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I. INTRODUCTION

The problem of the compatibility of the Lorentz
symmetry breaking with the supersymmetry is one of the
key problems in the development of the Lorentz-breaking
field theories. Essentially, there are two ways to implement
the supersymmetry into the Lorentz-breaking theories.
The first way consists in the deformation of the structure
of the supersymmetry generators and their algebra, and,
consequently, of the supercovariant derivatives, this way
has been originally proposed in Ref. [1], with no extra
superfields introduced. Some attempts to implement this
approach on the tree level have been presented in Ref. [2],
where the Lorentz symmetry breaking has been introduced
by the asymmetry between space and time derivatives, and
some simple superfield calculations have been carried out.
The second way consists in introducing the additional
superfields whose component expansion involves constant
vectors (tensors) in the action while the structure of the
supersymmetry generators (and hence of their algebra,
the corresponding supersymmetric covariant derivatives
and of the superfields) is maintained to be the same (see
e.g., Ref. [3]).

In this paper we essentially follow the first way, which
allows us to formulate the Lorentz-breaking deformation
of the supersymmetry algebra in a systematic manner and
does not require the introduction of the extra superfields.
Our aim, principally, consists not only in a detailed devel-
opment of the superfield formalism for the Lorentz-
breaking supersymmetric theories, but also in applying
the powerful methodology of the superfield calculations
of the effective potential (many results obtained with the
use of this methodology are presented in Refs. [4,5]) to
these theories. The main attention will be given, first, to
constructing the deformed supersymmetry, second, to cal-
culating the effective potential for the simplest superfield
models.

II. THREE-DIMENSIONAL LORENTZ-BREAKING
DEFORMATION OF THE SUPERSPACE

In the usual three-dimensional spacetime the spinor
representation relates the Lorentz group to SLð2;<Þ, there-
fore the fundamental representation acts on a Majorana
two-component spinor, consequently the spinor supersym-
metry generators Q� are Hermitian. To extend the usual
superspace to a three-dimensional deformed superspace,
let us define the deformed supersymmetry generators as
(cf., Ref. [6])

Q� ¼ i½@� � i���m
��ð@m þ kmn@

nÞ�
¼ i½@� � i���m

��rm�; (1)

where @� is the derivative with respect to the
Grassmannian superspace coordinates ��, andrm ¼ @m þ
kmn@

n is a covariantized spacetime derivative. The kmn is a
constant tensor that implements the Lorentz symmetry
breaking. Without restriction of generality, it can be chosen
to assume an ether-like form kmn ¼ �umun [7], where um

is a constant vector, and � is a some number, therefore we
can refer to this algebra as to the ether-like generalization
of the supersymmetry algebra, and denominate the theories
constructed on its base as the ether-like superfield super-
symmetric Lorentz-breaking theories. However, we must
caution the reader that the methodology denominated in
Ref. [8] as supersymmetric ether, where the constant um

vector is used, represents itself as a supersymmetric ex-
tension of the Einstein-ether theory where the supersym-
metry algebra is not deformed, but the um is a lower
component of the extra dynamical (super)field, and thus
has nothing in common with our model. We note that the
constant kmn is dimensionless, thus, its presence probably
will not jeopardize the renormalizability of the field theory
models.
The anticommutation relation between the deformed

supersymmetry generators is

fQ�;Q�g ¼ 2i�m
��rm; (2)

which is an operator proportional to the simple spacetime
derivative, as it must be to satisfy the Leibnitz rule.
The new supercovariant derivative is constructed to

anticommute with Q�, and it can be written as
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D� ¼ @� þ i���m
��rm; (3)

where the operator rm commutes with D�, as well as with
the supersymmetry generators.

The supercovariant derivatives satisfy the relations

fD�;D�g ¼ 2i�m
��rm; ðD2Þ2 ¼ ~h;

D�D�D� ¼ 0; (4)

where

~h ¼ rmrm ¼ þ2kmn@
m@n þ kmnkml@n@

l (5)

is a deformed d’Alembertian operator.
Just as in the usual case, we can define superfields over

this deformed superspace and construct invariants over it.
Let� be a real scalar superfield. We can introduce a Wess-
Zumino model whose action formally coincides with the
usual one

S ¼
Z

d5z

�
1

2
�ðD2 þmÞ�þ �

6
�3

�
; (6)

while the structure of the superfields, however, is
deformed.

