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We study a Casimir-like behavior in a ‘‘deformed QCD.’’ We demonstrate that for the system defined on

a manifold of size L, the difference �E � E� EMink between the energies of a system in a nontrivial

background and Minkowski space-time geometry exhibits the Casimir-like scaling �E� L�1, despite the

presence of a mass gap in the system, in contrast with naive expectation �E� expð�mLÞ, which would

normally originate from any physical massive propagating degrees of freedom consequent to conventional

dispersion relations. The Casimir-like behavior in our system comes instead from a nondispersive

(‘‘contact’’) term which is not related to any physical propagating degrees of freedom, such that the

naive argument is simply not applicable. These ideas can be explicitly tested in weakly coupled deformed

QCD. We comment on profound consequences for cosmology of this effect if it persists in real strongly

coupled QCD.
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I. INTRODUCTION AND MOTIVATION

The main motivation for the present studies is a recent
suggestion on the dynamical dark energy (DE) model,
which is entirely rooted in the strongly coupled QCD,
without any new fields and/or coupling constants [1–4].
The key element of the proposal [1–4] is based on a para-
digm that the relevant energy which enters the Einstein
equations is, in fact, the difference �E�E�EMink between
the energies of a system in a nontrivial background and
Minkowski space-time geometry, similar to the well-known
Casimir effect when the observed energy is a difference
between the energy computed for a system with conducting
boundaries (positioned at finite distance L) and infinite
Minkowski space.1 This paradigm is based on the conjecture
that gravity, as described by the Einstein equations, is a low-
energy effective interaction which, as such, should not be
sensitive to the microscopic degrees of freedom in the
system but to some effective scale. Thus, the energy density
that enters the semiclassical Einstein equations should not
be the ‘‘bare’’ energy as computed in quantum field theory
but rather a ‘‘renormalized’’ energy density. We propose the
renormalization scheme given above which sets the vacuum
energy to zero in Minkowski space, wherein the Einstein
equations are automatically satisfied as the Ricci tensor
identically vanishes.

The above prescription is in fact the standard subtraction
procedure that is normally used for the description of
horizon thermodynamics [5,6] as well as in a course of
computations of a different Green’s function in a curved

background by subtracting infinities originated from the flat
space [7]. In the present context, such a definition �E �
ðE� EMinkÞ for the vacuum energy was first advocated in
1967 by Zeldovich [8], who argued that �vac �Gm6

p with

mp being the proton’s mass. Later on such a definition for

the relevant energy �E � ðE� EMinkÞ which enters the
Einstein equations has been advocated from different per-
spectives in a number of papers; see, for example, the
relatively recent works [9–16] and references therein.
We study the scaling behavior of �E when the

background deviates slightly from Minkowski space. The
difference �E must obviously vanish when any devia-
tions (parametrized by Hubble constant or inverse size
of the visible universe, H � L�1) go to zero as this corre-
sponds to the transition to flat Minkowski space. A naive
expectation based on common sense suggests that �E�
expð��QCD=HÞ � expð�1041Þ as QCD has a mass gap

��QCD � 100 MeV, and, therefore, �E must not be sen-

sitive to the size of our Universe L�H�1. Such a naive
expectation formally follows from the dispersion relations,
which dictate that a sensitivity to very large distances must
be exponentially suppressed when the mass gap is present
in the system.2

However, as emphasized in Refs. [3,4] in strongly
coupled gauge theories along with conventional dispersive
contribution, there exists a nondispersive contribution,
not related to any physical propagating degrees of free-
dom. This nondispersive (contact) term generally emerges
as a result of topologically nontrivial sectors in four-
dimensional QCD. The variation of this contact term
with variation of the background may lead to a powerlike

1Here and in what follows, we use the term ‘‘Casimir effect’’
to emphasize the powerlike sensitivity to large distances irre-
spective of their nature. A crucial distinct feature that character-
izes the system we are interested in is the presence of
dimensional parameter L�H�1 (where H is a Hubble constant)
in the system, which distinguishes it from infinitely large
Minkowski space-time.

2The Casimir effect, due to the massless E&M field, obviously

shows such power dependence �E ¼ � �2

720L4
. Similar computa-

tions for a massive scalar particle with mass m lead to an
exponentially suppressed result �E� expð�mLÞ as expected,
see e.g., Ref. [17].
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scaling �E�H þOðHÞ2 rather than to an exponential-
like �E� expð��QCD=HÞ. If true, the difference between
two metrics (Friedmann-Lemaitre-Robertson-Walker
(FLRW) and Minkowski) would lead to an estimate

�E��3
QCD

L
�ð10�3 eVÞ4; 1=L�H�10�33 eV; (1)

which is amazingly close to the observed DE value today. It is
interesting to note that expression (1) reduces to Zeldovich’s
formula �vac �Gm6

p if one replaces �QCD!mp and

H ! G�3
QCD. The last step follows from the solution of

the Friedman equation

H2 ¼ 8�G

3
ð�DE þ �MÞ; �DE �H�3

QCD (2)

when the DE component dominates the matter component,
�DE � �M. In this case the evolution of the Universe
approaches a de Sitter state with constant expansion rate
H �G�3

QCD as follows from (2).

