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We analyze the effect of scheme transformations in the vicinity of an exact or approximate infrared

fixed point in an asymptotically free gauge theory with fermions. We show that there is far less freedom in

carrying out such scheme transformations in this case than at an ultraviolet fixed point. We construct a

transformation from the MS scheme to a scheme with a vanishing three-loop term in the � function and

use this to assess the scheme dependence of an infrared fixed point in SUðNÞ theories with fermions.

Implications for the anomalous dimension of the fermion bilinear operator are also discussed.
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The evolution of an asymptotically free gauge theory
from the weakly coupled ultraviolet (UV) regime to the
infrared (IR) regime is of fundamental interest. Here, we
study this evolution for a theory with gauge group G and a
given content of massless fermions. We focus mainly on
vectorial gauge theories [1], but also remark on chiral
gauge theories (�GT). The UV to IR evolution is deter-
mined by the renormalization group � function of the
theory, which describes the dependence of g � gð�Þ, the
running gauge coupling, on the Euclidean momentum
scale, �. We define � ¼ g2=ð4�Þ, a ¼ �=ð4�Þ, and �� �
d�=dt, where t ¼ ln�. This has the series expansion

�� ¼ �2�
X1
‘¼1

b‘a
‘ ¼ �2�

X1
‘¼1

�b‘�
‘; (1)

where �b‘ ¼ b‘=ð4�Þ‘. The coefficients b1 and b2 were
calculated in Refs. [2,3], respectively. The asymptotic free-
dom (AF) property is the condition b1 > 0, which we
assume. As discussed further below, the b‘ for ‘ ¼ 1, 2
are independent of the scheme used for regularization
and renormalization, while b‘ with ‘ � 3 are scheme-
dependent [4]. One scheme involves dimensional regulari-
zation [5] and minimal subtraction (MS) of the poles at
dimension d ¼ 4 in the resultant Euler � functions [6]. The

modified minimal subtraction (MS) scheme also subtracts
certain related constants [7]. Calculations of b3 and b4 in

the MS scheme were given in Refs. [8,9]. Just as the
calculation of b1 and demonstration that b1 > 0 was piv-
otal for the development of QCD, the computation of b‘ for
‘ ¼ 2; 3; 4 has been important in fits to �sðQÞ [10]. In the
vicinity of the UV fixed point (UVFP) at � ¼ 0, one can
carry out a scheme transformation that renders three- and
higher-loop terms zero [11]. Considerable work has been
done on scheme (and related scale) transformations that
reduce higher-order corrections in QCD [12].

Naively, one might think that there is a similarly great
freedom in performing scheme transformations at an (exact
or approximate) IR fixed point (IRFP). Here we show that,
on the contrary, there is much less freedom in constructing

acceptable scheme transformations at an IRFP than at a
UVFP, and we analyze constraints at an IRFP.We construct
an example of a scheme transformation that satisfies these
constraints, and we apply it to assess scheme-dependence
of the value of an IRFP.
We first recall some background. In a non-Abelian

gauge theory with no fermions or only a few fermions,
b2 has the same positive sign as b1, so � has no
(perturbative) IR zero for � � 0 [13]. With a sufficient
increase in the content of fermions, b2 reverses sign, while
b1 is still positive, so the two-loop � function has a zero at

�IR;2‘ ¼ � 4�b1
b2

; (2)

which is physical for b2 < 0. This zero plays an important
role in the UV to IR evolution of the theory [3,14]. If �IR;2‘

is large enough, then, as � decreases through a scale
denoted �, the gauge interaction grows strong enough to
produce a bilinear fermion condensate in the most attrac-
tive channel with attendant spontaneous chiral symmetry
breaking (S�SB) and dynamical generation of effective
masses for the fermions involved [15]. In a one-gluon
exchange approximation to the Dyson-Schwinger equation
for the fermion propagator in a vectorial gauge theory, this
occurs as� increases through a value�cr given by�crCf �
Oð1Þ [16–18]. In a chiral gauge theory this breaks the
gauge symmetry, while in the vectorial case, the most
attractive channel is R� �R ! 1, preserving the gauge
symmetry [19]. Since the fermions that have gained
dynamical masses are integrated out in the low-energy
effective field theory below �, the � function changes,
and the theory flows away from the original IRFP, which is
thus only approximate. However, if �IR;2‘ is sufficiently

