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Infrared divergences in light-front QED and coherent state basis
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We present a next-to-leading-order calculation of electron mass renormalization in light-front quantum
electrodynamics using old-fashioned time-ordered perturbation theory. We show that the true infrared
divergences in 8m? get canceled up to O(e*) if one uses the coherent state basis instead of the Fock basis

to calculate the transition matrix elements.
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L. INTRODUCTION

It is well known that in quantum electrodynamics
(QED), the infrared (IR) divergences get canceled in suit-
ably defined cross sections by virtue of the famous Bloch-
Nordsieck theorem [1]. According to this theorem, the
divergences in virtual processes get canceled when the
contribution of real photon emission is added. It is to be
noted that this cancellation takes place at the level of
cross sections and not at the level of amplitudes. The diver-
gences at the amplitude level arise due to inappropriate
choices of initial and final states. In Lehmann-Symanzik-
Zimmermann formulation, the dynamics of incoming and
outgoing particles in a scattering event is described by the
free Hamiltonian, and therefore, the initial and final states
used to calculate the transition matrix elements are taken to
be Fock states. However, in an actual experiment, due to
the finite size of the detector, the charged particle can be
accompanied by any number of photons. The Bloch-
Nordsieck mechanism takes into account all states with
any number of soft photons below experimental resolution,
thus leading to cancellation of the divergences. The issue
of cancellation of IR divergences at the amplitude level
was addressed by Chung [2], who showed that the diver-
gences in matrix elements are eliminated to all orders in
perturbation theory if one chooses the initial and final
states to be charged particles with a suitable superposition
of an infinite number of photons. Kulish and Faddeev (KF)
[3] defined the asymptotic states by means of an asymp-
totic Hamiltonian. They were the first to show that in QED,
the asymptotic Hamiltonian does not coincide with the free
Hamiltonian. Kulish and Faddeev constructed the asymp-
totic Hamiltonian V; for QED, thus modifying the asymp-
totic condition to introduce a new space of asymptotic
states given by

ln; =) = Q41n), (1)

where Q4 is the asymptotic evolution operator and |n) is
the Fock state. Q4 is defined by
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04 = Texp[—i[j Vm.(t)dt]. 2)

KF further modified the definition of the S matrix and
showed that it is free of IR divergences. In a nutshell, the
method of asymptotic dynamics proposed by KF replaces
the free Hamiltonian with an asymptotic Hamiltonian
which takes into account the long-range interaction be-
tween incoming and outgoing states and can be used to
construct a set of coherent states as the asymptotic states.
The transition matrix elements formed by using these
states are then free of infrared divergences.

The KF method was used by Nelson and Butler [4-6] to
generate a set of asymptotic states in the asymptotic region
of perturbative quantum chromodynamics . The asymp-
totic states constructed were shown to lead to the cancel-
lation of IR divergences in certain matrix elements in the
lowest order in perturbative quantum chromodynamics.
Greco et al. [7] constructed a coherent state approach for
non-Abelian gauge theories and showed that matrix ele-
ments between coherent states of definite color are finite
and factorized in the fixed-angle regime. The KF method
was also applied to QCD by Dahmein and Steiner [8], who
showed that the leading logarithmic behavior of the mass
shell form factor can be derived from the asymptotic quark
gluon part of the QCD Hamiltonian.

Relevance of coherent state formalism in light-front
field theory (LFFT) was first discussed by Harindranath
and Vary [9], who showed that a coherent state may be a
valid vacuum in LFFT. Later, it was shown [10] in the
context of the light-front Schwinger model that the physi-
cal vacuum is a gauge-invariant superposition of coherent
states of dynamical gauge field zero mode.

A coherent state formalism for light-front quantum
electrodynamics (LFQED) was developed by one of us in
Ref. [11], henceforth referred to as J, as a possible method
to deal with the frue IR divergences of LFFT. These true IR
divergences are the bona fide divergences of equal-time
field theory and appear when both k™ and k| approach
zero. In addition to these, there are additional IR diver-
gences in LFFT called the spurious IR divergences, as
they are just a manifestation of ultraviolet divergences of
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equal-time theory. It was shown in I that the true IR
divergences in one-loop vertex correction are eliminated
when the transition matrix element is calculated between
the coherent states in place of Fock states. Subsequently, it
was proposed [12] to use the coherent state basis con-
structed in I for the calculation of Hamiltonian matrix
elements in the discrete light cone quantization method
of bound state calculation as a possible way to avoid
the vanishing energy denominators and the resulting true
IR divergences. The method was applied to obtain the
light-cone Schrodinger equation for positronium using
the coherent state basis, and to demonstrate the absence
of Coulomb singularity therein. The method of asymptotic
dynamics has also been applied to light-front quantum
chromodynamics (LFQCD) [13] to obtain a set of coherent
states, and it has been shown to lead to the cancellation of
IR divergences appearing due to vanishing energy denom-
inators (which are actually the true IR divergences) in ggqg
vertex correction at the one-loop level.

The KF method leads to the cancellation of IR
divergences in QED to all orders. However, it is well
known that the Bloch-Nordsieck theorem does not hold
in QCD, and therefore, in this case one does not expect to
construct an all-order proof of cancellation of IR divergen-
ces along the lines of the KF method. Basically, the non-
cancellation of IR divergences in QCD stems from the fact
that asymptotic states here are bound states of quarks and
antiquarks, and therefore the asymptotic Hamiltonian to
be used in the KF method should contain the confining
potential, and is not just the asymptotic Hamiltonian of
QCD. An “improved” method of asymptotic dynamics
was introduced by McMullan et al. [14-16], which also
takes into account the separation of particles. The im-
proved method has also been discussed in the context of
LFQED and LFQCD [17].

In this work, we calculate fermion self-energy in
LFQED up to O(e*). We extend the analysis of I to include
the instantaneous interaction also in the construction of the
asymptotic Hamiltonian and the resulting coherent state
basis. We show that the true IR divergences in electron
mass renormalization are canceled up to O(e?) if one uses
the coherent state basis for evaluating the transition matrix
elements.

Conventionally, LF quantization is performed in the
light-front gauge, A™ = 0, due to its many advantages
when applied to non-Abelian theory [18]—specifically
due to the absence of ghost fields. In this work on QED,
we have also used the light-front gauge. There has been
some discussion addressing the question of gauge indepen-
dence of LFQED calculations in the literature [19]. In a
recent work, the gauge independence of nonperturbative
calculations of the electron’s anomalous magnetic moment
has been verified [20]. However, in this work, we have not
addressed the issue of gauge dependence of our results, as
we plan to do this in a future work.
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The cancellation of IR divergences in covariant QED
has been established to all orders in both the amplitude
as well as the cross-section approach. Various authors
[21-24] have addressed the issue of equivalence of cova-
riant and light-front formalism of field theory, and there-
fore it may be considered unnecessary to address the
cancellation of IR divergence in LFFT. However, the
divergence structure of LFFT is different from that of
covariant formalism, and there are issues present that still
need to be addressed [25]. In particular, it is important to
differentiate between true and spurious IR divergences. As
discussed in Refs. [11-13,17], a coherent state approach in
LFFT is interesting due to the following reason: LFFT
being based on a Hamiltonian approach, a coherent state
method in LFFT may be useful from the point of view of
extracting information about the artificial confining poten-
tial which is needed in LF bound state calculations [26]. It
is well known that IR divergences do not cancel in QCD,
and the reason within the coherent state formalism is that
the asymptotic states are not the asymptotic states of QCD
but are bound states of quarks and antiquarks. In other
words, if we use the appropriate Hamiltonian of bound
states as the asymptotic Hamiltonian and develop a coher-
ent state approach based on it, then this approach would
lead to the cancellation of IR divergences in QCD as well.
It will be worthwhile to understand this connection bet-
ween the cancellation/noncancellation of IR divergences
and the form of the asymptotic Hamiltonian. The hope is
that by understanding the structure of IR divergences, we
may be able to get some insight into the form of artificial
confining potential mentioned in Ref. [26], which can then
be used to perform the bound state calculations.