In general, superfields can be expanded in a Taylor series
in the Grassmannian variable � as

�ðx; �Þ ¼ ’ðxÞ þ ��c �ðxÞ � �2FðxÞ: (7)

But for our deformed superspace it is more convenient to
define the superfield components by projection as

’ðxÞ ¼ �ðx; �Þj�¼0; c �ðxÞ ¼ D��ðx; �Þj�¼0;

FðxÞ ¼ D2�ðx; �Þj�¼0; (8)

where the spinor supercovariant derivatives are given by
Eq. (3). We note that since the deformed supercovariant
derivatives differ from the usual ones only in the sector
proportional to ��, the component contents of the super-
fields in the deformed and usual cases will be exactly the
same, thus, the deformed action in components looks like a
sum of the usual action and some extra terms proportional
to different degrees of the Lorentz-breaking parameters. In
this way, we can write the action (6) in terms of the
components as

S ¼
Z

d3x

�
1

2
F2 þ 1

2
c �ið�mÞ��rmc � þ 1

2
’ ~h’

þmðc 2 þ ’FÞ þ �

�
’c 2 þ 1

2
’2F

��
: (9)

So, we find that, for example, the free action for the
fermion Sf ¼ 1

2

R
d3xc �½ið�mÞ��rm þm�c � ¼ 1

2 �R
d3xc �½ið�mÞ��ð@m þ kmn@

nÞ þm�c � acquires just

the same additive ether-like term that was discussed in
Ref. [7]. We note that the kinetic term for the scalar super-

field Ssc;kin ¼ 1
2

R
d3x’ ~h’ ¼ 1

2

R
d3x’ð@m þ kmn@

nÞ�
ð@m þ kml@lÞ’, beside of the usual additive ether-like

term ’kmn@m@n’ [7] involves also the extra higher-order
term, which, for the case kmn ¼ �umun, corresponds to the
fourth degree of the um.
Now we are able to obtain the Feynman rules for the

three-dimensional ether superspace. Let us begin with the
generating functional for the model defined by the action
(6), the Wess-Zumino model, with the adding of a source
term. Let

ZðJÞ¼
Z
D�exp

�Z
d5z

�
1

2
�ðD2þmÞ�þ�

6
�3þJ�

��

¼ exp

�
SI

�
�

�J

��

�
Z
D�exp

�Z
d5z

�
1

2
�ðD2þmÞ�þJ�

��
; (10)

where SIð�Þ ¼ �
6

R
d5z�3.

Completing the square and performing the Gaussian
integration over �, we have

ZðJÞ ¼ exp

�
SI

�
�

�J

��
exp

�
� 1

2

Z
d5zJ

1

D2 þm
J

�
: (11)

Therefore, we can easily obtain the scalar superfield
propagator in momentum space

h�ðp; �1Þ�ð�p; �2Þi ¼ ðD2 �mÞ
~p2 þm2

�2ð�1 � �2Þ; (12)

where ~p2 ¼ p2 þ 2kmnp
mpn þ kmnkmlpnp

l and D2 ¼
@2 � ���m

�� ~pm@
� þ �2 ~p2.

We note that one can calculate the superficial degree of
divergence of the corresponding Feynman supergraphs just
in the same way as in the common superfield theories.
Moreover, the result for it will coincide with the results
obtained in the usual superfield theory since the propagators
in undeformed and deformed theories have the same asymp-
totic behavior, for example, for the scalar field theory the
couplings�3 and�4 will again correspond to the renorma-
lizable theories, and all theories, except for those ones
possessing exotic effective dynamics, continue to be one-
loop finite.
Let us discuss the dispersion relations in our theory. The

denominator of (12) looks like ~p2 þm2 ¼ p2 þ
2kmnp

mpn þ kmnkmlpnp
l þm2 (this structure is common

for the propagators in the CPT-even Lorentz-breaking
theories, see e.g., Ref. [9]). Let us consider this denomi-
nator, for the signature ð� þþþÞ, and kmn ¼ �umun,
with um ¼ ðu0; ~uÞ, and umum � � is equal either to 1, for
the space-like um, or to�1, for the timelike um, or to 0, for
the light-like um.