small, as is the case with a large enough (AF-preserving)
fermion content, then the theory evolves from the UV to
the IR without any S�SB. In this case the theory has an
exact IRFP. For a given G and Nf (massless) fermions in a

representation R, the critical value of Nf beyond which the

theory flows to the IR conformal phase is denoted Nf;cr.
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As Nf increases, �IR;2‘ decreases, and Nf;cr is the value at

which �IR;2‘ decreases through �cr. Lattice simulations

have been used to estimate Nf;cr [20].

Since �IR;2‘ is�Oð1Þ, especially in the quasi-conformal

case where Nf & Nf;cr, there are significant corrections to

the two-loop results from higher-loop terms in �. These
motivate one to calculate these corrections to three- and

four-loop order, and we have done this in the MS scheme
[21,22] (see also Ref. [23], which agrees with [21]).
Because of the scheme-dependence of bn for n � 3, the
value of �IR;n‘ calculated to finite order n � 3 is scheme-

dependent. It is important to assess this scheme depen-
dence and the resultant uncertainties in the value of the
(exact or approximate) IRFP. We address this task here.
Besides its intrinsic field-theoretic interest, this is impor-
tant for ongoing studies of quasi-conformal theories. These
have a gauge coupling that gets large but runs slowly over
a long interval of � [16], as occurs naturally due to an
approximate IRFP [17]. Moreover, the UV to IR flow of a
�GT and the associated sequential gauge symmetry break-
ing are important in certain approaches to physics beyond
the standard model [24].

A scheme transformation (ST) is a map between � and
�0. It will be convenient to write this as

a ¼ a0fða0Þ: (3)

To keep the UV properties the same, one requires fð0Þ ¼ 1.
We consider STs that are analytic about a ¼ a0 ¼ 0 [25]
and hence can be expanded in the form

fða0Þ ¼ 1þ Xsmax

s¼1

ksða0Þs ¼ 1þ Xsmax

s¼1

�ksð�0Þs; (4)

where the ks are constants, �ks ¼ ks=ð4�Þs, and smax may be
finite or infinite. Hence, the Jacobian J ¼ da=da0 satisfies
J ¼ 1 at a ¼ a0 ¼ 0. We have

��0 � d�0

dt
¼ d�0

d�

d�

dt
¼ J�1��: (5)

This has the expansion

��0 ¼ �2�0 X1
‘¼1

b0‘ða0Þ‘ ¼ �2�0 X1
‘¼1

�b0‘ð�0Þ‘; (6)

where �b0‘ ¼ b0‘=ð4�Þ‘. Given the equality of Eqs. (5) and (6),
one can solve for the b0‘ in terms of the b‘ and ks. This leads
to the well-known result that b0‘ ¼ b‘ for ‘ ¼ 1; 2 [4], i.e.,

that the one- and two-loop terms in � are scheme-
independent [26]. We note that the scheme-invariance of
b2 assumes that fða0Þ is gauge-invariant. This is evident
from the fact that in the momentum subtraction (MOM)
scheme, b2 is actually gauge-dependent [27] and is not equal

to b2 in the MS scheme. We restrict our analysis here to

gauge-invariant STs and to schemes, such asMS, whereb2 is
gauge-invariant.