The plan of the paper is as follows: In Sec. II, we present
the Hamiltonian of LFQED and calculate the O(e?) elec-
tron mass renormalization using light-cone time-ordered
perturbation theory in the standard Fock basis. We demon-
strate the appearance of true IR divergences in the form of
vanishing light-cone energy denominators. In Sec. III, we
obtain the form of coherent states using the method of
asymptotic dynamics. In Sec. IV, we calculate §m? in the
lowest order using the coherent state basis and show that
the extra contributions due to emission and absorption of
soft photons indeed cancel the IR divergences in §m?. In
Sec. V, we calculate §m? up to O(e*) in the Fock basis and
identify the IR divergences in it. In Sec. VI, we perform the
same calculation in the coherent state basis and show the
cancellation of IR divergences in this basis. Section VII
contains a summary and discussion of our results. In
Appendix A, we set the notations and conventions and
give some useful relations. Appendix B contains some
useful properties of coherent states. Appendixes C and D
contain the details of the calculation of the transition
matrix element in the Fock basis and the coherent state
basis, respectively.
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II. PRELIMINARIES

A. Light-front QED Hamiltonian

The light-front QED Hamiltonian in the light-front
gauge (A* = 0) expressed in terms of independent degrees
of freedom is given by Refs. [27,28]:

P_:HEH0+V1+V2+V3, (3)

where
- o 1
Hy = fdledx_{%fﬂy_a_f +§(F12)2

1
- jasi-oa) 4

is the free Hamiltonian,
Vi=e f dxdx Eyréa,, (5)
is the standard O(e) three-point interaction,
V, = — 41'62 [dledx_dy_e(x_ —y7)
X (Eary")x)y ™ (a7 (). (6)

is an O(e?) nonlocal effective four-point interaction corre-
sponding to an instantaneous fermion exchange, and

2
Vi= _eZ /d2xldx‘dy‘(57+ HWIx™ =y IEY ),
(7

is an O(e?) nonlocal effective four-point interaction corre-
sponding to an instantaneous photon exchange. V, and V;
are drawn as four-point interactions, and a hash mark is
drawn on the line representing the instantaneous particle.
£(x) and a,(x) can be expanded in terms of creation and
annihilation operators as

dsz.
X f [u(p, s)e™"P"> "PLxp(p, 5, x™)
=z
+ u(p, 5)el?' ¥ ~PrxDgt(p, 5, x7)],
(8)
d’q; dq”
a,(x) = €l (9)
m (2mr)3/? 2g™" /\:ZI,Z g
X [ema" " ~aua(g, A, x™)
+ ei(q+x7*qlxj_)a1'(q’ /\, x+)], (9)
where
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{b(p,s),bT(p,s"}=8(p" — p'")8%(pL — '),y
={d(p,s),d"(p',s")}, (10)

la(g, A).at (¢, AN]=8(¢" —¢'")8* (@1 —q ). (1D

These relations hold at equal light-front time x*. In terms
of these momentum-space operators, the free Hamiltonian
has the form

2

2
pi tm
H,= d2 d +[ 1
0 [ pLap 2p+

d*<p,s>d<p,s)>+2 -3 dpsapn) | (2)
A=1,2

D (b (p,s)b(p,s)

=+1
S==2

Similarly, V; has the form

Vi=e [ Pxydx [ [dp)ldplldK]

X Y [e?*a(p, b (p,s') + e 7*5(p, s")d(p, s)]

5,8, A
X y e~ P u(p, s)b(p, s) + P v(p, s)dt (p, 5)]
X ep(kle”**a(k, A) + e*~at(k, A)], (13)

where

d’py [~ dp*

j[dp]z f:(;)% o ot

V, and V; are given by the following expressions:

(14)

l€2 -
vy - f &x | dxdy-di[dpldpdkI[dR]

X ’ ] i e a(p, s)bt (p, 5)

S,S,’Z)L‘)L,[ 7l
+ e (p, s)d(p, s)J#* ()le™ " a(k, A)

+ ecrat(k, A)]y* £V ()e P u(p, s")b(p, s')

+ e?v(p, ')dt (p, s e " Va(k, X')

+ e®vat(k )], (15)

2
Vy = % f d?*x | dx~dy~dl[dp][dp]dk][dk]
eilx™=y7)
X Z T[e”’ *i(p, sbt(p, s')

5,8, 0,0

+ e "o (p, s")d(p, s") ]y e P ulp, s)b(p, 5)

+ e”*v(p, s)dt (p, )l a(k, )bt (K, o)

+ e ®V5(k, o)d(k, o)yt [e * ulk, o)blk, o)

+ vk, o)dt (k, o)], (16)

where y = (x*,y7, x ).
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B. Electron mass renormalization in light-front QED

In light-front time-ordered perturbation theory, the tran-
sition matrix is given by the perturbative expansion

1
T=V+V—V+---, (17)
p- — Hy

The electron mass shift is obtained by calculating 7,
which is the matrix element of the above series between
the initial and the final electron states | p, s) and | p, o), and
it is given by Ref. [28] as

Sm> = p*yT,, (18)

Note that only o = s contributes, as the fermion self-
energy is diagonal in spin.
We expand T, in powers of e’ as

T,,=TW+T@ +.... (19)

In general, T gives the O(e*") contribution to electron
self-energy correction. Here, the initial (or final) electron
momentum is

2 2
_[p+ Bt ] 20
p [p s PL | (20
In particular, O(e?) correction is obtained from

T4y = TV (p, p)

1
=(p, slVi———=—Vilp, s) + {p. sIValp, s).
p- — Hy

Note that
T4y = TV (p, p) = Ty, + Ty, 1)

where T, and T, are O(e?) contributions from the stan-
dard three-point vertex and the four-point instantaneous
vertex, and are represented by the diagrams in Figs. 1(a)
and 1(b), respectively. We are interested in the true IR
divergences, which arise due to vanishing energy denom-
inators in time-ordered perturbation theory [11]. It is ob-
vious that T, cannot have such IR divergences, as there
are no energy denominators involved, and hence this term
is not required in our discussion. Neglecting T}, the O(e?)
transition matrix element contributing to fermion self-
energy reduces to

1
Ti(p, p) = (p, sV, p_f Vilp, s). (22)
0

H

To calculate T,,, we insert two complete sets of states so
that the above equation becomes
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k k

o) (ps)

(
(a) (b

|
(p,s) ! (p,0)
)

FIG. 1. Diagrams for O(e?) self-energy correction in the Fock
basis corresponding to 7.

