtained without the
direct use of the polarization vectors, but with the polar-
ization tensors from Eqs. (5.4) and (5.7). This expression is

TABLE I. Unpolarized total Compton scattering cross sections
� in standard QED for different values of the initial photon
momentum k1 according to the equation below (5-114) of
Ref. [43] or to Eq. (5.81) of Ref. [44]. The results are given in
units of �2 with the fine structure constant � � e2=4
. The
electron mass is set to m ¼ 1.

k1=m 10�1 10�2 10�3 10�4 10�5

� 7.048 378 8.214 276 8.360 869 8.375 905 8.377 413

k1=m 10�6 10�7 10�8 10�9 10�10

� 8.377 564 8.377 579 8.377 580 8.377 580 8.377 580

TABLE II. Polarized Compton scattering cross sections �

0 (where 
 denotes the initial and 
0 the final photon polarization) of
standard QED for different values of the initial photon momentum k1 according to Eq. (11-13) of Ref. [40]. The cross sections are
given in units of �2, and the electron mass is set to m ¼ 1.

k1=m �11 �22 �12 �21

P

0�1
0

P

0�2
0 1

2

P

;
0�

0

10�1 1.784 650 5.263 729 5.263 729 1.784 650 7.048 379 7.048 379 7.048 379

10�2 2.053 890 6.160 386 6.160 386 2.053 890 8.214 277 8.214 277 8.214 277

10�3 2.090 221 6.270 648 6.270 648 2.090 221 8.360 869 8.360 869 8.360 869

10�4 2.093 976 6.281 929 6.281 929 2.093 976 8.375 905 8.375 905 8.375 905

10�5 2.094 353 6.283 060 6.283 060 2.094 353 8.377 413 8.377 413 8.377 413
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lengthy, and we will not give it in full detail. However, we
will state it in a formal manner:

X̂

0 ¼ ðjMðk1; k2Þj2Þ��%�
�%ðk1Þj

��ðk2Þj
0 j k0
1
¼!
ðk1Þ

k0
2
¼!


0 ðk2Þ
;

(10.5)

where 
�� are photon polarization tensors and

ðjMðk1; k2Þj2Þ��%� includes all parts which do not directly
involve the photon: traces of combinations of �-matrices,

electron propagators, etc. The structure of X̂

0 is similar to
Eq. (5.81) of Ref. [44]. However, the latter equation gives

the sum over all polarizations, whereas X̂

0 is the ampli-
tude square for a distinct polarization.

For the configurations of Table III and IV, the results are
shown for different Lorentz-violating parameters ~�, where

~� is defined by ~� � E=
ffiffiffi
3

p
with E from Eq. (3.5c). It

suffices to give ~�, since for both tables, the three
Lorentz-violating parameters ~�01, ~�02, and ~�03 are chosen
to be equal. Table V presents results, where the latter
parameters differ from each other. Compare the obtained
results to the classical Thomson cross section, which
follows from the standard QED result—first obtained by
Klein and Nishina—in the limit of vanishing initial photon
momentum [44]:

�Th � lim
jk1j�0;jp1j�0

�ðe�ðp1Þ�ðk1Þ ! e�ðp2Þ�ðk2ÞÞ

¼ 8
�2

3m2
� 8:377580�2

m2
: (10.6)

From Table III, we see that for vanishing Lorentz vio-
lation, the gauge-invariant contributions from Eq. (10.1)
are equal:

lim
~��0

~�1X ¼ lim
~��0

~�2X: (10.7)

TABLE IV. Modified polarized Compton scattering cross sections ~�

0 in units of �2 for fixed Lorentz-violating parameter
~� ¼ 10�16, where 
 is the initial and 
0 the final photon polarization. The cross sections are computed for different values of
the initial photon momentum k1. As before, for each k1, the first row gives the results which follow by using X

0 from Eq. (10.3a).
The second row delivers the corresponding result X̂

0 from Eq. (10.5).

k1=m ~�11 ~�22 ~�12 ~�21 ~�1X ~�2X ~�

10�1 5.278 215 5.280 137 1.770 163 1.768 241 7.048 378 7.048 378 7.048 378

5.278 215 5.280 137 1.770 163 1.768 241 7.048 378 7.048 378 7.048 378

10�2 6.160 582 6.160 613 2.053 694 2.053 664 8.214 277 8.214 277 8.214 277

6.160 582 6.160 613 2.053 694 2.053 664 8.214 277 8.214 277 8.214 277

10�3 6.270 645 6.270 649 2.090 224 2.090 220 8.360 869 8.360 869 8.360 869

6.270 645 6.270 649 2.090 224 2.090 220 8.360 869 8.360 869 8.360 869

10�4 6.281 924 6.281 927 2.093 982 2.093 978 8.375 905 8.375 905 8.375 905

6.281 924 6.281 927 2.093 982 2.093 978 8.375 905 8.375 905 8.375 905

10�5 6.283 054 6.283 058 2.094 359 2.094 355 8.377 413 8.377 413 8.377 413

6.283 054 6.283 058 2.094 359 2.094 355 8.377 413 8.377 413 8.377 413

TABLE III. Compton scattering cross sections ~�

0 for polarized modified photons, where 
 is the initial and 
0 the final photon
mode. The sixth and seventh columns give the combinations defined by Eq. (10.1), and the eighth column lists the sum of the four cross
sections ~�

0 , which is averaged over the initial photon polarizations and corresponds to the cross section of unpolarized modified
Compton scattering from Eq. (10.2). The electrons are assumed to be unpolarized. All results are given in units of �2, and
k1 ¼ 10�10m is used. Moreover, we set the electron mass m ¼ 1. The Lorentz-violating parameter ~� can be found in the first
column. For each Lorentz-violating parameter, we give both the results that follow from Eq. (10.3a) (first row) and from Eq. (10.5)
(second row), respectively.

~� ~�11 ~�22 ~�12 ~�21 ~�1X ~�2X ~�

10�1 6.283 180 5.526 582 2.033 397 2.890 066 8.316 577 8.416 647 8.366 612

6.283 180 5.526 586 2.033 399 2.890 066 8.316 579 8.416 652 8.366 615

10�2 6.283 180 6.200 243 2.093 772 2.177 939 8.376 952 8.378 182 8.377 567

6.283 180 6.200 245 2.093 772 2.177 939 8.376 952 8.378 184 8.377 568

10�4 6.283 180 6.282 133 2.094 338 2.095 235 8.377 518 8.377 367 8.377 443

6.283 180 6.282 346 2.094 400 2.095 235 8.377 580 8.377 581 8.377 581

10�8 6.283 175 6.282 743 2.094 270 2.094 397 8.377 444 8.377 140 8.377 292

6.283 180 6.283 184 2.094 400 2.094 397 8.377 580 8.377 581 8.377 580

10�16 6.283 180 6.283 258 2.094 400 2.094 397 8.377 581 8.377 655 8.377 618

6.283 180 6.283 184 2.094 400 2.094 397 8.377 581 8.377 581 8.377 581
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Furthermore, the sum of all cross sections then corresponds
to the Thomson limit given in Eq. (10.6). The results for
~�11, ~�12, and ~�21 do not depend on whether Eq. (10.3a) or
Eq. (10.5) is used for the calculation.

From Table IV, it also follows that, for vanishing Lorentz
violation, ~�1X ¼ ~�2X and, furthermore, that the averaged
sum over all cross sections corresponds to the standard
Klein-Nishina results. Besides, all results are independent
of the fact of whether the calculation is based on X

0 or

X̂

0 . This is also the case for the first selection of parame-
ters in Table V. Furthermore, this table shows that the
individual cross sections ~�11, ~�12, ~�21, and ~�22 depend
on the direction of �, which is encoded in the choice of ~�01,
~�02, and ~�03. However, it is evident that the gauge-invariant
expressions defined in Eq. (10.1) are independent of the
direction of �.

C. Plots of the amplitude squares X��0 and X̂��0

Plotting the matrix element squares X

0 from

Eq. (10.3a) and X̂

0 from Eq. (10.5) for each process

1 � 1, 1 � 2, 2 � 1, and 2 � 2 leads to a surprise. We

first present graphs of both X

0 and X̂

0 for different sets

of Lorentz-violating parameters, where the azimuthal

angle ’ is set to zero. In Fig. 3, for which ~�01 ¼ ~�02 ¼
~�03 ¼ 1=10 was inserted, we see that X

0 corresponds to

X̂

0 for the processes 1 � 1, 1 � 2, 2 � 1, and 2 � 2.
The graphs in Fig. 4 for Lorentz-violating parameters

~�01 ¼ ~�02 ¼ ~�03 ¼ 10�10 indicate that for the 2 � 2 pro-

cess, the amplitude square X

0 approaches X̂

0 , but there

remains a residue, which appears for X

0 as a narrow peak

at an angle #0 � 2:35 (given in arc measure). Finally, in

Fig. 5, we depict X

0 and X̂

0 for the 1 � 1 and the

TABLE V. Cross sections of modified polarized Compton scattering in units of �2 for different values of ~�01, ~�02, and ~�03, where the
latter parameters are given in magnitudes of 10�16. In the second row, we also give the result which follows X̂

0 . The photon
momentum is k1 ¼ 10�10m.