In order to assess scheme-dependence of an IRFP, we
have calculated the relations between the b0‘ and b‘ for

higher ‘. For example, for ‘ ¼ 3; 4; 5 we obtain

b03 ¼ b3 þ k1b2 þ ðk21 � k2Þb1; (7)

b04¼b4þ2k1b3þk21b2þð�2k31þ4k1k2�2k3Þb1; (8)

b05¼b5þ3k1b4þð2k21þk2Þb3þð�k31þ3k1k2�k3Þb2
þð4k41�11k21k2þ6k1k3þ4k22�3k4Þb1: (9)

In general, in the coefficients of the terms bn entering in the
expression for b0‘, the sum of the subscripts of the ks s is
equal to ‘� nwith 1 � n � ‘� 1, and the products of the
various ks s correspond to certain partitions of ‘� n.
A corollary is that the only ks s that appear in the formula
for b0‘ are the ks s with 1 � s � ‘� 1. However, because
of cancellations, in the expression for b0‘ for even ‘, the
coefficient of bn does not contain all of the terms corre-
sponding to the partitions of ‘� n. For example, in b02,
there is no k1b1 term and in b04, the coefficient of b2 does
not contain k2.
In order to be physically acceptable, this transformation

must satisfy several conditions, Ci. For finite smax, Eq. (3)
is an algebraic equation of degree smax þ 1 for �0 in terms
of �. We require that at least one of the smax þ 1 roots must
satisfy these conditions. These are as follows: C1: the ST
must map a real positive � to a real positive�0, since a map
taking �> 0 to �0 ¼ 0 would be singular, and a map
taking �> 0 to a negative or complex �0 would violate
the unitarity of the theory. C2: the ST should not map a
moderate value of �, for which perturbation theory may be
reliable, to a value of �0 that is so large that perturbation
theory is unreliable. C3: J should not vanish in the region
of � and �0 of interest, or else there would be a pole in
Eq. (5). The existence of an IR zero of � is a scheme-
independent property of an AF theory, depending (insofar
as perturbation theory is reliable) only on the condition that
b2 < 0. Hence, C4: an ST must satisfy the condition that
�� has an IR zero if and only if ��0 has an IR zero. These
four conditions can always be satisfied by scheme trans-
formations used to study the UVFP at � ¼ �0 ¼ 0 and
hence in applications to perturbative QCD calculations,
since the gauge coupling is small (e.g., �sðmZÞ ¼ 0:118),
and one can choose the ks to have small magnitudes [28].
However, we stress that these conditions are not auto-

matically satisfied, and are significant constraints, in the
analysis of an (exact or approximate) IRFP. To show
this, we first exhibit an apparently reasonable ST that
satisfies C1 and C3 but fails C2 and C4. This is the map
(with smax ¼ 1) [29]

� ¼ tanhð�0Þ; (10)

with the inverse �0 ¼ ð1=2Þ ln½ð1þ �Þ=ð1� �Þ� and
Jacobian J ¼ 1=cosh2ð�0Þ. This ST is acceptable at a
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UVFP. But at an IRFP, it can easily happen that �IR;2‘ > 1,
in which case this ST yields a complex, unphysical �0.
For example (see Table III in Ref. [21]), for G ¼ SUð2Þ
with Nf ¼ 8 fermions in the fundamental representation,

�IR;2‘ ¼ 1:26 and for SUð3Þ with Nf ¼ 11, �IR;2‘ ¼ 1:23.

To exhibit another type of pathology that can arise at an
IRFP, but not a UVFP, consider an ST with smax ¼ 2 and,
for simplicity, k1 ¼ 0, viz.,

a ¼ a0½1þ k2ða0Þ2�; (11)

with a moderate value of jk2j. This is a cubic equation for a0
in terms ofa, and, by continuity arguments, in thevicinity of
the UVFP, it is guaranteed that this cubic yields a root that
satisfies C1 � C4. But the situation is different at an IRFP.
Consider sufficiently largeNf that b2 < 0, so there is a two-

loop zero of �, at the value (2). For a given G and R, as Nf

increases from 0, b2 decreases through positive values and
vanishes, becoming negative, as Nf increases through the

value Nf;b2z ¼ 17C2
A=½2Tfð5CA þ 3CfÞ� (which is always

less than the value Nf;b1z ¼ 11CA=ð4TfÞ at which b1 turns

negative and AF is lost) [30,31]. The two-loop IR zero
of � is thus present for Nf in the interval I defined by