Another motivation to study the Casimir-like behavior
in QCD is a proposal [18,19] that the P odd correla-
tions observed at Relativistic Heavy Ion Collider and LHC
are, in fact, another manifestation of long-range order advo-
cated in this work. Furthermore, an apparently universal
thermal spectrum, observed in all high-energy collisions
when the statistical thermalization could never be reached
in the systems,might also be related to the same contact term,
not related to any physical propagating degrees of freedom;
see Refs. [18,19] and references therein for the details.

There are a number of arguments supporting the power-
like behavior �E�HþOðHÞ2 in gauge theories. See
Sec. IV where we present some general arguments suggest-
ing the Casimir-like corrections in gauge theories with
nontrivial topological structure. However, it is always de-
sirable and very instructive to see how the general argu-
ments work in some simplified settings. This is precisely
the goal for the present study: we want to consider a
simplified (‘‘deformed’’) version of QCD which, on one
hand, would be a weakly coupled gauge theory wherein
computations can be performed in a theoretically control-
lable manner. On other hand, this deformation would pre-
serve all the relevant elements of strongly coupled QCD,
such as confinement, degeneracy of topological sectors,
nontrivial � dependence, presence of nondispersive con-
tribution to topological susceptibility, and other crucial
aspects, necessary for this phenomenon to emerge. Such
a ‘‘deformed’’ theory has recently been developed [20]. All
computations in this work (excluding those in Sec. III A)
are performed within this framework.

II. TOPOLOGICAL SUSCEPTIBILITY
IN THE DEFORMED QCD

In the deformed theory an extra term is put into
the Lagrangian in order to prevent the center symmetry

breaking that characterizes the QCD phase transition be-
tween ‘‘confined’’ hadronic matter and ‘‘deconfined’’
quark-gluon plasma. Thus, we have a theory that remains
confined at high temperature in aweak coupling regime and
for which, it is claimed [20], there does not exist an order
parameter to differentiate the low-temperature confined
regime from the high-temperature confined regime. The
nontrivial topological sectors of the theory are described in
this model in terms of the weakly coupled monopoles. The
monopoles in this framework are not real particles; they are
pseudo-particles that live in Euclidean space and describe
the physical tunneling processes between different topo-
logical sectors jni and jnþ 1i. In particular, the monopole
fugacity � should be understood as a number of tunneling
events per unit time per unit volume

�
number of tunnelling events

VL

�
¼ Nc�

L
; (3)

where extra factor Nc in (3) accounts for Nc different types
of monopoles present in the system and L is the size of the
circle along � ¼ it and plays the role of the inverse tem-
perature. The monopole gas experiences Debye screening
so that the field, due to any static charge, falls off exponen-
tially with characteristic length m�1

� . The number density
N of monopoles is given by themonopole fugacity,�� , so
that the average number of monopoles in a ‘‘Debye vol-
ume’’ is given by

N � m�3
� � ¼

�
g

2�

�
3 1ffiffiffiffiffiffiffiffiffi

L3�
p � 1: (4)

The last inequality holds since the monopole fugacity is

exponentially suppressed, � � e�1=g2 , and in fact we can
view (4) as a constraint on the validity of the
approximation.
The topological susceptibility in this model can be

explicitly computed and is given by [21]

�YM ¼
Z

d4xhqðxÞqð0Þi ¼ �

NcL

Z
d3x½�ðxÞ�: (5)

The light quarks can be easily inserted into the system. The
corresponding generalization of Eq. (5) reads [21]

�QCD ¼
Z

d4xhqðxÞqð0Þi

¼ �

NcL

Z
d3x

�
�ðxÞ �m2

	0
e�m	0 r

4�r

�
: (6)

The first term in this equation has a nondispersive nature,
similar to Eq. (5) and has the positive sign. This contact term
(which is not related to any physical propagating degrees
of freedom) has been computed in this model using mono-
poles describing the transitions between the degenerate
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topological sectors.3 The positive sign of this term is the
crucial element of the resolution of theUð1ÞA problem. The
second term in Eq. (6) is a standard dispersive contribution,
can be restored through the absorptive part using conven-
tional dispersion relations, and has a negative sign in
accordance with general principles. This conventional
physical contribution is saturated in this model by the
lightest 	0 field. It enters �QCD precisely in such a way

that the Ward identity expressed as �QCDðmq ¼ 0Þ ¼ 0 is

automatically satisfied as a result of cancellation between
the two terms. If the contact nondispersive term with
‘‘wrong sign’’ was not present in the system, the Ward
identity could not be satisfied as physical states always
contribute with negative sign in Eq. (6).