2
Tupp) = [ [T pid*kip, sIVilph, s, K, A
i=1

spins
1
X<pl)s/)k/))lll_ilplysl)kly/\l>
21 ™M lp _HO 2022 B 22
X (ph, sb, Ky, AL1ViIp, s). (23)

Substituting for V; from Eq. (13) and using Egs. (18) and
(A4), we obtain

&2 dk;
oM = 3y [ iy [ ﬁ
o« Tr ¢ (k) (B1 + m)gMky)(f + m)]
4p~ —py — k)

)

where p; = p — k;. Calculating the trace, using Eq. (A9)
for the energy denominator and taking the limit k| — 0,
k;; — 0, we finally obtain

G ’ dki (p - e(ky))?
Qm)3 ,[d kil ki (p-ky)

Note that the denominator vanishes as k; — 0, k;; — 0,
leading to true IR divergences [11].

(8m3, )R =

. (25)

II1. INFRARED DIVERGENCES AND THE
COHERENT STATE BASIS

It was shown in I that the true IR divergences in one-
loop vertex correction get canceled if one uses the coherent
state basis in LFQED. We will prove the same result for
electron mass renormalization in Sec. I'V. For that purpose,
we will now obtain the form of coherent states in light-
front formalism by the method used in Ref. [3] for equal
time theory. In J, only the three-point vertex was used to
obtain the asymptotic Hamiltonian and the corresponding
coherent state basis. We extend the formalism developed in
I by obtaining the asymptotic limit of four-point instanta-
neous interaction also.

The light-front time dependence of the interaction
Hamiltonian is given by

Hi(x™) = Vi(x") + Vo(x™) + V3(x™),

where [11]
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S Wr,—ir!x* 1) (1)
Vix®) = erdVi [e™* hi (v;”)
i=1

+ e i )], (26)

and ﬁﬁ”(vﬁ”) are three-point QED interaction vertices:

P =S bt (p, s)b(p, s)alk, Va(p, s')y*u(p, s)€b,

5,8, A

27)

R =3 bt (p, sNdt (p, s)alk, Na(p, s')yy*v(p, s)eb,

5,54

(28)

R =3 d(p, b(p, )alk, M5B, s')y*ulp, s)ep,

5,5, A

(29)

PP =3 dl(p, s)d(p, s)alk, N5 (p, s')y*v(p, s)el,

5,8, A
(30)
(1)

and v; "’ is the light-front energy transferred at the vertex

ﬁgl). For example,

__ Dk

Tk O

V(1])=p7+k7—]_7

is the energy transfer at the eey vertex. The integration
measure is given by
[dplldk]

1
dv\) = ,
J = 25

with p* and p | being fixed at each vertex by momentum
conservation.
At asymptotic limits, nonzero contributions to V;(x™")

come from regions where 1/5-1) — (. Itis easy to see that 1/(21)

and Vgl) are always nonzero, and therefore /1, and /5 do not
appear in the asymptotic Hamiltonian. Thus, the three-
point asymptotic Hamiltonian is defined by the following
expression [11]:

(32)

Vi) =e Y / dv" (e BV (")

i=1,4

. (1)
+ e

Rl ) (33)
where @, (k) is a function which takes the value 1 in the
asymptotic region and is 0 elsewhere.

As shown in I, for V|, we can define the asymptotic
region to consist of all points in the phase space for which
p-k

+

< AE, (34)

PHYSICAL REVIEW D 86, 065037 (2012)

where AE is an energy cutoff which may be chosen to
be the experimental resolution. For simplicity, we shall
choose a frame p; = 0. In this frame, the above condition
reduces to

12 2kt
pky m k+ <A, (35)
2k 2p
where A = ptAE.
Thus, for all the points satisfying Eq. (35), 1/(1]) and Vgl)

can be approximated by zero. This implies that in this
region, the asymptotic Hamiltonian is different from the
free Hamiltonian. For the present purpose, i.e., in order to
eliminate the true IR divergences, we find it sufficient to
choose a subregion of the above mentioned region as the
asymptotic region. We define this subregion to be consist-
ing of all points (k*, k | ) satisfying

kA

Ki<= (36)
A

<P 2 (37)
m

This choice of the asymptotic region leads to the asymp-
totic interaction Hamiltonian defined by Eq. (33) with

kA A
@4 (k) = 0( - k’i)a("m—z - k+).

The contribution to the asymptotic Hamiltonian from the
four-point instantaneous interaction can be obtained by
taking the |x*| — oo limit in V,(x*). V,(x*) is given by

(38)

8
_ 2+~
Vo(xt) = €? Z[dvf-z)[e i x hf-2)(1/f-2))
i=1

+ e PP (39)

where 7% (#'?) are four-point instantaneous fermion ex-
change vertices. For example,

B =S bH(p, s"b(p, S)alky, Aalky, A)i(p, s')
5,8, A1, A5

X yryty ulp, s)ep (k) er (ky).

One can write the remaining seven terms in a similar

2

manner. v;~ is the light-front energy transferred at the

vertex ﬁf-z). For example, in Eq. (39),

P _ _ _ __
V(z):P —ki +ky —p

prki—p-kyt+kik
- - , 40
SR (“40)

and the integration measure is
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[dplldk, ][dk]

1
(2) =
[dv an T . 41)

At asymptotic limits, nonzero contributions to V,(x™)
(2)

come from regions where v;
that Véz) and V(z) vanish when k] = k3 and k| =k, |,
while the rest of the six V(Q)’s are always nonzero. Thus, the

asymptotic Hamiltonian for V, is defined by the following
expression:

— 0. It can be shown easily

Vi @) = € Y f dv? 83y — k)™ AP ()
i=2.8
Dxt FO () 1
+ eV b (v )] - 42)
]2(10+ — k)
Similarly, Vj3,,(x") is obtained by taking the
limit |x*| — oo in V5(x"), where
8
() =ey f dv e " R (v)
i—1
o5 O () 1
|
A |n: p~>=exp[ fdp+d2p f &k, fdi
+ . i 1 277)3/2 2k+

Pk, [ dki
+e [dp+d2pl[ f f
A _12(27T)3/2 ,2k+

[f(k, A: p)at(k, A) —
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Here, 5(3)(1/(3)) are four-point instantaneous photon ex-
change vertices. One can easily verify that 1/( Vs are always
nonzero for all i. Hence, V;(x") is zero in the asymptotic
limit and does not contribute to the asymptotic
Hamiltonian.