Nf;b2z < Nf < Nf;b1z. Now with Nf 2 I, let us investigate

the ST (11). The condition b03 ¼ 0 is then a linear equation
for k2, with the solution k2 ¼ b3=b1. To guarantee that
this ST satisfies C1, we require 1þ k2ða0Þ2 > 0, i.e.,
1þ ðb3=b1Þða0Þ2 > 0. This must be satisfied, in particular,
in the vicinity of the two-loop IR zero of �, so substituting
the (scheme-independent) aIR;2‘ ¼ a0IR;2‘ ¼ �b1=b2 from

Eq. (2), we obtain the inequality

1þ b1b3
b22

> 0: (12)

But this inequality is not, in general, satisfied. This can be
seen by substituting explicit values of b‘ from Table I of
Ref. [21] for G ¼ SUðNÞ and Nf fermions in the funda-

mental representation, for example.
We proceed to construct and study an ST that does

satisfy our constraints and provides a measure of the
scheme dependence of the value of the IR zero of � that

we calculated in Ref. [21] up to four-loop order in the MS
scheme. We assume Nf 2 I, so a two-loop IR zero of �

exists. Starting in this MS scheme, we construct an ST
with smax ¼ 1 that yields b03 ¼ 0. Equation (3) reads

a ¼ a0ð1þ k1a
0Þ. Solving this for a0, or equivalently, �0,

we have, formally, two solutions,

�0� ¼ 1

2 �k1

�
�1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 �k1�

q �
: (13)

Only �0þ is acceptable, since only this solution has � ! �0
as � ! 0. For �0 to be real, it is necessary that
�k1 >�1=ð4�Þ. Solving the equation b03 ¼ 0 for k1, we
get, formally, two solutions,

k1p; k1m ¼ 1

2b1
½�b2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22 � 4b1b3

q
�; (14)

where ðp;mÞ refer to�. We will focus onG ¼ SUðNÞwith
fermions in the fundamental and adjoint representation.
The discriminant b22 � 4b1b3 > 0 satisfies the requirement
of being non-negative here. The solution k1m must be
discarded because it leads to � and �0 having opposite
signs for some Nf 2 I. We thus choose the solution k1p.

We denote this as the S1 scheme, i.e.,

S1: a ¼ a0ð1þ k1pa
0Þ: (15)

By construction, since b03 ¼ 0 in this scheme, the

three-loop zero of ��0 is equal to the two-loop zero,
�0
IR;3‘ ¼ �0

IR;2‘ ¼ �IR;2‘ ¼ �4�b1=b2 [26]. At the four-

loop level, the IR zero is given by the physical (smallest
positive) solution of the cubic b1 þ b2a

0 þ b04ða0Þ3 ¼ 0,
with b04 given by Eq. (8) with k1 ¼ k1p and k2 ¼ k3 ¼ 0.

We have calculated the resultant �0
IR;n‘ in the S1 scheme

up to (n ¼ 4)-loop level. In Table I we list values of the
n-loop IR zero, �0

IR;n‘ for n ¼ 2, 3, 4 for relevant Nf, with

fermions in the fundamental representation and several
values of N. For comparison we also include the values

of �IR;n‘ for n ¼ 3, 4 in theMS scheme from Ref. [21]. We

TABLE I. Values of the IR zeros of �� in the MS scheme and
��0 in the S1 scheme, for an SUðNÞ theory with Nf fermions in

the fundamental representation, for N ¼ 2; 3; 4, calculated to
n-loop order and denoted as �IR;n‘;MS and �0

IR;n‘. Here,

�IR;2‘;MS ¼ �0
IR;2‘ is scheme-independent, so we denote it simply

as �IR;2‘. In the S1 scheme, �0
IR;3‘ ¼ �0

IR;2‘ ¼ �IR;2‘.

