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I. INTRODUCTION

Introducing central charges in superalgebras leads to the
possibility of having massive multiplets as short as the
massless ones. The central charges in four-dimensional
(4D), N ¼ 2 superspace have been dealt directly in both
Projective [1,2] and Harmonic [3,4] hyperspaces.

The projective hyperspace has recently been formulated
in coset space language in Ref. [5], which has been used to
simplify derivation of earlier results and perform new
calculations involving massless scalar and vector hyper-
multiplets in Ref. [6]. For the sake of completeness, in this
note we extend such an analysis to the massive case.

In the next section, we review the projective hyperspace
with central charges. Then we discuss the massive scalar
hypermultiplet in detail from the 4D perspective. Next, we
show that the dimensional reduction of a massless hyper-
multiplet from six dimensions to four dimensions repro-
duces all the 4D results rather trivially. Finally, we present
a simple 1-hoop calculation using Feynman rules similar to
the massless case.

II. PROJECTIVE HYPERSPACE
WITH CENTRAL CHARGES

We use the conventions of Ref. [6] for the superspace
coordinates and derivatives. The centrally extended alge-
bra of covariant derivatives then reads1

fd�;�; �d#; _�g ¼ @� _�; (2.1)

fd�;�; d#;�g ¼ �mC��; (2.2)

f �d�; _�; �d#; _�g ¼ �mC _� _�; (2.3)

½d#;�; dy� ¼ �d�;�; (2.4)

½ �d#; _�; dy� ¼ � �d�; _�: (2.5)

Such an algebra can be incorporated in the superspace by
introducing additional bosonic coordinates corresponding

to the central charges. Then, requiring a trivial dependence
of the hyperfields on these coordinates leads to a volume
element same as the one when m ¼ 0. However, this gen-
erates explicit appearances of �’s in the Lagrangian (for
example, the last reference in Ref. [3]).
There are two alternative manifestly covariant ap-

proaches to deal with nonzero m. One (simplest) approach
is the dimensional reduction of 6D, N ¼ 1 massless mul-
tiplets to 4D, N ¼ 2 massive ones. Since projective super-
space in 6D exists [7] and is similar to the projective
hyperspace in 4D, the main results can be written down
just by inspection. We will show that this is the case in
Sec. IV, where we will compare the results derived via
another approach.
In this second approach, we stay in 4D and turn d’s into

covariant derivatives: D ¼ dþ A, where A is an Abelian
connection that has acquired a vacuum expectation value
(vev), i.e., A / m. This avoids the explicit �’s in the
Lagrangian that are now hidden inside the connections
[2,4]. So, the starting point for the simplest example of a
massive hypermultiplet is a massless scalar hypermultiplet
(SH) coupled to a U(1) vector hypermultiplet (VH).
Let us now briefly review the massless hypermultiplets

living in projective hyperspace. The following discussion
is valid in both 4D and 6D with a few obvious changes,
some of which will be pointed out later. A massless SH is
represented by a complex arctic projective hyperfield (�),2

d#ð �d#Þ�½0"� ¼ 0 ) d#ð �d#Þ ��½1#� ¼ 0: (2.6)

Its on shell expansion containing complex scalars A and B
and Weyl spinors � and ~� is

� ¼ ðAþ yBÞ þ ð��þ �� �~�Þ þ �@B ��; (2.7)

and their corresponding equations of motion follow from

d2y ��ð�Þ ¼ 0, which in turn follow from the action

S� ¼ �
Z

dxd4�dy ���: (2.8)

AVH is represented by a real tropical projective hyper-
field (V),*djain@insti.physics.sunysb.edu

†siegel@insti.physics.sunysb.edu; http://insti.physics.sunys-
b.edu/~siegel/plan.html

1m is in general complex but for our purposes, its imaginary
part plays no role.

2We use the arrow notation �½n"ð#Þ� to denote that the hyper-
field � contains ym with m � ð�Þn only.
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d#ð �d#ÞV½0"#� ¼ 0: (2.9)

Since we are mainly interested in the vevs of Abelian
connections, we give below the vev structure of V (read
from the full expression for V in Wess-Zumino gauge [6])
to which the connections will eventually get related:

V ¼ 1

y
ð�2 �m� ��2mÞ: (2.10)

Finally, the Lagrangian of a massless SH coupled to VH is
simply given by

S��V ¼ �
Z

dxd4�dy ��eV�: (2.11)

These are all the massless ingredients we need to con-
struct the massive SH in projective hyperspace.