~�01 ~�02 ~�03 ~�11 ~�22 ~�12 ~�21 ~�1X ~�2X ~�

1 1 2 6.283 177 4.188 794 2.094 403 4.188 795 8.377 581 8.377 590 8.377 585

1 2 1 6.281 280 7.330 112 2.096 301 1.047 515 8.377 581 8.377 627 8.377 604

6.281 280 7.330 065 2.096 301 1.047 515 8.377 581 8.377 581 8.377 581

2 1 1 6.281 280 7.330 112 2.096 301 1.047 515 8.377 581 8.377 627 8.377 604

1 1 3 6.282 966 3.236 618 2.094 614 5.140 967 8.377 581 8.377 585 8.377 583

1 3 1 6.281 874 7.806 356 2.095 706 0.571 318 8.377 581 8.377 674 8.377 627

3 1 1 6.281 874 7.806 356 2.095 706 0.571 318 8.377 581 8.377 674 8.377 627

1 1 5 6.283 181 2.559 814 2.094 399 5.817 768 8.377 581 8.377 582 8.377 581

1 5 1 6.280 175 8.145 009 2.097 405 0.232 822 8.377 581 8.377 831 8.377 706

5 1 1 6.280 175 8.145 009 2.097 405 0.232 822 8.377 581 8.377 831 8.377 706

1 1 10 6.283 322 2.217 729 2.094 258 6.159 851 8.377 581 8.377 581 8.377 581

1 10 1 6.285 520 8.317 100 2.092 061 0.061 577 8.377 581 8.378 677 8.378 129

10 1 1 6.285 520 8.317 100 2.092 061 0.061 577 8.377 581 8.378 677 8.378 129

10 1 10 6.281 734 5.235 428 2.095 847 3.142 161 8.377 581 8.377 590 8.377 585

FIG. 3 (color online). Matrix element squared for Compton scattering of polarized photons in the order 1 � 1, 1 � 2, 2 � 1, and
2 � 2 for each row. The functions in the first row correspond to Eq. (10.3a), where the modified polarization vectors were plugged in.
The panels in the second row show the corresponding function from Eq. (10.5) which is obtained by using polarization tensors instead
of the polarization vectors directly. The plots were made for the special choice ’ ¼ 0, and the horizontal axis gives the polar angle #.
The Lorentz-violating parameters are chosen as ~�01 ¼ ~�02 ¼ ~�03 ¼ 1=10. Furthermore, k1 ¼ 10�10m and m ¼ 1.
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2 � 2 modified Compton scattering as a function of both
the polar angle # and the azimuthal angle ’. It is evident

that X

0 and X̂

0 for 1 � 1 perfectly agree with each
other. This is also the case for the processes 1 � 2 and
2 � 1, but we will not display the corresponding plots
here. However, the 2 � 2 scattering behaves differently.

The matrix element X̂

0 looks smooth,9 whereas for
~�01 ¼ ~�02 ¼ ~�03 ¼ 1=10, the amplitude square X

0 is
characterized by a set of sharp peaks. For small Lorentz
violation, some of these peaks seem to remain. Whether or
not the limit for vanishing Lorentz violation is influenced
by such structures cannot be investigated numerically, but
requires analytical computations.

D. Interpretation

1 .Discrepancies between X��0 and X̂��0

for 2� 2 scattering

We already know from Eq. (5.2) that the second polar-
ization vector splits into two contributions: a transverse
and a longitudinal part. For vanishing Lorentz violation, it
is explicitly true that

ð"ð2Þ�Þ ¼ ð"0; "̂ð2Þtransv þ "0k̂Þ ¼ ð0; "̂ð2ÞtransvÞ þ "0ð1; k̂Þ

¼ ð0; "̂ð2ÞtransvÞ þ "0

jkj ðk
�Þ; (10.8a)

"̂ð2Þtransv ¼ k̂� ðk̂� �̂Þ: (10.8b)

If "ð2Þ� couples to a gauge-invariant quantity, its longitu-
dinal part will vanish because of the Ward identity, since it
is directly proportional to the four-momentum k�.

FIG. 4 (color online). Same as Fig. 3, but now for the choice ~�01 ¼ ~�02 ¼ ~�03 ¼ 10�10.

FIG. 5 (color online). Matrix element squared dependent on the polar angle # and the azimuthal angle ’ for Compton scattering of
polarized photons. The plots in the first row were made by using X

0 from Eq. (10.3a). The graphs in the second row illustrate X̂

0

from Eq. (10.5). The first column illustrates the corresponding functions for the 1 � 1 process with ~� ¼ 1=10. The second and the
third demonstrate the 2 � 2 process, where ~� ¼ 1=10 and ~� ¼ 10�10, respectively. Here again holds k1 ¼ 10�10m and m ¼ 1.