The asymptotic states can be defined in the usual manner
by

|n: coh) = Q4 |n), (44)

where |n) is a Fock state, and Q4 are the asymptotic
Moller operators defined by

01 = Texp| ~i [[[Viasa) + Vo e | 45)

Carrying out the standard procedure [3] of substituting
k* =0, k| = 0 in all the slowly varying functions of «,
and carrying out the x™* integration, we arrive at the follow-
ing expression for the asymptotic states:

[k, A: pla(k, V)]

d*k, )

L=12 (277)3/2

dk+
X [ 2_[g1(ky, ko, Ay, Ag: plat(ky, Xy)a(ky, Ay) — ga(ky, ko, Ay, Ay: plalky, Ay)at (ky, /\1)]P(P):||ni P

s

(46)
where
k) (ktA tA
[k A: p) = pl;)q,g ) ( . ki)ﬁ(pmz - k+>’ (47)
fk A: p) = f*(k A: p), (48)
)= 4p” (g — )= 4p” 3k —
81(ky, kz, A1, Ay: p) ki —p otk -k25 (ky —ka),  ga(ky ko, Ay, Ag: p) bk —pk—k ~k26 (ky = k),
(49)
p(p) = Y [bY(p)b,(p) — di(p)d,(p)] (50)

Applying the operator p(p) on the Fock state, we finally obtain
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d’k dk*
Q4|n: p;) =ex [ [ = [f(k, A, pat(k, A
“n: pi) p 2 0P \/2k—+ pa‘(k )
N 2/ d’k, fdkl+ [ deuf
N=12 (277)3/2 ‘/2k+ 12(277')3/2
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= [k A pla(k, A)]

dk;
: [gl(klx ko, Ay, Azt p)a*(kz, Ay)alky, Ay)

= ki Ay, A plall, At (1, A | o, (51)
In particular, the one-fermion coherent state is given by
p. fp) = e ¢ [ 3 12;’227'3 U s p)al () = (6 A plalk )
/A _12((;771'()?/-2 [jzk]% f)‘ 12([;2771()2372 f diy [81(k1:k2, Ay, Ag: pat(ky, Ay)alky, Ay)
= galki ko i, A plall, At (1, A |1 ) (52)

Some useful properties of these coherent states are listed in
Appendix B.

IV. ELECTRON MASS RENORMALIZATION UP
TO O(e?) IN THE COHERENT STATE BASIS

In the coherent state basis, O(e?) self-energy contribu-
tion is given by TW + 7'M, where T is defined in

Eq. (21) and 7'V arises from the O(e?) term in
T'(p, p) = <p, s: f(PIVilp, s: f(p)) (53)

I
with | p, s: f(p)) being the coherent state given by Eq. (52).
The contribution of the O(e) term in f(p) leads to addi-
tional diagrams shown in Figs. 2(a) and 2(b), and is de-
noted by 7} + T},. Here a dotted line represents the soft
photon in the coherent state. The diagrams in Fig. 2 cor-
respond to the emission (absorption) of a soft photon by the
incoming (outgoing) fermion, but since the emitted (ab-
sorbed) photon is soft, the two-particle state containing it is
indistinguishable from a single-fermion state. Substituting
for V| from Eq. (13), we obtain

iu(py, s kDu(py, s1)

Tp.p) = o [ k)

X [{p,s: f(p)|bT(py,

Using coherent state properties [Egs. (B1) and (B3) from
Appendix B] in Eq. (54), we obtain

T'(p. p)

d2k1 1
oo %)

Using Egs. (18) and (A4) and calculating the trace, we

obtain
[ [ dki (
1L
(56)

where the prime indicates the correction due to additional
terms in the coherent state basis. The energy denominator

dk

2k+ (P: I)é}\(k )”(P’S)f(kly/\ P)

(55)

(p - €(k)))*O4 (k)

(5m2)/ —
Pk

>

2)3

V2P 2P 2KF
s)b(py, sy)alky, Mlp, s: f(p)8&3(p,
+{p. s: f(PIbT(py, s)b(py, s1)al (ky, Mlp, s: f(p))&3(p

—-pi— k)

= pi T k)l (54)

|
in Eq. (56) vanishes in the limit k1+ — 0, k;; — 0, thus
leading to IR divergences. However, when adding Egs. (25)
and (56), these true IR divergences get canceled, and the
O(e?) electron mass correction is IR divergence free.

V. ELECTRON MASS RENORMALIZATION UP TO
O(¢*) IN THE FOCK BASIS

We will now calculate the O(e*) electron mass correc-
tion in the Fock basis. The transition matrix element for
O(e*) correction to self-energy is given by

TO =Ty + Ty +Ts+ T+ T (57)

where
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N Ve

Nk s To=(pslVs— Vi— Vilpsh (61
\\ /// 6 <p:|2p7_HO ]pf_HO llp; >x ( )
)8 p, o p, s ]

o v e e L= (sl Vilpsh )

FIG. 2. Additional diagrams in the coherent state basis for P 0
O(e?) self-energy correction corresponding to 7. These matrix elements correspond to Figs. 3—7 and can be
evaluated in the standard manner by inserting the appro-
1 1 1 priate number of complete sets of intermediate states. We
T; = (p, s|V;, — V,— V,— Vilp, s), give the details of the calculation in Appendix C and

p-—Ho "p-—Hy "p Hy present the results here.
(58) T is given by
Ty = (oo slV)— 1 v, 1 Vs, (59) T3 =T3(p, p) = Taq + T3y + T, (63)
p-—Hy p —H where T3,, T3, and T3, correspond to Figs. 3(a)-3(c) and
are given by Egs. (C1), (C4), and (C6) respectively. Using
(p, s|V, — V,— ! Vilp, s), (60)  the expressions for the energy denominator in
—Hy "p —Hy Egs. (A9) and (A10) and using Eq. (18), we obtain

) ) dii di T (k) (B + mE () (B + mg™ (k) By + )M (k)(B + m)]
(0m) = =302 >6f Fhiudloy [+ 200 k(p k) + (p - ko) — Ky - )]
(64)
(6m2)y, = f Pt [ Ak THER (o) (s + AN KBy + mER )y + mg () + m)]
3 z(z ) WEEE R ks 32(p k) (p - k)(p - ky) + (p - ky) — (ky - ky)]
(65)
B dki dis T () (Fy + mEN (k)5 + m)gh (k) (By + m)A () (p + m)]
(5m2)3“_2(2w>6f k1Ko k_+ prky 32(p - k1)2(p k)(p~ = p5)

(66)

where p) = p, and p;, p,, and p; have been defined in Egs. (C2), (C3), and (C5), respectively.
Note that (8m?)5,, (8m?)s,, and (6m?);. can have IR divergences when
(i) p-k;—0,ie,kf =0,k — 0 butp-k, #0.
(i) p-ky—0,ie,ky —0,ky; —0,butp-k #0.
(iii) p-ky—0and p-ky = 0,ie, kf — 0,k — 0, k5 —0,k,; —0.

Now we will consider the contribution of Figs. 3(a)-3(c) in each of these limits.
Case I: In the limit k7 — 0,k — O (but p - k, + 0), the contribution to T3 from the diagrams in Figs. 3(a) and 3(b) is
given by

2 5y & 2 P2 dki dky [2(p - €(k)))*(p - €(k2))* — (p - ko) (p - €(k)))*]
[(6m?)3, + (6m?)3,] o) fd ki dk,) Py 2 k- by . (67)
and the contribution from Fig. 3(c) is given by
dky dky 2(p - €(k))*(p - €(kp)* — (p - kp)(p - €(ky))?
[((sz)gc] 2 )6 fd klld sz_ k—?—l k_;z 1 28p+ 2 1
P’ p3
X + . 68
I e e %

Here we have used the Heitler method [29] illustrated in Appendix C to deal with the vanishing denominator (p~ — p} ).
Case II: In the limit k5 — 0, k,; — 0 (but p - k; +~ 0), the contribution to 75 from the diagrams in Figs. 3(a) and 3(b) is
given by
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) o b [k ks [2(p - ()P (p - €ka)? — (p - k)(p - (k)]
(G, + o) = = o [ P, [E 48 e ()
and the contribution from Fig. 3(c) is given by
dki dk3 2(p - €(k))*(p - €(ky))* — (p - k)(p - €(ky))’
N e T = = T
X Pi + P : 70
[emrem T oe ) 7o

Case III: In the limit k{7 — 0, k;; — 0, k5 — 0, k,; — 0, the contribution to 75 from the diagrams in Figs. 3(a) and 3(b)
is given by

2 2 I — _ 2 dki dky (p - e(ky)*(p - €(ky))?
(s, + (omPy " = = [ iy [ ey Sl a
and the contribution from Fig. 3(c) is given by
N dki diky T(p - e(k)*(p - e(ky))* | (p - eky))*(p - e(ky))?
(o = [ [ [ s e @

The contributions to Ty, T, and T come from the diagrams in Figs. 4-6, respectively. One can do similar calculations
for the three cases by carefully taking the appropriate limits of the corresponding expressions. Below, we give
contributions from these diagrams in each of the three limits.