III. 4D APPROACH

A. Action

We have already argued that a massive SH is equivalent
to a massless SH coupled to an Abelian VH with a vev.
This means that we should be able to represent a massive

SH by a complex projective hyperfield �̂. We start by
writing a quadratic action for it that should be equivalent
to Eq. (2.11),

S�̂ ¼ �
Z

dxd4�dy
�̂
� �̂ ¼ �

Z
dxd4�dy ��eV�: (3.1)

The equations of motion for �̂ and� can be derived in a
way similar to the massless case and they read

d2y
�̂
� ¼ D2

y
�� ¼

Z dy2
y12

��2e
V2 ¼ 0: (3.2)

We know the massive equations of motion (Klein-
Gordon and Dirac equations) for the component fields
and the expression for vev of V [Eq. (2.10)], so it is
a simple algebraic exercise to get the (new) on shell form
of �,

� ¼ ðAþ yBÞ þ ð��þ �� �~�Þ þ ð�2m� ��2 �mÞBþ �@B ��:

(3.3)

This form (obviously) gives the correct massless limit
[Eq. (2.7)] when m ¼ 0. Plugging this expression in the
action gives the usual kinetic terms for the component
fields and the mass terms have an expected appearance

�
Z

dxðm��þ �m �~� �~�Þ þm �mð �AAþ �BBÞ:

It is important to note that if we had naı̈vely used the
Eq. (2.7) in the above calculation, we would have gotten
a wrong sign for B’s mass term. This small calculation
makes it clear that we now have a correct representation

for the massive SH. Thus, we can assign3 �̂ ¼ eVþ� and

�̂
� ¼ ��eV� such that their on shell y-dependence remains
the same as that of the massless hyperfields i.e., ½0"� and
½1#�, respectively.
Moreover, in this case we can also figure out what D’s

look like explicitly. Comparing the two forms of equations

in (3.2) (with ��), we get

D2
y
��¼@2y ���2ð�2 �m� ��2mÞ

y2

�
@y ���

��

y

�
�2�2 ��2m �m

y4
��;

(3.4)

) Dy ¼ @y þ Ay ¼ @y � ð�2 �m� ��2mÞ
y2

; (3.5)

) Ay ¼ dy
Z

dy0
V0

ðy� y0Þ : (3.6)

We can also find the expressions for other connections
using Eqs. (2.4) and (2.5) in the gauge A# ¼ �A# ¼ 0,

A� ¼ �d#Ay ¼ �m�

y
& �A� ¼ � �d#Ay ¼ �m ��

y
: (3.7)

These obviously satisfy the Eqs. (2.2) and (2.3), which can
be easily checked.4 This completes the basic construction
of a massive scalar hyperfield.
The coupling of this massive hypermultiplet to a non-

Abelian VH5 is a straightforward generalization similar to
the case of massless SH,

S�̂�V̂ ¼ �
Z

dxd4�dy
�̂
�eV̂�̂: (3.8)

B. Propagator

The quantization of massive SH action is almost identi-
cal to that of the massless SH. First, we need to rewrite the
massive scalar hyperfield in terms of a generic uncon-
strained hyperfield,

�̂ðy2Þ½0"� ¼ d42#

Z
dy1

1

y12
�ðy1Þ½0"#� and

�̂
�ðy2Þ½1#� ¼ d42#d

2
y2

Z
dy1

1

y21
��ðy1Þ½0"#�:

Then, we add source terms to the action and convert the

d4� integral to d8� integral by rewriting �̂ using the above
relations,

3V ¼ Vþ½0"� þ V�½0#�.

4For example, d#¼@#þy@�þ ��@x and �d# ¼ �@# þ y �@� þ @x�
in reflective representation.