9Note that the two small spikes at ð#;’Þ � ð2:45; 0:05Þ and
ð#;’Þ � ð2:45; 0:12Þ, respectively, probably originate from nu-
merical errors.
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The weird structures appearing in the matrix element
squared X22, which were discussed in the last section, origi-

nate from the longitudinal part of "ð2Þ�. As mentioned, from
Eq. (10.8), it follows that in the limit of zero Lorentz violation,
the longitudinal part vanishes by the Ward identity when
contracted with physical quantities. However, this only holds
if the prefactor "0 is not zero. Otherwise, we run into a ‘‘0=0’’
situation, which is mathematically not defined. Now, the
physical phase space of the process contains a sector, for
which jkkj becomes arbitrarily small. This sector is charac-

terized by twoangles ð’0; #0Þ, where for’0 ¼ 0,#0 � 2:35.
This is depicted in Fig. 6. For this special case, the normaliza-
tion factor N00 and, therefore, the prefactor "0 can become
arbitrarily small. This destroys the applicability of the Ward
identity and shows up as peaks in X22 of Figs. 4 and 5.

Now, we would like to analytically investigate the limit
E � 0 of the second polarization vector, with its transversal
part subtracted. We distinguish between two cases, kk 
 Ek?
and kk � Ek?. The first represents the phase space sector for
Compton scattering, for which kk becomes arbitrarily small.

We begin with the zeroth component of Eq. (5.3):

ffiffiffiffiffiffiffi
N00p

"0 ¼ 1

4
ðk2 � ðk � �Þ2Þððk � 	Þ2 � 	2ðk2 � ðk � �Þ2ÞÞ



8<
: E2jkj2ðk2k þ jkj2Þ for kk � Ek?;

E2k4? for kk 
 Ek?:
(10.9)

The longitudinal part "long, which can be extracted from

Eq. (5.3) as well, results in

ffiffiffiffiffiffiffi
N00p

"longjE�0 ’ ð
ffiffiffiffiffiffiffiffiffi
jkj2

q
þ k � �Þðk� ðk� �ÞÞ2 k

jkj2
¼ E2jkj4ð1þ Ek̂ � �̂Þð�̂� k̂ðk̂ � �̂ÞÞ2k̂
¼ E2jkj4ð1þ Ek̂ � �̂Þð1� ðk̂ � �̂Þ2Þk̂

¼ E2jkj4
�
1þ Ekk

jkj
��
1� k2k

jkj2
�
k̂



8<
: E2jkj2ðjkj2 � k2kÞk̂ for kk � Ek?;

E2k4?k̂ for kk 
 Ek?:

(10.10)

The normalization factor from Eq. (5.8g) is

N00jE�0 ’ E2k2?jkj2ð4k4k þ 4k2kk
2
? þ E2k2?Þ



8<
: 4E2k2?k

2
kjkj4 for kk � Ek?;

E6k8? for kk 
 Ek?:
(10.11)

Respecting kk � Ek?, we obtain for the second polarization
vector

ð"ð2Þ��"
ð2Þ�
transvÞjkk�Ek? ¼ 1ffiffiffiffiffiffiffi

N00p "0

"long

 !��������kk�Ek?


 E2jkj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4E2k2?k

2
kjkj4

q k2kþjkj2
ðjkj2�k2kÞk̂

0
@

1
A

¼ Ejkj2
2k?jkkjjkj2

jkj2þk2k
ðjkj2�k2kÞk̂

0
@

1
A;
(10.12)

which vanishes for E � 0. In contrast to the latter case, the
result for kk 
 Ek? is as follows:

ð"ð2Þ� � "
ð2Þ�
transvÞjkk
Ek? ¼ 1ffiffiffiffiffiffiffi

N00p "0

"long

 !��������kk
Ek?


 1ffiffiffiffiffiffiffiffiffiffiffi
E6k8?

q E2k4?
E2k4?k̂

 !

¼ 1

E

1

k̂

 !
: (10.13)

The latter diverges in the limit E � 0.
Hence, it becomes evident that for vanishing Lorentz-

violating parameter E, when kk runs into the phase space

sector where it becomes of the order of Ek?, a peak
emerges. Its width is then 
Ek?, and its height is 
1=E.
This leads us undoubtedly to the following representation
of a �-function as the limit of a function sequence:

�ðxÞ¼ lim
n�0

gnðxÞ; gnðxÞ¼
8<
:2=n for jxj	n;

0 for jxj>n:
(10.14)

The role of the function sequence index n in Eq. (10.14) is
taken by the Lorentz-violating parameter E in the polar-
ization vector. As a result, we finally obtain in the limit
E � 0,

ð"ð2Þ� � "ð2Þ�transvÞjE�0 
 k?�ðkkÞ 1
k̂

� �
: (10.15)

This analytic result shows, besides the numerically ob-
tained plots in Figs. 4 and 5, that the longitudinal part of
the second polarization vector may still play a role for
vanishing Lorentz-violating parameter. Because of the
�-function, the Ward identity can perhaps not be applied
any more.