Case I: In the limit k" — 0,k — O (but p - k, > 0), the contributions of the diagrams in Figs. 4(a), 5(a), 5(b), and 6(a)

are given by
ki
g ﬁ\/vi

o ” %Wé

(c)

FIG. 3. Diagrams for O(e*) self-energy correction in the Fock FIG. 4. Diagrams for O(e*) self-energy correction in the Fock
basis corresponding to T75. basis corresponding to 7.
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k1

s

(p,o)

(a) (p,s)

(p,o)

;\A/IL% gM%Z
h %I\N\g . %\/\/\g
(p, s) (p,0)
ko

(0)

(p,s)
(c)

(. 5) , (p.o) FIG. 6. Diagrams for O(e*) self-energy correction in the Fock
(c) basis corresponding to T.

FIG. 5. Diagrams for O(e*) self-energy correction in the Fock
basis corresponding to T’s.

[(5m2)4a]l = [(5m2)6a]1

_ dit diks [2p*(p - e(k))(p - €(ky))(e(ky) - €(ky)) + k5 (p - €(ky))*]
= mp 5o [ s 8 k(p - k) P
N U dif diks [2p*(p - e(k))(p - €(ky))(e(ky) - €lky)) + k5 (p - e(ky))*]
[(am )Sa] (2 )6 /d k]J_d k2J_ k?» k;p+ 8(]? K k])(p ‘ kz) ’ (74)
N U 2 dif diky [2p3(p - (k) (p - e(ky))(e(ky) - €(ky)) — k5 (p - e(ky))*]
e e K Gl S k) k) S
The diagrams in Figs. 4(c), 5(c), and 6(c) have IR divergences only in limit I and lead to
2 2 I — _ ”) 2 ﬂ % (P ! e(kl))z
[on)ye + o) =~ [ i e (76)
[(5"’1 )50] (2 )6 /d li_d kZJ_ kfr k; 2(p K k1)2 ’ (77)

where again we have used the Heitler method for evaluating 7. + T§,.. Figures 4(b) and 6(b) do not have IR divergences in
this limit.

Case II: In the limit k; — 0, k,; — 0 (but p - k; +» 0), the contributions of diagrams in Figs. 4(b), 5(a), 5(b), and 6(b)
are given by the following expressions:
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[(6m?) )T = [(8m?)g, ]!

_ a7k D27 (p ) (p - elk)elh) - elka)) = K p - ko))
oy [ s [ G 80+ k)(p - ko) -

o di; di 20" (p elk)p - elko)(ek) - elh) + K7 (- (k)]
ol =~ [ Pt [ G S k)P k) -

oy di; i 207 (p elk)p - elko)(elk) - elh) = K7 (- (k)]
ol =~ [ et [ G 8 k)P k) S

Figures 4(a) and 6(a) do not have IR divergences in this limit. Case III: In the limit kf —0,k;; —0, k; —0,k,; —0,
the sum of contributions corresponding to Figs. 4(a), 4(b), 6(a), and 6(b) is given by
[(6m?)4, + (5m2)4b + (6m?)s, + (8m?)5;, + (6m?)g, + (8m?)g, '

dky dky [(p - (k) (p - e(ky)(e(k)) - €(ky))]
k1+ k; (p - k)(p - ko)

= [d k, d’k,, (81)

2)6

where we have used Egs. (C22), (C27), (C30), and (C34). The last term, 757 in Eq. (62), is IR convergent, as the
four-point energy denominator involved here is nonzero, and hence 77 is not needed for our discussion. One can notice that
Egs. (67)—(81) have true IR divergences, since the denominator vanishes as k{7 — 0, k;; — 0 and/or k; — 0, k,; — 0.

VI. ELECTRON MASS RENORMALIZATION IN THE COHERENT STATE BASIS UP TO O(e*)

In this section, we will use the coherent state basis to calculate the O(e*) electron mass correction. We will show that the
IR divergences in additional diagrams appearing due to the use of the coherent state basis exactly cancel the IR divergences
arising due to the vanishing energy denominators calculated in Sec. V. In the coherent state basis, the O(e*) correction to
self-energy is given by

T+ T, +T)+ Ty + T},
where T} is the 0(e4) term in (p, s: f(p)IV, L Vi 1 -Vilp, s: f(p)) represented by Fig. 8, T is the O(e*) term in
(p.s: f(PIVy =L Vilp, s f(p)) represented by Fig. 9, T o is the O(e*) term in (p,s: f(P)IVi=Lg-Valp, s: f(p)) +

(p,s: f(p)IVzp__ 0Vllp,s.f(p)}representedby Fig. 10, and T}, is the O(e*) term in {p, s: f(p)|V,|p, s: f(p)) represented

by Fig. 11. We present the details of calculation in Appendix D and give below only the result for (8m?)’.
The contribution corresponding to Fig. 8 is given by

(6m?)y = (8m?)}, + (8m?)f, + (Sm?), + (8m?)y, + (8m?);, + (6m?); & (82)

where (8m?)j,, through (sz)’ have been evaluated in Appendix D.
Figures 8(a) and 8(b) contrlbute

dict dis [2(p - €(ky)*(p - €(ky)? — (p - ky)(p - €(ky))?]
(6m 8a — (2 )6 [JZkIJ_d kZJ_[ k+ k+ 4(p k )2[(p k ) + (p K k2) — (kl . kz)] @A(kl), (83)
_ dk; dic; [20p - (k)(p - (k)]
e L KK Ak k)l k) + (p ko) — (o] O 89

One can notice that for (6m?);, and (6m?);, we need not discuss limit II, as p - k; is always small. Adding Egs. (83)
and (84) and taking the limit I, we obtain

[(6m?), + (8m?),, 1 =

diki dk; [(p (k) (p - €(ky))*  (p - e(ky))?
k+ k+ (P k1)2(l? kz) 4(P'k1)2

Adding Egs. (67) and (85), we find that [(6m?)s, + (6m?)3, 1 + [(8m?)}, + (8m?)}, ]! is IR finite.

[ Pk, ks, ]®A(k1). (85)

(2 )°
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ko
ki s
s
/
(p,o)

(p, s) _

ky
(b)

ks N ke
% N
AN
| | 7‘
ws) | %!é ».0) ) »,0)
k1

(p,0)

(d) N

(¢)
ko
;\/\4% ;\/\/’2 (p,s) (C) (p, o) (p, s) '

(p,s) (p,o)
C

(p,0)

FIG. 8. Additional diagrams in the coherent state basis for
O(e*) self-energy correction corresponding to Tg.