5Having a central charge in the superalgebra does not make
the vector hypermultiplet massive. This is becauseR
d2�d2#W2!m�0

R
d2�d2#ðW þmÞ2 ¼ R

d2�d2#W2. The
equality holds because

R
d2�d2#W is a total spacetime deriva-

tive due to the Bianchi identity d2�W ¼ �d2�
�W.
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S�̂�Ĵ ¼ �
Z

dxd8�
Z

dy1

�
d2y1

Z
dy3

��3

y13
d41#

Z
dy2

�2

y21

þ �̂J1
Z

dy2
�2

y21
þ d2y1

Z
dy3

��3

y13
Ĵ1

�
; (3.9)

where the sources Ĵ and �̂J are generic projective hyper-

fields. The equation of motion for �̂ with the source reads

Z
dy1

d41#d
2
y1 �̂1

y13
¼ �

Z
dy1d

4
1#d

2
y1

�
1

y13

�
Ĵ1: (3.10)

The difference with respect to the massless case arises at
this stage due to the presence of central charges in the
superalgebra, which gives the following modified identity:

d4#d
2
yd

4
# ¼ ðh� 2m �mÞd4#:

Using this identity in Eq. (3.10) leads us to the following
equations:

ðh� 2m �mÞ�̂3 ¼ �d43#

Z
dy1

2Ĵ1
y313

; (3.11)

Similarly; ðh� 2m �mÞ �̂�2 ¼ �d42#

Z
dy1

2 �̂J1
y321

: (3.12)

Plugging these equations back in action (3.9), we get

S�̂�Ĵ ¼
Z

dxd8�dy1dy2

�
�̂J1

1

y321

1
1
2 ðh� 2m �mÞ Ĵ2

�
:

(3.13)

This leads to the expected change in the massless propa-
gator to give us the massive SH propagator

h�̂ð1Þ �̂�ð2Þi ¼ �d41#d
4
2#�

8ð�12Þ
y312

�ðx12Þ
1
2h�m �m

: (3.14)

C. Vertices

As in the massless case, there are no self-interacting
renormalizable vertices for massive SH. The interactions
appear purely with the coupling to a VH as seen in action
(3.8). That means the vertices look similar to the massless
case

�̂
� iV̂j1 . . . V̂jn�̂k !

Z
d4�

Z
dyði ?j1 . . . ?jn

kÞ;

where, the group theory factor shown in parentheses is for
adjoint representation.

IV. 6D APPROACH

We now explain the simpler method for obtaining a 4D
massive scalar hypermultiplet: dimensional reduction of a
6D massless SH [7]. First, we dimensionally reduce the
bosonic coordinates from 6D ðXM¼0:::5Þ to 4D ðx�¼0:::3Þ by
defining a complex coordinate,

zð�zÞ ¼ 1ffiffiffi
2

p ½X4 þ ð�Þ _�X5� ) @ð �@Þ � @zð@�zÞ

¼ 1ffiffiffi
2

p ½@4 � ðþÞ _�@5�; (4.1)

and demanding that the corresponding momenta equal the
4D central charges

p ¼ � _�@ ¼ m & �p ¼ � _� �@ ¼ �m:

The 6D d’Alembertian then reduces to

h6 ¼ @M@M ¼ @�@� þ 2@ �@ ¼ h4 � 2m �m: (4.2)

Second, we reduce the fermionic coordinates in 6D,
which are represented by Weyl spinors of SU*(4) to 4D
coordinates, which are represented by dotted and undotted
Weyl spinors of SL(2,C),

�~� ¼ ��

�� _�

 !
; (4.3)

with similar relation holding true for #’s. The charge
conjugation in 6D works as follows:

��~� � C~�
_~�
��

_~� ¼ ��

� �� _�

 !
: (4.4)

The 6D, N ¼ ð1; 0Þ algebra of supercovariant derivatives is
equivalent to the 4D,N ¼ 2 algebra in Eqs. (2.1), (2.2), and
(2.3), after the dimensional reduction. Furthermore, we can
express a vector using just spinorial indices in 6D as

V~� ~� ¼ 1

2

�vC�� v� _�

v _�� vC _� _�

 !
; (4.5)

where vð �vÞ � � _�½V4 þ ð�Þ _�V5�.
We are now ready to deal with the 6D, N ¼ 1 massless

hypermultiplets. Like 4D, SH is represented by a projective
arctic hyperfield�6. Using the (bi) spinor matrices defined

above, we can reduce the �6 [Eq. (2.7)] to 4D massive SH,

�6 ¼ ðAþ yBÞ þ��þ ��~�@~� ~�B�
~�

) �4 ¼ ðAþ yBÞ þ ð��þ �� �~�Þ
þ ð �� _�@� _�B�

� þ �2mB� ��2 �mBÞ; (4.6)

which is the same as in Eq. (3.3). A VH in 6D is again
represented by a projective tropical hyperfield V6 and its

lowest �-component (in Wess-Zumino gauge) looks like

V6 ¼
��~�A~� ~��

~�

y
) V4 ¼ 1

y
ð �� _�A� _��

� þ �2 ��� ��2�Þ:
(4.7)