One should note that the number of tunneling events per
unit time per unit volume (3) in pure gauge theory in this
model (with no quarks) precisely concurs with the absolute
value of the energy density of the system. Furthermore, the
topological susceptibility in pure gauge theory calculated as
the second derivative of EYMð�Þ with respect to � precisely
coincides with the nondispersive contact term with ‘‘wrong
sign’’ explicitly and directly computed in (6). Indeed,

EYMð�Þ ¼ �Nc�

L
cos

�
�

Nc

�
;

�YMð� ¼ 0Þ ¼ @2EYMð�Þ
@�2

���������¼0
¼ �

NcL
; (7)

where we keep only the lowest branch l ¼ 0 in expression
for cosð�þ2�l

Nc
Þ to simplify formula (7). See detailed discus-

sions with a complete set of references on this matter in
Ref. [21]. In other words, the contact term in pure gauge

theory �YM ¼ �
NcL

can be interpreted in terms of the number

tunneling events between different topological sectors in the
system. Therefore, there is no surprise that it has the ‘‘wrong
sign’’ as the relevant physics cannot be described in terms of
propagating physical degrees of freedom but rather is de-
scribed in terms of the tunneling events between different
(but physically equivalent) topological sectors in the system.

III. CASIMIR-TYPE BEHAVIOR
IN DEFORMED QCD

Up to this point the theory was formulated on R3 � S1

with small compactification size L for compact time

coordinate S1 and infinitely large spaceR3 describing three
other dimensions. As explained in Sec. I, we are actually
interested in behavior of the system when a space with
large dimensions R3 receives some small modifications,
for example the theory is defined in a ball R3 ! B3 with L
being a very large size of the compact dimension of the
sphere S2 which is a boundary of the ball B3. Such a
modification can be thought of as the simplest way to
model and test the sensitivity of our theory to arbitrary
large distances, such as the size of our visible Universe
determined by the Hubble constant H=�QCD � 10�41. We

want to know how the topological susceptibility of the
system which describes the �-dependent portion of the
vacuum energy Evacð� ¼ 0Þ changes with slight variation
of the size of the system. We assume that L�H�1 �
10 Gpc is much larger than any other scales of the prob-
lem. Essentially, we want to see if our deformed QCD
model with a mass gap m� predicts an exponential scaling
typical for a free massive particle,

�EðLÞ � ½EðB3Þ � EðR3Þ� � expð�m�LÞ; (8)

or if it demonstrates a Casimir-type behavior,

�EðLÞ � ½EðB3Þ � EðR3Þ� � 1

L
þO

�
1

L

�
2
: (9)

If we did not have a nondispersive contribution in our
system, we would immediately predict the behavior (8)
as the only available option for a gapped theory in close
analogy with conventional Casimir computations for a
massive particle �EðLÞ � expð�mLÞ; see, e.g., review
paper [17]. However, our system is much richer, more
complicated, and more interesting, as it exhibits a non-
dispersive term resulting from degeneracy of topological
sectors in gauge theory as discussed in the text. This
contact term, being unrelated to any physical degrees of
freedom, may provide different scaling properties since
conventional dispersion relations do not dictate its behav-
ior at very large distances. As we shall argue below, the
deformed QCD indeed exhibits the Casimir-type behavior
(9) in drastic contrast with the conventional viewpoint
represented by Eq. (8). As we reviewed in Sec. I, we
interpret a tiny deviation of the �-dependent vacuum en-
ergy Evac in an expanding universe (in comparison with
Minkowski space-time) as a main source of the observed
DE. The Casimir-type behavior (9) plays a key role in
possibility of such an identification.
We start our discussions in Sec. III A with conventional

four-dimensional instanton computations [22] in which in-
frared regularization for some gauge modes is required and
achieved by putting the system into a sphere with finite
radius L. It allows us to compute powerlike corrections to
the standard instanton density [22]. However, the corre-
sponding corrections being computed for a fixed instanton
size � cannot be interpreted as a physically observable
quantity because the integral

R
d� over large-size instantons

3In the context of this paper, the ‘‘degeneracy’’ implies the
existence of winding states jni constructed as follows: T jni ¼
jnþ 1i. In this formula the operator T is the large gauge
transformation operator which commutes with the Hamiltonian
½T ; H� ¼ 0. The physical vacuum state is unique and con-
structed as a superposition of jni states. In quantum field theory
approach the presence of n different sectors in the system is
reflected by summation over n 2 Z in definition of the path
integral in QCD. It should not be confused with the conventional
term ‘‘degeneracy’’ when two or more physically distinct states
are present in the system.
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diverges for this system when semiclassical approximation
for large � breaks down. Nevertheless, this example
explicitly shows when and why a Casimir-type correction
(to conventional formula computed in infinite R4 space)
emerges.