(1) Space-like um case, � ¼ 1. We have E2 ¼
p2 þm2 þ ð2�þ �2Þð ~u � ~pÞ2. We see that for both
�> 0 and for �< 0, but j�j � 1, the dynamics are
consistent, where as for a negative � with a rather
large absolute value, the theory turns out to be
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degenerate or unstable. In particular, if� ¼ �1, and
both the vector ~u and the vector ~p are directed along
the x axis, one has E2 ¼ m2, so, the dynamics are
degenerate. We note that it is just the case when the
matrix Smn ¼ �mn þ kmn is degenerate, thus, the
degeneracy of the matrix Smn results in the degen-
eracy of the dynamics.

(2) Timelike um case, � ¼ �1. We have E2ð1� �Þ2 ¼
~p2 þm2. So, the dynamics are consistent every-
where except for the case � ¼ 1, which signalizes
the degeneracy of the matrix Smn.

(3) Light-like case, � ¼ 0, and um ¼ ð1; 1; 0; 0Þ. In this
case, when both the vector ~u (the spatial part of um)
and the vector ~p are directed along the x axis, we have

E ¼ 1
1�2� ½�2�p� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2ð1þ 2�þ 4�2Þ þm2
p �, so,

if j�j � 1, the dynamics are consistent.
In principle, one can also point out the case when the

dispersion relations are not modified even for the nontrivial
um, that is, the case �u

mum þ 2 ¼ 0, which yields ~p2¼p2,
but this situation is impossible if we have j�j � 1, while
umum is restricted to have values �1, 0, 1 only.

Thus, we conclude that if we impose the condition
j�j � 1, together with umum is either �1 or 0, to ensure
that the Lorentz-breaking terms can be treated as a small
correction, hence the quadratic form corresponding to ~p2 is
never degenerate.

The analysis in the four-dimensional theories which will
be considered later in this paper, is just the same because of
the same structure of the denominator of the propagator. In
principle, it is natural to expect that the similar situation
will take place in all theories where the Lorentz symmetry
breaking is introduced through a deformation of the super-
symmetry algebra as in this paper.

Now, let us compute the quadratic part of the effective
action for the three-dimensional Wess-Zumino model at
one-loop level. The Feynman diagram that contribute with
the process is depicted in Fig. 1.

The corresponding expression can be cast as

�ð1Þ ¼ �2

6

Z d3p

ð2	Þ3 d
2��ð�p; �ÞðD2 � 2mÞ�ðp; �Þ

�
Z d3q

ð2	Þ3
1

ð~q2 þm2Þ½ð~qþ ~pÞ2 þm2� : (13)

It is clear that this expression is finite, and, if the external
momentum vanishes, p ¼ 0, one can change the variables
and the integration measure as

R
d3q ¼ �

R
d3~q,

� ¼ detð@qm@~qnÞ ¼ det�1ð�m
n þ kmn Þ is a Jacobian of change

of variables, it is a constant (in the case of the small �, one
has � ¼ 1� �u2). So, one arrives at

�ð1Þ ¼�
�2

6

Z d3p

ð2	Þ3d
2��ð�p;�ÞðD2�2mÞ�ðp;�Þ 1

8	jmj :
(14)

We conclude that this methodology does not essentially
differ from the usual supergraph technique. It can be
naturally generalized for more sophisticated theories, in
particular, the gauge ones.

III. FOUR-DIMENSIONAL LORENTZ-VIOLATING
DEFORMATION OF THE SUPERSPACE

We start with the following deformation of the super-
symmetry generators [1] in the four-dimensional case
(cf., Refs. [6,10]):

Q� ¼ @� � i ��
_�
m

_��
ð@m þ kmn@

nÞ;
�Q _� ¼ @ _� � i�� �
m

� _�ð@m þ kmn@
nÞ:

(15)

Here, @�, @ _� are the simple derivatives with respect to
the Grassmannian superspace coordinates ��, �� _�, that is,
@� ¼ @