FIG. 6 (color online). Contour of angles ð’0; #0Þ, for which the
normalization factor N00 vanishes. The peaks in Fig. 5 lie on this
contour.
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Now, we want to look at the third term of Eq. (10.4a),
which is enclosed by round brackets. It will be denoted

as Xð3Þ


0 in what follows. We consider the 2 � 2 scat-

tering process, where for the polarization vector in the final

state, we insert only its longitudinal part according to

Eq. (10.15). Note that the longitudinal part of the initial

state polarization vector vanishes, since k1;k � 0. Then, we

obtain

Xð3Þ
22 ¼ "ð2Þðk1Þ � "ð2Þðk2Þ � ð"ð2Þðk1Þ � p1Þð"ð2Þðk2Þ � p2Þ

p1 � k1 þ ð"ð2Þðk1Þ � p2Þð"ð2Þðk2Þ � p1Þ
p1 � k2


 k2;?�ðk2;kÞ
0

"̂ð2Þðk1Þ

 !
� 1

k̂2

 !
� k2;?�ðk2;kÞ

p1 � k1
�

0

"̂ð2Þðk1Þ

 !
� p0

1

p1

 !��
1

k̂2

 !
� p0

2

p2

 !�

þ k2;?�ðk2;kÞ
p1 � k2

�
0

"̂ð2Þðk1Þ

 !
� p0

2

p2

 !�
�
�

1

k̂2

 !
� p0

1

p1

 !�

¼ k2;?�ðk2;kÞ
�
"̂ð2Þðk1Þ � k̂2 � ð"̂ð2Þðk1Þ � p1Þðp2 � k2Þ

jk2jp1 � k1 þ ð"̂ð2Þðk1Þ � p2Þðp1 � k2Þ
jk2jp1 � k2

�

¼ k2;?�ðk2;kÞ
�
"̂ð2Þðk1Þ � k̂2 � "̂ð2Þðk1Þ � k2

jk2j
�
¼ 0; (10.16)

where we have used "̂ð2Þðk1Þ � p1 ¼ 0. Hence, the Ward
identity does not seem to care about the �-function. The
contribution from the longitudinal part vanishes, anyway.
The conclusion is that the peaks in Fig. 5 are—most
likely—numerical artifacts. Besides that, we expect this
to hold also for the peaks in Fig. 4, where the Lorentz-
violating parameter has the finite value 1=10.10

2. Limit of X̂

0 for vanishing Lorentz violation

In Sec. IX, we have seen that preferred spacetime direc-
tions �� and 	� appear in the polarization tensors 
��

even for vanishing Lorentz violation. However, since the

limit of X̂

0 for vanishing Lorentz-violating parameters
seems to coincide with the standard QED result, they
obviously do not play a role for physical quantities. The
question then arises as to why this is the case.

We consider an amplitude M, to which one external
photon with four-momentum k� and polarization 
 couples:

M ¼ "ð
Þ� ðkÞM�ðkÞ. In what follows, the term ‘‘matrix
element squared’’ is understood in the sense of individual

contributions j"ð
Þ� ðkÞM�ðkÞj2. For a virtual state,11 all po-
larization vectors, hence also the scalar and the longitudinal
ones, contribute to the polarization-summed matrix element
squared—denoted as jMj2:

jMj2junphys � X3

¼0

j"ð
Þ� ðkÞM�ðkÞj2: (10.17)

Evaluating jMj2 for a real state means that the Ward identity
is used. For standard QED, if ðk�Þ ¼ ðk; 0; 0; kÞ is chosen,
the Ward identity will result in

k�M�¼k0M0�k3M3¼kðM0þM3Þ¼0; (10.18)

from which it follows that M0 ¼ �M3 or jM0j2 ¼
jM3j2. Because of this, the unphysical degrees of freedom
cancel each other, and what remains are terms which involve
the physical polarization vectors (
 ¼ 1, 2). Since the latter
can be chosen as ð"�1 Þ ¼ ð0; 1; 0; 0Þ and ð"�2 Þ ¼ ð0; 0; 1; 0Þ,
we obtain

jMj2jphysQED ¼ X

¼1;2

j"ð
Þ� ðkÞM�ðkÞj2 ¼ jM1j2 þ jM2j2

¼ X

¼1;2

jM
j2; (10.19)

where ‘‘phys’’ means that the Ward identity has been used.
In order to understand the limits of the polarization

tensors from Eq. (9.3), we will perform a similar analysis
in the context of the modified theory. For ðk�Þ ¼ ðjkj;kÞ
with k ¼ ðk?; 0; kkÞ; the Ward identity reads

k�M� ¼ k0M0 � k1M1 � k3M3

¼ jkjM0 þ k?M1 þ kkM3 ¼ 0; (10.20)

and, therefore, M1 can be expressed as follows:

M1 ¼ �jkj
k?