Next, we compute a similar correction for the
‘‘deformed QCD’’ model in Sec. III B, wherein a
Casimir-type correction also appears, resulting from the
same physics related to topological sectors of the theory. In
contrast with the previous case, the correction computed in
this system is a physically ‘‘observable’’ quantity as it
represents the vacuum energy of the system. Indeed, the
tunneling transitions in this case are described by weakly
coupled monopoles, such that semiclassical computations
of the vacuum energy (3) and (5) expressed in terms of the
density � of pseudoparticles are fully justified. The size of
pseudoparticles (fractionally charged monopoles) which
describe the tunneling events in this model is fixed by
construction; see Refs. [20,21] for the details.

A. Casimir-type corrections for
four-dimensional instantons

Our goal here is to study a powerlike correction to the
instanton density described in the classic paper [22]. As
such, we adopt ’t Hooft’s notation and, in particular, use the
same background-dependent gauge C4 ¼ D
A

a


qu, which

drastically simplifies all computations. Essentially, the
problem is reduced to analysis of the normalization
factors for a finite number of zero modes (eight for
SUð2Þ gauge group) in this gauge wherein the system is
defined in a sphere with large but finite radius L.
Essentially, we follow the construction described in
section XI of Ref. [22]. The corresponding normalization
factor explicitly enters the expression for the instanton
density as it accompanies the integration over collective
variables. The contribution from nonzero modes does not
exhibit such corrections; see the few comments on this
issue at the end of this section. We now concentrate on the
zero modes and powerlike corrections which accompany
the normalization factors if the system is defined on a large
but finite space B4

L (four- dimensional interior of a ball of

radius L) rather than an infinite space R4.
We start with four translational zero modes which have

the form

Aa


quð�Þ � 	a
�ð1þ r2Þ�2; � ¼ 1; . . . ; 4; (10)

where we literally use ’t Hooft’s notations for 	a
� sym-

bols and dimensionless coordinate r2 ¼ x2
 measured in

units of � ¼ 1. Computing the corresponding correction
factor due to the translation zero modes �tr., we have

�tr �
R
L
0 d

4x½Aa


quð�Þ�2R1

0 d4x½Aa


quð�Þ�2 ’

�
1� 3

L4
þO

�
1

L6

��
: (11)

The corresponding correction factor to the instanton den-
sity has powerlike correction as anticipated. As a result of

additional rotational symmetry, one should expect, in gen-
eral, L�2 corrections, while translation zero modes lead to
a much smaller correction �L�4 as Eq. (11) shows. It will
be neglected in what follows. Dilaton and global gauge
rotations lead to �L�2 as we discuss below.
For the dilaton zero mode

Aa


qu � 	a
�x

�ð1þ r2Þ�2; (12)

a similar formula reads

�dil �
R
L
0 d

4x½Aa


quð�Þ�2R1

0 d4x½Aa


quð�Þ�2 ’

�
1� 3

L2
þO

�
1

L4

��
; (13)

such that the correction to the instanton density is propor-
tional to

ffiffiffiffiffiffiffiffi
�dil

p ’ ð1� 3
2L2

Þ.
Computing the corresponding contribution due to three

zero modes related to global gauge rotations requires much
more refined analysis as explained in Ref. [22]. This is due
to the specific features of the background-dependent gauge
C4 ¼ D
A

a


qu when the corresponding three modes are

pure gauge artifact. As shown in Ref. [22], the correspond-
ing contribution is finite but very sensitive to the infrared
regularization determined by the size R of large sphere.
The corresponding contribution to the instanton density is

�ð
4VÞ3=2 where V is the four volume, while 
4 � V�1 is
defined as follows


4 ¼
R
V d

4x½c a

ðbÞ�2R

V d
4x½c aðbÞ�2 ; b ¼ 1; 2; 3;

c aðbÞ ¼ 	a
� �	b



x�x


ð1þ x2Þ ;

c a

ðbÞ ¼ D
c

aðbÞ ¼ 	a

 �	b
�

x�

ð1þ x2Þ2 :

(14)

The corresponding powerlike corrections can be computed
in a similar manner to the other zero modes, except that we
must retain the regularization since the denominator above
diverges as �V. So we have the two correction factors