@��
, and @ _� ¼ @

@ �� _�
. These generators are linear in the

derivatives, as it must be to satisfy the Leibnitz rule. Just as
in the three-dimensional case, the kmn is a constant tensor
implementing the Lorentz symmetry breaking. Again,
without restrictions on the generality, we can choose it to
be symmetric, e.g., kmn ¼ �umun, with um is a constant
vector, and j�j � 1, that is, in the ether-like form.
Effectively, these generators can be represented as

Q�¼@�� i ��
_�
m

_��
rm; �Q _�¼@ _�� i�� �
m

� _�rm: (16)

The anticommutation relation of the supersymmetry gen-
erators is

fQ�; �Q _�g ¼ �2i
m
_��rm; (17)

so, it indeed gives an operator proportional to the trans-
lation as it must be in the supersymmetric field theories
(cf., Refs. [6,10]).
The corresponding supercovariant derivative must anti-

commute with these generators, being

D�¼@�þ i ��
_�
m

_��
rm; �D _�¼@ _�þ i�� �
m

� _�rm: (18)

It is clear that the operator rm commutes with D�, �D _�, as
well as with the supersymmetry generators.
By analogy with the usual four-dimensional superfield

supersymmetry [10] (throughout this section, we use the
normalization relations for the supersymmetry generators
and supercovariant derivatives which in the Lorentz-
invariant case are reduced to those ones from Ref. [10])
one can show that supercovariant derivatives satisfy the
relations:

FIG. 1. The contribution to the kinetic term in the three-
dimensional superspace.
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fD�; �D _�g ¼ 2i
m
_��Dm; D2 �D2D2 ¼ 16 ~hD2;

D�D�D� ¼ �D�
�D�

�D� ¼ 0: (19)

We introduce the chiral superfield� satisfying the relation
�D _�� ¼ 0, and the antichiral one �� satisfying the relation

D�
�� ¼ 0, where the supercovariant derivatives are new

ones satisfying the relations (18).
As a simplest example, we can introduce the Lorentz-

breaking Wess-Zumino model whose action formally co-
incides with the usual one

S ¼
Z

d8z� ��þ
�Z

d6z

�
m

2
�2 þ �

3!
�3

�
þ H:c:

�
; (20)

while the structure of the superfields, however, is
deformed.

Let us introduce the component structure of the chiral
superfield via projections (cf., Ref. [6]; however, here we
use the normalizations for supercovariant derivatives
adopted in Ref. [10]):

�¼�j�¼ ��¼0; c �¼1

2
D��j�¼ ��¼0; F¼D2

4
�j�¼ ��¼0;

(21)

with the analogous definitions for the components of the
antichiral field. Thus, the component expansion of the
Wess-Zumino model takes the form

S ¼
Z

d4x

�
� ~h ��þc �i
m

� _�rm
�c _� þ F �F

þ �

�
�c �c � þ 1

2
�2Fþ H:c:

��
: (22)

We see that again the ether terms arise for the scalar and
spinor component fields, and a fourth-order term arises for
the scalar field.

The propagators of the superfields have the same form as
in the usual Wess-Zumino model, but with the modified
d’Alembertian operator since the structure of covariant
derivatives is modified:

h�ðz1Þ ��ðz2Þi ¼ 1
~h�m2

�ðz1 � z2Þ;

h�ðz1Þ�ðz2Þi ¼ mD2

4 ~hð ~h�m2Þ�ðz1 � z2Þ;

h ��ðz1Þ ��ðz2Þi ¼ m �D2

4 ~hð ~h�m2Þ�ðz1 � z2Þ;

(23)

with the additional D-factors are associated with the verti-
ces by the same rule as in the usual supersymmetric

models. Since each modified d’Alembertian operator ~h
is of the second order in the spacetime derivatives just as
the usual d’Alembertian operator, the calculation of the
superficial degree of divergence ! does not differ from the
usual case yielding

! ¼ 2� E� C; (24)

where E is a number of external legs, and C is a number of

h��i, h �� ��i propagators. We see that there is only one
type of the divergences in this theory, that is, the divergent

correction to the kinetic � �� term depicted by the graph
depicted at Fig. 2.
After the simple D-algebra transformations (we note that

shrinking any loop into a point is based on the same
identity �12

�D2D2�12 ¼ 16�12 as in the usual case), we
have the kinetic term in the form

�2 ¼ �2

2

Z
d4�

Z d4p

ð2	Þ4
��ð�p; �Þ�ðp; �Þ

�
Z d4q

ð2	Þ4
1

ð~q2 �m2Þðð~qþ ~pÞ2 �m2Þ : (25)