M0 � kk
k?

M3; (10.21a)

jM1j2 ¼ jkj2
k2?

jM0j2 þ
k2k
k2?

jM3j2 þ 2jkjkk
k2?

ReðM0M�
3Þ:

(10.21b)

Using the result of Eq. (10.21b), the contribution of the
matrix element squared involving the first polarization
mode results in

10At the moment, a neat analytical proof is not available for
finite Lorentz-violating parameter. However, if the peaks were
not a numerical artifact but the cause of a inconsistency of the
theory, we would expect them to scale with increasing Lorentz-
violation, which is obviously not the case.
11A state with off-shell external particles.
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j"ð1Þ� M�j2jphysmod E�0 ¼ jM1j2 þ jM2j2 � 1

k2?
fjkj2jM0j2 þ k2kjM3j2 þ 2jkjkkReðM0M�

3Þgjphys

¼ 1

k2?
fjkj2jM0j2 þ k2kjM3j2 þ 2jkjkkReðM0M�

3Þg þ jM2j2 � 1

k2?
fjkj2jM0j2 þ k2kjM3j2

þ 2jkjkkReðM0M�
3Þg ¼ jM2j2; (10.22)

where the Ward identity has been used in the second step. Hence, restricting the matrix element squared to the physical
subspace with the Ward identity guarantees that the additional parts, which depend on the preferred directions �� and 	�,
cancel.

Now, consider the 
 ¼ 2 polarization mode. With Eq. (10.21b), we obtain

j"ð2Þ� M�j2jphysmod E�0 ¼
k2k
k2?

jM0j2 þ jkj2
k2?

jM3j2 þ 2jkjkk
k2?

ReðM0M�
3Þjphys

¼ k2k
k2?

jM0j2 þ jkj2
k2?

jM3j2 þ
�
jM1j2 � jkj2

k2?
jM0j2 �

k2k
k2?

jM3j2
�

¼ k2k � jkj2
k2?

jM0j2 þ jM1j2 þ
jkj2 � k2k

k2?
jM3j2 ¼ �jM0j2 þ jM1j2 þ jM3j2: (10.23)

Setting k?¼0 in Eq. (10.20) results inM0¼�sgnðkkÞM3

and therefore jM0j2 ¼ jM3j2. This then leads to

j"ð2Þ� M�j2jphysmod E�0 ¼ jM1j2: (10.24)

Hence, we see that by using the Ward identity, all contri-
butions depending on �� and 	� also vanish for the second
mode. Therefore, for vanishing Lorentz violation, the stan-
dard result

jMj2jphysmod E�0 ¼
X


¼1;2

j"ð
Þ� M�j2jphysmod E�0

¼ jM1j2 þ jM2j2 (10.25)

is recovered.

XI. DISCUSSION AND CONCLUSION

In this article, a special sector of a CPT-even Lorentz-
violating modification of QED, with the characteristics
of being parity-odd and nonbirefringent, was examined
with respect to consistency. The deformation of QED is
described by one fixed timelike four-vector, one fixed
spacelike four-vector, and three Lorentz-violating
parameters.

The nonbirefringent ansatz combined with the parity-
violating parameter choice leads to two distinct physical
photon polarization modes. These modes are characterized
by dispersion relations, which differ to quadratic order in
the Lorentz-violating parameters. Hence, the theory is only
nonbirefringent to linear order. The dispersion relations
coincide with the formulas previously obtained in
Ref. [22]. The new most important results of this article
are summarized in the subsequent items:

(i) With the optical theorem, unitarity is verified for
tree-level processes involving conserved currents.

(ii) Microcausality is established for the full range of
Lorentz-violating parameters. Information only
propagates along the modified null cones.

(iii) It has turned out that covariant polarization tensors
can be constructed for each photon mode. This is
not possible in standard QED, where only the po-
larization tensor of the sum of both modes can be
written covariantly.

(iv) The gauge-invariant12 polarization tensor of each
mode depends on the background field directions.
For vanishing Lorentz violation, this dependence
remains. It only cancels when considering the sum
of both modes, which leads to the polarization sum
of standard QED.

(v) The fact that the polarization tensors depend on the
background field directions even for vanishing
Lorentz violation makes us think about the question
of whether the limit of zero Lorentz violation is
continuous. In other words, a priori, it is not clear
whether or not the modified theory approaches stan-
dard QED for vanishing Lorentz violation. This is the
motivation to test the theory via brute force by cal-
culating one special process: Compton scattering for
unpolarized electrons scattered by polarized photons.