�num �
R
L
0 d

4x½c a

ðbÞ�2R1

0 d4x½c a

ðbÞ�2

’
�
1� 3

L2
þO

�
1

L4

��
;

and

�den � VðRÞ
VðLÞ

R
L
0 d

4x½c aðbÞ�2R
R
0 d

4x½c aðbÞ�2 ’
�
1� 4

L2
þO

�
1

L4

��
:

The fraction, VðRÞ=VðLÞ, is the correction to V in the
instanton density factor and is included here so that we
can take the regularization R ! 1. The combined gauge
rotation correction factor is then

�rot � �num

�den

’
�
1þ 1

L2
þO

�
1

L4

��
; (15)

such that the correction to the instanton density is propor-

tional to ð�rotÞ3=2 ’ ð1þ 3
2L2

Þ. Accidentally, for SUð2Þ
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gauge group the leading L�2 corrections from the dilation
(13) and global gauge rotations (15) exactly cancel each
other. This accidental cancellation does not hold for the
general SUðNÞ gauge group when power of �rot enters the
instanton density with a different power.

We remark here that the technique used in Ref. [22] is
essentially a variational approach wherein the boundary
conditions are implemented implicitly rather than explic-
itly. It allows us to use all the zero modes, (10), (12), and
(14), as well as the standard classical instanton solution in
the original form defined on R4 in which the conformal
invariance is a symmetry of the system. So in this ap-
proach, neither the instanton itself nor its zero modes
(10), (12), and (14) are solutions of the equation of motions
which vanish at the boundary. This approach has been
tested in many follow- up papers, and we adopt it in the
present work using the same technique in the next section.
We also point out that the conformal invariance is explic-
itly broken in the one-instanton sector by the size of the

instanton �, such that corrections take the form ð�2

L2
Þn. It is

restored by the integration
R
d�. However, in this paper we

are interested in the computation in the one-instanton
sector only when dimensional parameter � is explicitly
present in the system, and it is small and fixed.

The important message here is that such kind of power
correction do appear in general. The source of these cor-
rections is a long range tail of zero modes. We can not
derive a definite conclusion from these computations be-
cause the integral over large size instantons

R
d� diverges

and the semiclassical approximation breaks down.
However, the same problem studied in the deformed
QCD model considered in Sec. III B does not suffer from
such deficiencies as semiclassical computations that are
under complete theoretical control. Thus, a Casimir-like
correction to the monopole fugacity � in this model is
explicitly translated to the correction to the vacuum energy
density and topological susceptibility (7), supporting (9)
and in huge contrast with naive expectation (8). It is
important that the source of the corrections in the deformed
QCD model is the same as in undeformed QCD considered
here, and that source is the long-range tails of the zero
modes, which lead to large-distance sensitivity. The only
difference is that the role of the instanton size � in com-
putations above in the one-instanton sector is played by the
inverse monopole’s mass m�1

W in Sec. III B. Because it is a
true scale of the problem, however, m�1

W is not integrated
over as � is.

B. Casimir-type corrections for
three-dimensional monopoles

We now turn to the deformed gauge theory described in
Refs. [20,21] wherein the low-energy behavior is given by
a Uð1ÞN Coulomb gas of monopoles in Euclidean R3.
Basically, we want to understand the dependence of the
monopole fugacity, � , which comes out of the measure

transformation to collective coordinates, on the size of the
system, L. In this case, as in the previous section, we
consider the interior of a sphere of large but finite radius
L. There are four zero modes present in this system: three
translations since the monopoles are in R3, no dilations
since the monopole size is fixed by the symmetry-breaking
scale in this model mW , and one gauge rotation since the
gauge group for a given monopole is Uð1Þ. As in Ref. [22],
we work in a regular gauge to remain sensitive to the
large-distance physics. The monopole solution in the
‘‘hedgehog’’ regular gauge is given by

va

ðxÞ ¼ �
�a

x�

jxj2
�
1� mW jxj

sinhðmW jxjÞ
�
; (16)

�aðxÞ ¼ xa

jxj2 ½mW jxj cothðmW jxjÞ � 1�; (17)

where we adapted notations from Refs. [23,24], treating
the monopole measure in supersymmetric Yang-Mills the-
ory. In formula (16), va


 denotes the three spacial gauge

fields for the classical solution, and �a the gauge field in
the compact time direction (the ‘‘Higgs’’ field in this
model) when all fields can be combined in a single four-
dimensional field vm.
We then want to compute the correction factors for the

collective coordinate measure coming from these four zero
modes when the system is defined in a large but finite
sphere. We closely follow the ’t Hooft’s treatment [22]
presented in previous Sec. III A. We start by considering
the translation modes defined by the spacial derivative of
the classical monopole solution (16)