This contribution is evidently logarithmically divergent. To
evaluate it, we carry out the Wick rotation and Feynman
parameterization which yield

�2 ¼ i
�2

2

Z
d4�

Z d4p

ð2	Þ4
��ð�p; �Þ�ðp; �Þ

�
Z 1

0
dx

Z d4q

ð2	Þ4
1

ð~q2 þm2 � ~p2xð1� xÞÞ2 : (26)

Then, we change the variables and the integration meas-
ure in the same way as above, i.e.,

R
d4q ¼ �

R
d4~q,

� ¼ detð@qm@~qnÞ ¼ det�1ð�m
n þ kmn Þ is a Jacobian of change

of variables, it is a constant (in the case of the small ua, one
has � ¼ 1� u2). As a result, we get

�2 ¼ i�
�2

2

Z
d4�

Z d4p

ð2	Þ4
��ð�p; �Þ�ðp; �Þ

�
Z 1

0
dx

Z d4~q

ð2	Þ4
1

ð~q2 þm2 þ ~p2xð1� xÞÞ2 : (27)

The integral is the same as in the usual Wess-Zumino
model case [6,10], and we have

�2 ¼ i�
�2

2

Z
d4�

Z d4p

ð2	Þ4
��ð�p; �Þ�ðp; �Þ

�
�

1

16	2�
þ

Z 1

0
dx ln

m2 þ ~p2xð1� xÞ
�2

�
; (28)

so, the finite part is not Lorentz-invariant being dependent
on the Lorentz-noninvariant object ~p2.

FIG. 2. The contribution to the kinetic term in the four-
dimensional superspace.
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Then, we can calculate the one-loop Kählerian effective
potential [10], which, after carrying out the same steps as
in the usual case (see e.g., Ref. [5] for the details), yields

Kð1Þ ¼ � 1

2

X1
n¼1

Z
d8z

�
� ��

D2 �D2

16 ~h2

�
�8ðz� z0Þjz¼z0 ; (29)

where � ¼ mþ ��, �� ¼ mþ � ��. This expression
yields

Kð1Þ ¼� 1

32	2

Z
d4�

Z d4q

ð2	Þ4
���ln

�
1�

���

ðqmþkmnq
nÞ2

�
:

(30)

This expression can be integrated. To do it, we again carry
out the change of variables qm þ kmnq

n ! ~qm, and arrive at

Kð1Þ ¼ � 1

32	2
�
Z

d4�
Z d4~q

ð2	Þ4
��� ln

�
1�

���

~q2

�
; (31)

where � is the same as above. After Wick rotation and
integration proceeded in the sameway as in Ref. [5], together
with the subtracting of the corresponding counterterm (which
differs from the usual counterterm used in the Wess-Zumino
model [10] only by a constant factor �) we arrive at

Kð1Þ ¼ � 1

32	2
�� �� ln

� ��

�2
: (32)

Thus, we see that the contribution to the Kählerian effective
potential does not essentially differ from that one in theWess-
Zumino model.

IV. SUMMARY

Basing on the Berger-Kostelecky construction [1], we
developed the superfield approach for constructing the
Lorentz-breaking supersymmetric field theories. This ap-
proach turns out to be no more complicated than the stan-
dard supergraph technique whose examples of application
are presented in Ref. [4], and the results do not crucially
differ from the usual case. We note that if the deformation of
the supersymmetry algebra is small, the dynamics continues
to be consistent. It is interesting to note that, first, this
scheme is essentially CPT-even, second, in principle, one
can choose the Lorentz-breaking matrix kmn to be antisym-
metric, and in this case the integral measure is not corrected
for the infinitesimal kmn, �¼1. In other words, we suc-
ceeded to conciliate Lorentz symmetry breaking and the
supersymmetry in a rather simple way. In principle, the
calculations for the supergauge theories can be carried out
in the same way. We are planning to do it in a forthcoming
paper.
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