(vi) The cross sections can be computed either byusing the
modified polarization vectors or the modified polar-
ization tensors. The upshot is that the results for
1 � 1, 1 � 2, and 2 � 1 coincide, but a numerical

12With all terms dropped which involve one or more external
photon four-momenta.
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treatment reveals a discrepancy for 2 � 2 scatter-
ing.13 The Ward identity is shown to cure the polar-
ization vectors and tensors from their bad behavior for
vanishing Lorentz violation, at least for the first three
processes. However, if the matrix element squared is
computed for the fourth process by using themodified
polarization vectors, there exists a phase space sector,
for which the longitudinal part of the second polariza-
tion vector is proportional to a � function. This could
be shown by an analytic investigation. It could also be
proven analytically that the Ward identity can cancel
this contribution, nevertheless.

To conclude, the parity-odd nonbirefringent sector of
modified Maxwell theory seems—with regard to the per-
formed investigations—to be consistent. Further steps in
the context of consistency of Lorentz-violating quantum
field theories may involve the analysis of unitarity at one-
loop level, where the Lorentz-violating structure is treated
in an exact way. Especially for this parity-odd theory, it
would be interesting to know if its consistency is inherited
to higher orders of perturbation theory. However, this is
beyond the scope of this article.

In light of the consistency of this Lorentz-violating
extension at tree level, nature decides on the values of
the Lorentz-violating parameters. Therefore, they have to
be measured with experiments. For a summary of the
current experimental status, we refer to Ref. [48] and
references therein. The latter article also gives new experi-
mental bounds on the parity-odd parameters.
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APPENDIX A: TECHNICAL DETAILS
CONCERNING THE CALCULATION OF THE

COMPTON CROSS SECTIONS

We compute the cross section in two different man-
ners. The first possibility is to follow Sec. 11.1 of
Ref. [40], which gives the matrix element squared for
Compton scattering of polarized photons off unpolarized
electrons. In order to derive this equation, the authors
use polarization vectors. This is clear since in standard
QED, covariant polarization tensors cannot be constructed
from the polarization vectors. Hence, we perform a
similar calculation in the modified theory, where we can
directly test our polarization vectors given by Eqs. (5.1)
and (5.2).
The second possibility is to compute the cross sections

according to Eq. (5.81) of Ref. [44], where polari-
zation tensors are used. Note that here Compton scat-
tering of unpolarized photons is considered; hence, it is
averaged over initial and summed over final photon
polarizations. Only under this condition can polari-
zation tensors be used in standard QED. However, for
parity-odd nonbirefringent modified Maxwell theory, an
analogous computation is also possible for Compton
scattering with polarized photons. Hence, we have to
calculate

~�1X ¼ 1

4m!1ðk1Þjvgr;1j
X


0¼1;2

Z d3k2
ð2
Þ22!
0 ðk2Þ2E2

� �ð!1ðk1Þ þm�!
0 ðk2Þ � E2ÞðjMðk1; k2Þj2Þ��%�ð
�%ðk1Þj
¼1Þð
��ðk2Þj
0 Þj k0
1
¼!1ðk1Þ

k0
2
¼!


0 ðk2Þ
; (A1a)

~�2X ¼ 1

4m!2ðk1Þjvgr;2j
X


0¼1;2

Z d3k2
ð2
Þ22!
0 ðk2Þ2E2

�ð!2ðk1Þ þm�!
0 ðk2Þ � E2Þ

� ðjMðk1; k2Þj2Þ��%�ð
�%ðk1Þj
¼2Þð
��ðk2Þj
0 Þj k0
1
¼!2ðk1Þ

k0
2
¼!


0 ðk2Þ
; (A1b)

where the energy of the final electron is denoted as E2.
Note the division by the group velocity of the first and
second polarization state (see also Ref. [49]), respectively,
where in the standard theory, jvgr;1j ¼ jvgr;2j ¼ 1. The
tensor ðjMðk1; k2Þj2Þ��%� is given by the trace term of
Eq. (5.81) of Ref. [44] with some modifications due to
the Lorentz-violating kinematics. The purely algebraic part

of the calculation, which includes computation of traces,
contraction of indices, and inserting kinematical relations,
is performed with Form [50]. The subsequent phase space
calculation is done numerically with C++, since the result-
ing matrix element squared contains hundreds of terms.
The limit of zero Lorentz violation has to be taken with
care, and ‘‘long double’’ precision does not suffice here.
Therefore, the GNUMultiple Precision Arithmetic Library
GMP [51] is used with its C++ interface described
in Sec. 12 of the reference previously mentioned.13Here, the numbers indicate the photon polarizations.
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The first idea was to choose the coordinate system
such that � lies along the third axis. Then, the phase space
should have been integrated with cylindrical coordinates
ðk2;?; ’; k2;kÞ. To cover a general situation, where the

initial photon momentum k1 points in an arbitrary direc-
tion, the cylindrical axes would have to point in that
direction as well. As a result of this, the coordinate frame
must be rotated in order to compute the cross section. This
treatment has turned out to be unsuitable. Therefore, a
better approach is the following, which is sketched in
Fig. 7. The phase space integration is performed with
spherical coordinates ðjk2j; #; ’Þ, where the initial photon
momentum points along the third axis of the coordinate
system. The general case is mimicked by � pointing in an
arbitrary direction. As a special—but nevertheless very
generic—case, we can choose its components to be equal
(however, computations were also done for different cases
as shown in Table V):