FIG. 7. Diagrams for O(e*) self-energy correction in the Fock
basis corresponding to 7.

Adding all the contributions coming from Figs. 3, 8, and 9, we find that the IR divergences completely cancel. Below, we
summarize this result for the reader’s convenience:

(1) [(8m?)3, + (dm?)3p ) + [(8m?), + (8m?)§, 1 is IR finite.

(2) [(6m?)3, + (6m?)3 I + [(6m?);,. + (8m?)}, 1" is IR finite.

(3) [(8m?)s.)F + [(8m?)§, 1! is IR finite.

@) [(8m2); ] + [(8m?)}, ] is IR finite.

(5) [(8m?);]1 + [(dm?)g,, + (dm*)g, 1M + [(dm?)§, ]! is IR finite.

(6) [(6mP)g, + (5mP)g 1" + [(8m?)g, 1" + [(6m*)e]"" is IR finite.

Thus, we can see that the self-energy correction corresponding to three-point QED vertices up to O(e*) is IR finite. In the
same manner, we can show the cancellation of IR divergences for diagrams containing a four-point instantaneous fermion
exchange vertex in all the three limits. We give here one calculation for illustration. The contributions corresponding to
Fig. 10 are given by

(6m?)|y = (6m?)}y, + (8m?),y, + (8m?)}y, + (6m?)|oy + (8m?),, + (8m?); lof T (6m? /IOg
+ (8m?) g, + (8m?)jg; + (8m?)}. (86)

As shown in Appendix D, the IR divergent contributions in Figs. 10(a), 10(c), 10(e), and 10(g) in the limit I are given by the
following expressions:

[(5’” ]Og]l = [(5”” 10g]1

ak; dks 2" (p - ell)(p - elko)(elky) - ) + S (p - k)]
= [ s [T 3 (0 k)(p - ko) Outh)
)
_ dk dks (2" (p - elk)(p - ko)) (elky) - k) + S (p - €k)’]
(oo = e [ wabon [0 55 87 (p k) ko) Balk)
)

065037-12



INFRARED DIVERGENCES IN LIGHT-FRONT QED AND ...

dk{ dky [2p5 (p - e(ky)(p - e(k)))(e(k) - €(ky)) — k5 (p - €(ky))]

PHYSICAL REVIEW D 86, 065037 (2012)

[(6m)10.) =

[dled2k2L k+ k+

(2 )°

O, (ky).
(89)

8p3(p - k)(p - ky)

Adding Egs. (73)~(75) and (87)-(89), we find that [(8m?),, )" +[(6m?)s, I +[(8m?)sp ) +[(8%)sa ) +[(dm?)|o, I +

[(8m?)}o ) +[(8m?)o, ) +[(6m?

IIOg]I is IR finite. Adding all the contributions from Figs. 4-6, 10, and 11, we find

that the IR divergences exactly cancel. Below, we summarize our results:

(1) [(8m?)g ) + [(8m?)s, ) + [(6m?)sp 1" + [(6%)6a ) +

finite.

@) [(6m?) 1" +[(8m*)s, 1 +[(8m*)sp T +[(8m*)ep 1T +[(8m?) o, 1T +[(8m?)jo, 1 + [(8m?

IR finite.

[(8m®jo, 1! + [(8m?)o 1 + [(3mio, 1 + [(5m2), 1 is IR

lOf]” +[(8m? 1on]" 1

3) [(6m?)y ) + [(dm*)5. ) + [(8m*)s ) + [(6m?)jp; ) + [(8m?);y;] is IR finite.

4 [(8m?)y + (5m?)s + (8m?)g + (5m?

Thus, finally we obtain that

11
(5m)@ + Y (5m?),
i=8
is IR finite, where (8m?)® is the O(e*) electron mass
correction in the Fock basis. This completes the proof of
cancellation of true IR divergences up to O(e*) for fermion
self-energy correction in the coherent state basis.

VII. CONCLUSION

We have calculated the electron self-energy correction
in light-front QED up to O(e*) and have shown that the true
IR divergences get canceled when the coherent state basis
is used to calculate the matrix elements. The cancellation
of IR divergences between real and virtual processes is
known to hold in equal-time QED to all orders. This
cancellation was also shown by KF [3] using the coherent
state formalism. It would be interesting to verify this all-
order cancellation in LFQED. The present work is a first
step towards this aim. The true IR divergences in QCD do
not cancel in higher orders. This fact can possibly be used
to obtain a form of the artificial potential required for
the bound state calculation. The connection between the
asymptotic dynamics and cancellation/noncancellation of

s N
s s N N
ko s v NS Nk
e k1 7 - N
z - N N N
s s
s s N N
(p,s) (p,o) (p.s) (p,0)
(a) (b)
/ \
/
A ko ks ko / \
\ , / \ k1
N s / \
N\ /s / \
(p.s) (p,o) (p.s) ()

FIG. 9. Additional diagrams in the coherent state basis for
O(e*) self-energy correction corresponding to Ty.

To + (8m?)1, 1" is IR finite.

k1 - Ky k1
Al }J\AZ é\r{\%

), 5 ), .8 N7 (o)
(. 9) (a) (,0) ) oo~ P
~ o k1 ky

~ - | ;rwz | .
! T
(p.3) (p,0) (p, s) (p,0)
(c) (d)
1)
s, M
(p,s) N Ju (p,o) (.5) &y (p,o)
() ~ L7 ( 2
)[) \
;(\}\Z NS ;g\/\z
(p,o) (p,s) -~ (p,0o)
o Tk
(9) g (h)
(p,s) (p,0) (p, 5) (p,0)
(1)
~ \k1 ks ko oo
I !
) (p,0) ) (p.0)
()

FIG. 10. Additional diagrams in the coherent state basis for
O(e*) self-energy correction corresponding to T'.
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k ’ ’ h AN
v . ) Nk
., ks AR \1
v s N N
/ - N N
, l , N |
[
(p,s) | (p.o) (p,5) ; (p,o)
(a) (b)
N P / \
\ kg ks ky 7 N
\ , / \ ki
\ Va / \

(p,s) (p,o) (p.s)

FIG. 11. Additional diagrams in the coherent state basis for
O(e*) self-energy correction corresponding to T;.

IR divergences can also be exploited to explore the possi-
bility of constructing an artificial potential which is used in
the bound state calculations in LFQCD [26].
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APPENDIX A: NOTATION AND USEFUL
RELATIONS

We define the four-vector x* by
= (x% %3, x!, x2) = (x0, 13, x1).