Za
mð�Þ ¼ �@�v

a
mðx� zÞ þDmv

a
� ¼ va

m�; (18)

where the second term on the right-hand side of Eq. (18) is
necessary to keep Za

mð�Þ in the background gauge; see
Refs. [23,24] for the details. This leads us to the following
expression for the correction factor due to the translation
zero modes

�tr �
R
L
0 d

4x½Za
mð�Þ�2R1

0 d4x½Za
mð�Þ�2

’
�
1� 1

mWL
þO

�
1

L2

��
: (19)

Next we consider the gauge rotation zero mode. As in
the previous section, the contribution to the collective
coordinate measure, and so the monopole fugacity, is

�ð
VÞ12 where V is the three-volume and 
 is given by


¼
R
V d

3x½Ba

�2R

V d
3x½�a�2 Ba


¼1

2
�
��@�v

a
�¼D
�

a: (20)

Again, the denominator diverges as�V and we look at the
two correction factors

�num �
R
L
0 d

3x½Ba

�2R1

0 d3x½Ba

�2

’
�
1� 1

mWL
þO

�
1

L2

��
;

and
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�den � VðRÞ
VðLÞ

R
L
0 d

3x½�a�2R
R
0 d

3x½�a�2 ’
�
1� 3

mWL
þO

�
1

L2

��
:

The total correction factor for the gauge rotation mode is
then

�rot � �num

�den

’
�
1þ 2

mWL
þO

�
1

L2

��
; (21)

and, therefore, the total correction to the monopole fugac-
ity from (20) is

ffiffiffiffiffiffiffiffi
�rot

p ’ ð1þ 1
LÞ. Assembling the total

correction to the fugacity,

�3=2
tr �1=2

rot ’
�
1� 1

2mWL
þO

�
1

L2

��
: (22)

Thus, the deformed QCD, when put on a manifold with a
boundary, receives some corrections to the monopole fu-
gacity compared to Minkowski space that are powerlike in
the manifold size. The correction (22) to the monopole
fugacity leads immediately to the same correction to the
topological susceptibility and so the background energy
density through the relation (7). To be more precise,

�ðLÞ ¼ � �
�
1� 1

2mWL
þO

�
1

L2

��
; (23)

where � is the monopole fugacity that enters the relation
(7) computed in infinite Minkowski space. We emphasize
that the energy density changes in the bulk of space-time,
not only in the vicinity of the boundaries, similar to the
Casimir effect when the bulk energy density changes as a
result of merely presence of the boundary. To reiterate, the
deformed QCD, despite the presence of a mass gap, dis-
plays a surprising Casimir-like sensitivity to large-distance
boundaries, such that the energy density differs from the
Minkowski space value by �E� 1

mWL . Again, this is in

contrast to the naive expectation based on analyzing the
physical degrees of freedom, �E� e�mL with m�m�

being the lowest mass scale of the problem (8).

C. A few general comments

Computations of the Casimir corrections presented
above were based on an analysis of the zero modes when
the corresponding normalization factor explicitly enters
the instanton or monopole density. Now, we want to
present some arguments suggesting that a correction due
to the nonzero mode contributions can be neglected, and,
therefore, it cannot cancel the zero modes contribution.
Indeed, the computation of the nonzero mode contribution
is reduced to analysis of the phase shifts in the scattering
matrix which cannot change the normalization of the wave
function, itself, as the only changes that occur are the phase
shifts. An absolute normalization is dropped from the final
formula for the instanton or monopole density when the
ratio of the eigenvalues is considered. This argument is
consistent with observation that nonzero mode contribu-
tion depends on matter context of the theory as it varies

when massive scalar of spinor fields in different represen-
tations are part of the consideration. At the same time, the
Casimir-type corrections computed above are exclusively
due to the gauge portion of the theory, not its matter
context. Indeed, these Casimir corrections were derived
in pure gluodynamics. So, it is difficult to imagine how a
Casimir correction to nonzero mode contribution (if it is
nonzero) may cancel a Casimir-type correction originated
from analysis of gauge zero modes.
We also comment that the correction L�1 occurs as a

manifestation of a slow powerlike decay of the zero modes
in the background of a topologically nontrivial gauge
configuration. It should be contrasted with conventional
behavior of zero modes with a mass gap present in the
system from the very beginning (for example, the well-
studied problem of a double-well potential). In the former
case, the zero modes decay according to the power law and
lead to the Casimir-type correction, while in the later case,
the zero modes are well localized configurations that decay
exponentially fast at large distances and cannot be sensitive
to large-distance physics. The mass gap is present for all
physical degrees of freedom in both models. However, in
the former case the mass gap emerges as a result of the
same instanton or monopole dynamics, while in the latter a
mass gap was present in the system from the very begin-
ning and it was not associated with any instanton or mono-
pole dynamics. QCD obviously belongs to the former case,
and we therefore expect this effect will persist in strongly
coupled QCD.
Next, our computations of the Casimir correction to the

instanton or monopole density are based on assumption of
the dilute gas approximation. This is enforced in Sec. III A
by a finite instanton size � which is kept fixed and small.
On other hand, the semiclassical approximation in
Sec. III B is automatically justified due to parametrically
small fugacity � , and total neutrality in this system is
automatically achieved as long as the size of the system
L is much larger than the Debye screening length m�1