� ¼ ~�
1
1
1

0
@

1
A; E ¼ ffiffiffi

3
p j~�j: (A2)

The integration over jk2j is eliminated at once with the
energy conservation equation in the � function. Here, we
have to keep in mind that

�ð!
ðk1Þ þm�!
0 ðk2Þ � E2Þ

¼
��������@ð!
ðk1Þ þm�!
0 ðk2Þ � E2Þ

@k2

���������1

�ðk2 � ðk2Þ0Þ; 
; 
0 2 f1; 2g; (A3)

where ðk2Þ0 is the corresponding zero. The analytic solu-
tion ðk2Þ0 is a complicated function of E and m, so we

determine it numerically with Newton’s method inside the
C++ program. The integrations over # and ’ are performed

with the Simpson rule, which is sufficient for our purpose.
The integration domain, which includes all physical states,
is determined automatically with ðk2Þ0. If no zero ðk2Þ0
exists, then the corresponding angles # and ’ lie outside
the domain.

APPENDIX B: COMPTON SCATTERING
AND THOMSON LIMIT IN STANDARD
(QUANTUM) ELECTRODYNAMICS

The low-energy limit of the Compton scattering cross
section (Thomson limit) can be calculated classically via
the following equation (see, e.g., Ref. [52]):

�
d�

d�

�
Th



0
¼ �2

m2
j"f;
0 � "i;
j2; (B1)

where "i;
 is the polarization three-vector of the incoming

and "f;
0 that of the outgoing electromagnetic wave. For

the initial wave traveling along the z axis, we can choose
the transverse polarization vectors as

"i;1 �
1

0

0

0
BB@

1
CCA; "i;2 �

0

1

0

0
BB@

1
CCA: (B2)

In general, the propagation direction of the final wave can
be described in spherical coordinates by the basis vector
êr ¼ ðsin# cos’; sin# sin’; cos#Þ. Then, we can pick the
physical polarization vectors to point along the other two
basis vectors ê# and ê’:

"f;1 � ê# ¼
cos# cos’

cos# sin’

� sin#

0
BB@

1
CCA;

"f;2 � ê’ ¼
� sin’

cos’

0

0
BB@

1
CCA:

(B3)

This leads to the polarized Thomson scattering cross sec-
tions in standard electrodynamics:

�Th
11 ¼ �Th

21 ¼ 2
�2

3m2
; �Th

12 ¼ �Th
22 ¼ 2
�2

m2
: (B4)

If we rotate, for example, the set of initial polarization
vectors by angle � and the final ones by angle � in their
corresponding polarization planes, the single contributions
�Th



0 will depend on �. However, this dependence cancels

in �Th
1X and �Th

2X which are defined as follows:

FIG. 7 (color online). Chosen coordinate system for the phase
space integration, where the initial photon three-momentum k1

lies along the third axis of the coordinate system. For the out-
going photon momentum k2, spherical coordinates are chosen
with the azimuthal angle # corresponding to the angle between
k2 and the third axis. Cases are treated with the three-vector �
having equal or unequal components.
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�Th
1X � 1

2
ð�Th

11 þ �Th
12 Þ ¼

4
�2

3m2
; (B5a)

�Th
2X � 1

2
ð�Th

21 þ �Th
22 Þ ¼

4
�2

3m2
: (B5b)

From�Th
1X ¼ �Th

2X is clear that both initial modes deliver equal
contributions to the total Thomson result of Eq. (10.6).

This is also the case for MCS theory. The MCS polariza-
tion tensors of Eq. (8.4) even give equal results for each
individual polarized scattering process in the limitmCS � 0:

�MCS;Th
11 ¼ �MCS;Th

12 ¼ �MCS;Th
21 ¼ �MCS;Th

22 ¼ 4
�2

3m2
: (B6)

For parity-odd modified nonbirefringent modified Maxwell
theory, the individual contributions are not equal for E � 0.
However, the above expressions from Eqs. (B5a) and (B5b)
correspond to each other.
With Eq. (11-13) of Ref. [40] and the standard polariza-

tion vectors from Eq. (B3), we obtain the polarized
Compton scattering values given in Table II.
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[32] V. A. Kostelecký and M. Mewes, Phys. Rev. Lett. 87,
251304 (2001).

[33] Q. G. Bailey and V.A. Kostelecký, Phys. Rev. D 70,
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