The light-front variables are defined by

*x° + x3) o (x¥=xY
xt="—"7 xT =" x; = (x!, x?).
\/E \/5 1 ( )
(A1)
Thus, in light-front variables,
= (x*, x7, x1).
The metric tensor is
0O 1 O 0
w_|10 0 o0
J 00 -1 0
0O 0 0 -1
A. Dirac spinors
u(p, s) and i(p, s) satisfy the usual properties
($ — mu(p,s) =0, (B +mu(p,s) =0, (A2)
s N — = N — ,
i(p, s)u(p, s') o(p, s)v(p, s') = 2md,y, (A3)

u(p, s)y*u(p, s') = v(p, s)y*v(p, s') = 2p* by,

PHYSICAL REVIEW D 86, 065037 (2012)
D> ulp,s)ip,s) = p+m,

s==*1/2

> v(ps)ilps)=p—m.

s=*1/2

(A4)

B. Photon polarizations

The photon polarization tensor ef‘L satisfies

8u+Pyt8,1p
d.(p) =3 elped(p) = —g,, + L
A=1.2 p
(AS)
Some useful properties satisfied by d,z(p) are
Y yPdas(p) = =2, (A6)
anvaB — 2 + v +v
Yy yPdap(p) —p—+(7 pr+g"p), (A7)
a va,B — nv zpa MO AV AT
Yo y*y yPd,s(p) = —4g +p—+(g Yy
— gav,y,u,y+ + ga+,y;t,yv
— gyt y gt Ey YY) (AB)

C. Energy denominators

We will need the following expressions for energy
denominators:

_ (p- ki)

p =k —(p—k) = Pt kT (A9)
pm ki —ky —(p— ki — k)~
_ P kitpk ki k
pr ki —ky
p-tki —ky —(p+k — k)~
:P'kl_P'kz_kl‘kz
prAk —k (A10)

p- —ki tky —(p—k +ky)”
pki—pkytk -k
Ptk Tk
p- ki +ky —(p+k thky)
_pki+pkyt ki k
p*-l—kf+k£r

>

APPENDIX B: PROPERTIES OF
COHERENT STATES

The coherent state containing a fermion and the super-
position of an infinite number of soft photons is denoted by

065037-14



INFRARED DIVERGENCES IN LIGHT-FRONT QED AND ...

|1: p;) and is defined by Eq. (52). Similarly, the coherent
state containing a fermion and a hard photon is denoted by
|2: p;, k;). The coherent states |1: p;) are the eigenstates of

PHYSICAL REVIEW D 86, 065037 (2012)

Coherent states satisfy the following orthonormalization
properties:

a(k’ A) [11] <1 pf’ a-fl1 Di O-i> = 8(3)(171 - pf)aa',-(r/’ (BS)
e (kr : i)
kIt p) = = TELL 1 ) @)
(2m) 2k (I: py, 04l2: piy o ki, Aj)
Also, ki, A p;
= > 63/2 f( p— pl) 8(3)(pl - pf)aa'[a'f' (B6)
’p N pl’ L (277_)3/2 2k+ N pl’ 1
+ 87 (k — k)8 11: pa), (B2)
and APPENDIX C: TRANSITION
MATRIX ELEMENT IN THE FOCK
* . . B 4
atk p)I1: p) = e3/2 frk, p.+p,) 12 p) + 120 o ko, BASIS FOR SELF-ENERGY UP TO 0O(e?)
2m) 2k We now calculate T3, which is defined by Eq. (58) and
(B3)  corresponds to Fig. 3. Inserting complete sets of intermedi-
ate states in T3, we obtain
a*(k,p)IZ: pik) ( )
K o I5(p, p) = T3, + T3, + T,
= T k) 4 1B k. (B
Q2m) 2kt where
|
7. — et /dzkudzku dk{ dk5
eme 2p* 32k{ ky pi Py p3
o B LM (k)(y + m)é (ko) (B + m)ER (ko) (By + m)gh (k)Ju(p, ) 1)
(p~ —pr =k p” —py —ky —k)p™ —py —ky) ’
with
p1=p—k, (C2)
p2=p ki — k. (C3)
Similarly,
T. — et j‘dzkudzku dky dky
¥ eme 2p* 32k{ ky pi ps Py
o B, $)L£% (ko) (P + m)éM (ky)(Ba + m)ER (ka)(By + m)gh (kp)]u(p, ) (4
(P~ = py —k))p” —ps —k)p” —py — ki — k) ’
with
p3=p—k, (C5)
7. = et fdzklldzku dki dky
O eme 2p* 32k{k; pi py p*
. 10 ) (B + )P+ mf () (r + ) (k) Ju(p, ) <6

(P~ —py —k))p” —py)p” —ps — k)

In limit I, Eqs. (C1) and (C4) can be added such that the denominator reduces to (p - k;)?(p - k,). Using Egs. (A4), (A9),

(A10), and (18), we obtain
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dk dk;
2k 2k 1 2
22 )6[ ki dkoy 32k} ki

o THEY (k) (B + m)E™ (ko) (B + m)gR (ko) (B + m)Eh (k)(P + m)]

[(6m?)s, + (6m?)3, ) = —

C7
(b kP k) ©
After calculating the trace, Eq. (C7) leads to
dki dky [2(p - €(k))*(p - €(ky))* — (p - k)(p - €(ky))’]
Sm?)s, + (6m?)3p) = — —— fdk &k, | L 2 . (C8
[( m )3a ( m )Bb] (2 )6 11 21 kr k; 4(]7 X kl)z(p X k2) ( )
Again, in limit II, the denominator in the sum of Egs. (C1) and (C4) reduces to (p - k;)(p - k,)?, leading to
dkif dk;
o, + (ony ) == 5 [ ik, [GEE
T+ mA () + mA)(hy + m )+ m] g
(p - k)(p - ky)?
Calculating the trace, Eq. (C9) reduces to
dif diky [2(p - €(ky)*(p - €(k))* — (p - k)(p - €(ky))’]
dm?)3, + (8m?)3, 1 = — jdk ’kyy | = —2% 1 2 1 2= (C10
In limit III, we obtain
dki diky (p - (k) (p - elky))®
[(8m?)5, + (8m?);, " = — [d k,, d’k L2 (CI11)
’ * (z ) TR k200 k)M k)
Similarly, T3, leads to
dkdk;
S — € [ 2k Pk 1 4Ky
e 2(27)° ki dkoy 32k k5 pi pip*
Tf[ﬁ”‘z(kz)(% + m)g (k) (B + m)éM (k) (py + m)ﬁ"“(k (P + m)] C12)

(p~—pr — k)™ —py)p” —p3 —ky)

where p; and p; are defined by Eqs. (C2) and (C5) and p, = p. Note that this diagram is one-particle reducible, and
therefore the energy denominator associated with the single-particle state vanishes. We shall use the Heitler method [29]
for evaluating all such integrals. Using this method, we write [28,29]

1

) k) —ps — k)

P
= |dp”8(p” —p) = — (C13)
[ ("™ =y )" = py =k —p3y — k)
Using the relation between distributions,
P 1
————=0(p" —p)=—580" —p) (C14)
o =)o T 58" —p7)
and integrating by parts, we obtain
1 d 1
B N I
2 )P P 0 = =k — s — &)
1 1
= — - . (C15)

2p” —pr — k(T —py —ky) 2007 —py — k)P —py — k)
Using Eq. (A9) in Eq. (C12), we obtain
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D= Pi + Py . (C16)
2p-k)’(p-ky)  2p-k)(p- k)

Thus, in limit I, Eq. (C12) becomes

dk; dk5 2(p - €(k)))*(p - €(ky))* — (p - ko) (p - €(ky))?
[(6m?); ] = a )6fdkudku kirlki;z p-e€lk))\p-e€ 28p+ D )\p - elky
pt 24
. [<p k) (pkp- k2>2]' (€17)