� [see
(4)]. In other words, we assume L � m�1

� such that neu-
trality of the system is automatically satisfied with expo-
nential accuracy. The finite size of the manifold does not
spoil this neutrality if condition L � m�1

� is satisfied.
Furthermore, the computation of the monopole’s fugacity
� and corresponding corrections (23) can be performed
without taking into account the interaction of a monopole
with other particles from the system as it would correspond
to higher-order corrections in density expansion��2. This
is precisely the procedure which was followed in the
original computations by Polyakov in Ref. [25] and in
the deformed QCD model in Ref. [20] at weak coupling.
Also, we emphasize that in the variational approach

developed in Ref. [22], neither the classical solution nor
the corresponding zero modes vanish at the boundary of a
finite-size manifold. The constraints related to the finite-
size L of the manifolds are accounted for implicitly rather
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than explicitly in this approach. In particular, one should
not explicitly cut off the classical action of the configura-
tion as a result of finite-size L, where instanton or mono-
pole is defined as this contribution is implicitly taken into
account by variational approach. However, even if we use
an explicit cutoff for the classical solution (as some people
suggest), it still cannot cancel the zero mode corrections as
these terms have different behavior in N. Indeed, the
correction to the classical solution would be one and the
same for any N, while corrections due to zero modes
depend onN as correction (21) counts the number of gauge
rotations for SUðNÞ gauge theory.

Finally, it is quite possible that we overlooked some
other possible corrections (for example, some corrections
due to the boundaries which may occur in close vicinity of
these boundaries). We emphasize that our main result is not
a computation of a specific coefficient in front of the
correction to fugacity in Eq. (23). Rather, our main point
is that these type of corrections do occur in a system with a
gap, and it is very difficult to imagine that some boundary
corrections may mysteriously cancel these computed bulk
corrections (as some people suggest). Therefore, we
present below some arguments and examples suggesting
that Casimir-type behavior in gauge theories is, in fact,
quite generic rather than a peculiar feature of the system.

IV. TOPOLOGICAL SECTORS AND THE
CASIMIR CORRECTION IN QCD

In this section we want to present a few generic argu-
ments suggesting that the emergence of a Casimir-like
behavior is not an accident and not a computational error.
Rather, the effect has deep theoretical roots as argued in
Ref. [26]. We review these arguments starting with an
analogy with the well-known Aharonov-Casher effect as
formulated in Ref. [27]. The relevant part of that work can
be stated as follows. If one inserts an external charge into a
superconductor when the electric field is exponentially
suppressed � expð�r=
Þ with 
 being the penetration
depth, a neutral magnetic fluxon will be still sensitive to
an inserted external charge at arbitrary large distance. The
effect is purely topological and nonlocal in nature. The
crucial point is that this phenomenon occurs, in spite of
the fact that the system is gapped, due to the presence of
different topological states in the system. We do not have
the luxury of solving a similar problem in strongly coupled
four-dimensional QCD analytically. However, one can
argue that the role of the ‘‘modular operator’’ of
Ref. [27] (which is the key element in the demonstration
of long-range order) is played by large gauge transforma-
tion operator T in QCD, which also commutes with the
Hamiltonian ½T ; H� ¼ 0, such that our system must be
transparent to topologically nontrivial pure gauge configu-
rations, similar to transparency of the superconductor to
the ‘‘modular electric field’’; see Ref. [26] for the details.

We interpret the computational results in a number of
systems where Casimir-like corrections have been estab-
lished as a manifestation of the same physics that can be
described in terms of the operator T . We should mention
that there are a few other systems, such as topological
insulators, where a topological long-range order emerges
in spite of the presence of a gap in the system. We refer to
Ref. [26] for relevant references and details.
There are a number of simple systems in which the