N Nf �IR;2‘ �IR;3‘;MS �IR;4‘;MS �0
IR;4‘

2 7 2.83 1.05 1.21 0.640

2 8 1.26 0.688 0.760 0.405

2 9 0.595 0.418 0.444 0.2385

2 10 0.231 0.196 0.200 0.109

3 10 2.21 0.764 0.815 0.463

3 11 1.23 0.578 0.626 0.344

3 12 0.754 0.435 0.470 0.254

3 13 0.468 0.317 0.337 0.181

3 14 0.278 0.215 0.224 0.121

3 15 0.143 0.123 0.126 0.068

3 16 0.0416 0.0397 0.0398 0.0215

4 13 1.85 0.604 0.628 0.365

4 14 1.16 0.489 0.521 0.293

4 15 0.783 0.397 0.428 0.235

4 16 0.546 0.320 0.345 0.187

4 17 0.384 0.254 0.271 0.146

4 18 0.266 0.194 0.205 0.110

4 19 0.175 0.140 0.145 0.0785

4 20 0.105 0.091 0.092 0.050

4 21 0.0472 0.044 0.044 0.023
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have carried out the analogous calculations for fermions in
the adjoint representation of SUðNÞ. Here, Nf;b1z ¼ 11=4

and Nf;b2z ¼ 17=16, so the only physical, integer value of

Nf 2 I is Nf ¼ 2. SUð2Þ models with Nf ¼ 2 adjoint

fermions have been of recent interest [32]. We list our
results in Table II. For both of these cases, we find that
�0
IR;3‘ > �IR;3‘;MS and �0

IR;4‘ < �IR;4‘;MS.

The anomalous dimension �m describes the scaling of a
fermion bilinear and the running of a dynamically gener-
ated fermion mass in the phase with S�SB. It plays an
important role in technicolor theories, via the renormaliza-
tion group factor � ¼ exp½R dt�mð�ðtÞÞ� that can enhance

dynamically generated standard-model fermion masses. In
the (conformal) non-Abelian Coulomb phase, the IR zero
of � is exact, although a calculation of it to a finite-order in
perturbation theory is only approximate, and �m evaluated
at this IRFP is exact. In the phase with S�SB, where an
IRFP, if it exists, is only approximate, �m is an effective
quantity describing the running of a dynamically generated
fermion mass for the evolution of the theory near this
approximate IRFP. In Ref. [21] we evaluated �m to three-
and four-loop order at the IR zero of � calculated to the
same order and showed that these higher-loop results were
somewhat smaller than the two-loop evaluation. In both the
conformal and nonconformal phases it is important to

assess the scheme-dependence of �m when calculated to
finite order. �m is defined as �m ¼ d lnZm=dt, where Zm

is the corresponding renormalization constant. This has
the expansion �m ¼ P1

‘¼1 �c‘�
‘ with �c‘ calculated up to

‘ ¼ 4 order in the MS scheme [33]. Under the general
ST (3), c1 is invariant, while the c‘ with ‘ � 2 change.
With Zmð�Þ ¼ Z0

mð�0ÞFmð�0Þ,

�mð�Þ ¼ �0
mð�0Þ þ d�0

dt

d lnFm

d�0 ¼ �0
mð�0Þ þ ��0

d lnFm

d�0 :

(16)

Hence, at a zero of ��0 , �mð�Þ ¼ �0
mð�0Þ [4]. Although �m

calculated to all orders is invariant under an ST at a zero of
�, in particular an exact IRFP, our present results with the

MS and S1 schemes show that �IR;n‘ and �m;n‘ð�IR;n‘Þ still
exhibit significant scheme-dependence up to (n ¼ 4)-loop
order. This is understandable, since the relevant IRFP
occurs at ��Oð1Þ.
It is also of interest to consider STs that are not designed

to render any b0‘ ¼ 0. Accordingly, we have also done

calculations with one-parameter STs having smax ¼ 1
and exactly known inverses, such as

a ¼ tanhðra0Þ
r

; (17)

and a ¼ ð1=rÞ sinhðra0Þ, where r is a positive constant.
For these, we can vary the effect of the transformation
by varying r from r 	 1 to values r * 1. These STs
provide a further measure of the scheme-dependence of
an IRFP [34].
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