If the scalar field� develops a vev, then the above equation
is identical to (2.10). Moreover, the action of�6 coupled to

V6 is given by Eq. (2.11) so the 6D hyperfields’ reduction to

4D reproduces the same massive SH action derived in
Sec. III A.
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Now the propagator for �6 is similar to that of the

massless SH in 4D and the reduction to massive case is
straightforward owing to Eq. (4.2),

h�6ð1Þ ��6ð2Þi ¼ � d41#d
4
2#�

8ð�12Þ
y312

�ðX12Þ
1
2h6

) h�4ð1Þ ��4ð2Þi � h�̂ð1Þ �̂�ð2Þi

¼ � d41#d
4
2#�

8ð�12Þ
y312

�ðx12Þ
1
2h4 �m �m

; (4.8)

which is equivalent to Eq. (3.14) derived from the 4D
perspective.

V. FEYNMAN RULES

These are almost the same as those given in Ref. [6]. The
only difference is the following modified identity:

d41#d
4
2#d

4
1#

¼y212

��
1

2
h�m �m

�

þy21ð �d2�dxd2�þmd22�� �m �d22�Þþy212d
4
2�

�
d41#: (5.1)

The nonrenormalization theorem for massless scalar hy-
permultiplet holds for the massive case also for straightfor-
ward reasons.

One-hoop correction to VH 2-point function (Fig. 1) due
to the coupling to a massive SH is simple to calculate and
looks the same (modulo the momentum integral) as the
massless SH contribution

� Â2ðp;mÞ � cRg
2
Z

d8�
Z

dy1;2
V̂1V̂2

y12y21
: (5.2)

The momentum integral is a standard integral and evalu-
ates to (with D ¼ 4� 2	)

Â2 ¼
Z dDk

ð2
ÞD
1

ð12 k2 �m �mÞð12 ðkþ pÞ2 �m �mÞ

¼ 1

4
2

2
41

	
� �E þ 2� ln

�
2m �m

�2

�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8m �m

p2

s
ln

�
1þ p=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 8m �m

p
1� p=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 8m �m

p �35:

VI. CONCLUSION

We presented a reformulation of the massive scalar
hypermultiplet that allows derivation of the known results
in a compact manner. Our analysis makes a massive scalar
hypermultiplet more transparent at the component level.
The diagrammatic Feynman rules are similar to the mass-
less case and hence no extra effort is needed to evaluate
diagrams with massive SH lines. We also presented an
explicit 1-hoop calculation showing that the hypergraph
rules allow computation as fast as the N ¼ 1 supergraph
rules.
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[2] F. Gonzalez-Rey, M. Roček, S. Wiles, U. Lindström,
and R. von Unge, Nucl. Phys. B516, 426 (1998);
F. Gonzalez-Rey and R. von Unge, Nucl. Phys. B516,
449 (1998); F. Gonzalez-Rey, arXiv:hep-th/9712128.

[3] A. Galperin, E. Ivanov, S. Kalitzin, V. Ogievetsky, and
E. Sokatchev, Classical Quantum Gravity 1, 469 (1984);
E. Ivanov, A. Galperin, V. Ogievetsky, and E. Sokatchev,
Classical Quantum Gravity 2, 601 (1985); 2, 617 (1985);

A. S. Galperin, E. A. Ivanov, V. I. Ogievetsky, and E. S.
Sokatchev, Harmonic Superspace (Cambridge University
Press, Cambridge, England, 2001).

[4] I. L. Buchbinder and S.M. Kuzenko, Classical Quantum
Gravity 14, L157 (1997).

[5] W. Siegel, arXiv:1005.2317.
[6] D. Jain and W. Siegel, Phys. Rev. D 80, 045024

(2009); 83, 105024 (2011).
[7] S. J. Gates, Jr., S. Penati, and G. Tartaglino-Mazzucchelli,

J. High Energy Phys. 05 (2006) 051.
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