Similarly, in limit II, Eq. (C12) leads to

dkt dki 2(p - €(k)*(p - €(ky))? — (p - k))(p - €(ky))?
dm?)s I = &k, Pk, | SRS :
o (2 % [ L IO G 8p
P1 p+
8 [(P k)2 (p - ky) i (p-k)(p- kz)z]’ (C18)

and in limit III, it gives

i di[p- ) p )’ P ]y

4
57’1’12 . 111 — 8— [de de
[EmDe I = | E,d ks [ | 50 0P k) W k) ko)

The traces are calculated using MATHEMATICA.
The contribution to the corresponding diagrams in Fig. 4 is given by

(8m?), = (8m?)y, + (8mP)y, + (8m?)y,.
In limit I, (6m2)4u reduces to
dk dky [2p* (p - €(k))(p - e(ky))(e(ky) - €(ky)) + k3 (p - €(ky)) ]
Gy e 80" (p k) (p - o)
Note that (8m?),, is not IR divergent when p - k; # 0, even if p - k, = 0. In limit II, (6m?),;, reduces to
dki dky [2p] (p - e(kp))(p - €(ky))(e(ky) - €(ky)) = ki (p - €(ky))’]
kS 8pi (p-ki)(p - k)

Note that (8m?)4;, is not IR divergent when p - k, # 0, even if p - k; = 0. In limit III, and after adding the contributions
from Figs. 4(a) and 4(b), we get

[(5m?)g,] = — [ Pk ks (C20)

[(3””2)417]1[ =

B )6 [d k, d’k,, (C21)

dky dk; [(p - €(k)(p - €(ky))(e(ky) - €(ky))]
(2 )° ki ks 4(p - k))(p - ka) '

For (6m?),,, we use the Heitler method illustrated in Eqs. (C13)—(C15) and obtain

dky dk; T4 (k) (B + m)E (k)(B + m)h(ky)y " €% (ko) (€ + m)]
32k ky p* (P k) ’

[(3m?)a, + (3m?)y, 1T = —

fd k,, d’k,, (C22)

(5m2)4c

[ &Kk, | &Pk, (C23)

2(2 22m°
which finally leads to

dk; dkj (p- e(k))®
ki ks 8(p-ky)*

[(5m?),.] = [ Pk ks, (C24)

(2 )°

Similarly, the contribution from Figs. 5(a)-5(c) is given by
(8m?)s = (6m?)s, + (8m?)sp, + (8m?)s,.

In limit I, (6m2)5u reduces to
[(5m2)s,] = /d K, Ky, dki dky [2p™(p - €(k)))(p - €(ky))(e(ky) - €(ky)) + ky (p - €(ky ))2]

KOk 8p (p-k)(p - ky)

(2 m (C25)

Similarly, in limit II we get

065037-17



JAI D. MORE AND ANURADHA MISRA PHYSICAL REVIEW D 86, 065037 (2012)
dki dk; [2p™ (p - €(k))(p - €(ky))(e(k)) - €(ky)) + ki (p - 6(kz))2]

2 W _ 2
o) = = oo [k, [ 92 o (26)
and in limit III we get
2 I _ 2 ﬁ @ [(P : E(kl))(p ) E(kZ))(E(kl) ' E(kz))]
onl" = 5 [ Pt [ 30 k) k) ©n
Taking limit I (6m2)5h reduces to
nNU— 2 dki diky [2p3 (p - €(k))(p - elky))(e(ky) - €(ky)) — k5 (p - €(ky))? ]
[(Bn?)s) = — s i e s (€28)
Taking limit II, we get
N W 2 dki dky [2p| (p - €(k))(p - €(ky))(e(k,) - €(ky)) — ky (p - E(kz))z]
(ol == [ ks e 87 (p - k)(p - ko) ©
and taking limit III, we get
dk dks - e(k - e(k k) ek
[(5m2)s, ] = _(2 m [d k, d’k,, k_+1k_+2 [(p - € 1)i((1; Z(l)zl)j)(fk(z;) €(ky))] (C30)
)
(6m?)s, in limit I reduces to
dki dk; - e(ky))?
[(6m?)s )" = (2 pur; fd ki d’k, ) k—flk—;(élp(pei(kji; (C31)
The contribution of Figs. 6(a)-6(c) is given by
(8m?)g = (8m?)g, + (8mP)g; + (8m?)g,.
In limit I, (6m2)6a reduces to
N U 2 dki dky [2p™(p - €(ky))(p - €(ky))(e(k,) - e(ky)) + ks (p - ek, ))2]
[om?)s, ) = ~ [ Py [T L (C32)
Note that (6m?)g, is not IR divergent when p - k; # 0, even if p - k, = 0. In limit II, (§m?);, reduces to
2N U — _ 2 dki dky [2p] (p - €(k))(p - €(ky))(e(ky) - e(ky)) — ki (p - f(kz))z]
e = = oo [ Pk, [GE5E e ©33)

Note that (§m?)g, is not IR divergent when p - k, # 0, even if p - k; = 0. In limit III, the sum of (§m?)g, and (8m?),
reduces to

dki dky [(p - €(k))(p - e(ky))(e(k,) - €(k,))]
(6m?)g, + (6m?)gp 1 = — / d*k, | &’k L2 (C34)
o " =~y | e [ o k) k)
For Fig. 6(c), we use the Heitler method [28] to obtain the following result in limit I:
dki dki (p - e(ky))?
dm2)e. ]l = — fdk Pk, [ C35
[( m )6c] (2 )6 1L 21 kf’ k; 8([7 . k1)2 ( )

APPENDIX D: TRANSITION MATRIX IN THE COHERENT STATE BASIS

We will now present the calculation of (6m?2)'®, where the prime denotes the extra contribution arising due to use of the
coherent state basis. The contribution corresponding to Fig. 8 can be written as

(8m2)§ = (6m? b T (6m? o T (8m2)gc + (6m? b t (6m? fe T (8m2)§f,

where
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(5m2), = 2(;;)6 [dz Ldky, [dkfd@ T[4 (ky) (B3 + m)gh (k) (By + m)gh (k) (B + m)](p - €h1(k1))O4 (k)

16k ky (p- k) [(p-ky)+ (p-ky) = (ky - ky)] '
(D1)

. Ak kS THAS () (B + m)A () + () B+ m)p - € (k)0 (k)
Om) = 2w >6f @ky1d "“f TokTk k) k)l(p k) + (7 ko) — (ky - k)]

(D2)

Calculating the trace, adding Egs. (D1) and (D2) and taking limit I, we obtain Eq. (85). Similarly, one can obtain the
expressions for Figs. 8(c)-8(f) in the appropriate limits. Figure 9 corresponds to the transition matrix element 7}, and its
contribution is given by

(6m?)y = (8m?)}, + (8m?)}, + (8m?),. + (6m?)},
where

/ dki dky (p - €(k)))*(p - €(ky))?
[om 41" = = 5 s [ Pk, |5 P 4(€p }kl)zfp .Ek; 05 (k)04 (ky), (D3)

/ dki dky (p - €(k)))*(p - €(ky))?
[(om?), 1" = = o [, AR AR N (D4)

[(8m2){)¢ + (8m2)l9d]1” = (277_)6 /dzklldszJ_ % %

(P : €(k1))2(P : E(kz))2 (P : €(k1))2(17 : E(kz))z

P e Pty el (NI LD

Here we have used the Heitler method to get the above result.

Similarly, the contribution coming from the diagrams in Figs. 10 and 11 can be easily evaluated by taking the
appropriate limits.
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