Casimir-type behavior �E� L�1 þOðLÞ�2 has been ex-
plicitly computed. In all known cases, this behavior
emerges from nondispersive contributions when the dis-
persion relations do not dictate the scaling properties of
this term.
The first example is an explicit computation [28] in

exactly solvable two-dimensional QED, defined in a box
size L. The model has all elements crucial for the present
work: a nondispersive contact term which emerges due to
the topological sectors of the theory. This model is known
to be a theory of a single physical massive field. Still, one
can explicitly compute �E� L�1 in contrast with naively
expected exponential suppression, �E� e�L [28].
Another piece of support for a powerlike behavior is an
explicit computation in a simple case of Rindler space-time
in four-dimensional QCD [3,18,29], where Casimir-like
corrections have been computed using the unphysical
Veneziano ghost, which effectively describes the dynamics
of the topological sectors and the contact term when the
background is slightly modified. Thus, powerlike behavior
is not a specific feature of two-dimensional physics, as
some people (incorrectly) interpret the results of Ref. [28].
Our next example is the two-dimensional CPN�1 model

formulated on finite interval with size L [30]. In this case,
one can explicitly see emergence of �E� L�1 in large N
limit in close analogy to our case (23) where a theory has a
gap but, nevertheless, exhibits the powerlike corrections.
The correction computed in Ref. [30] also comes from a
nondispersive contribution that cannot be associated with
any physical propagating degrees of freedom, similar to
our case (23).
Powerlike behavior �E� L�1 is also supported by re-

cent lattice results [31]. The approach advocated in
Ref. [31] is based on the physical Coulomb gauge, in which
the nontrivial topological structure of the gauge fields is
represented by the so-called Gribov copies leading to a
strong infrared singularity. Thus, the same Casimir-like
scaling emerges in a different framework where the un-
physical Veneziano ghost (used in Refs. [3,18,29]) is not
even mentioned.
The very same conclusion also follows from the holo-

graphic description of the contact term presented in
Ref. [26]. The key element for this conclusion follows
from the fact that the contact term in holographic descrip-
tion is determined by the massless Ramond-Ramond gauge
field defined in the bulk of five-dimensional space.
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Therefore, it is quite natural to expect that the massless
Ramond-Ramond field in the holographic description leads
to powerlike corrections when the background is slightly
modified.

To avoid any confusion with terminology, we follow
Ref. [26] and call this effect the ‘‘topologicalCasimir effect,’’
where no massless degrees of freedom are present in the
system but, nevertheless, the system itself is sensitive to
arbitrary large distances. It is very different from the conven-
tional Casimir effect, where massless physical photons are
responsible for powerlike behavior. From the holographic
viewpoint discussed in Ref. [26], the ‘‘topological Casimir
effect’’ in our physical space-time can be thought of as the
conventional Casimir effect inmultidimensional spacewhen
amassless propagatingR-Rfield in the bulk is responsible for
this type of behavior, although this field is not a physical
asymptotic state in our four-dimensional world.

V. CONCLUSION AND FUTURE DIRECTIONS

We tested the sensitivity of a deformed QCDmodel with
nontrivial topological features to arbitrary large distances.
A naive expectation based on dispersion relations dictates
that a sensitivity to very large distances must be exponen-
tially suppressed (8) when the mass gap is present in the
system. However, we argued that along with the conven-
tional dispersive contribution, there exists a nondispersive
contribution, not related to any physical propagating de-
grees of freedom. This nondispersive (contact) term with
the ‘‘wrong sign’’ emerges as a result of topologically
nontrivial sectors and can be explicitly computed in our
model. The variation of this contact term with variation of
the background leads to a powerlike ‘‘topological Casimir
effect’’ (9) in accordance with other arguments presented
in Sec. IV and in contrast with the naively expected ex-
ponential suppression (8).

The ‘‘topological Casimir effect’’ in QCD, if confirmed
by future analytical and numerical studies, may have pro-
found consequences for understanding of the expanding
FLRWUniverse we live in. We already mentioned in Sec. I
that the observed DE (1) may in fact be just a manifestation
of this ‘‘topological Casimir effect’’ without adjusting any
parameters. In the adiabatic approximation, the Universe

expansion can be modeled as a slow process in which the
size of the system adiabatically depends on time LðtÞwhich
leads to extra energy as equations (9) and (23) suggest.
Such a model is obviously consistent with observations if
LðtÞ is sufficiently large [32]. We do not insist that this is
the model of our Universe. Rather, we claim that if the
effect persists in strongly coupled QCD, the energy density
which cannot be identified with any physical propagating
degrees of freedom is sensitive to arbitrary large distances
as a result of nontrivial topological features of QCD.
Different geometries (such as the FLRW Universe) obvi-
ously would lead to different coefficients. Nonetheless, the
important message from these computations in our simpli-
fied model is that the energy density in the bulk is sensitive
to arbitrary large distances comparable with the visible size
of the universe and that this sensitivity comes not from any
new physics but simply from the proper treatment of the
topological structure of QCD.
We add that a comprehensive phenomenological analy-

sis based on this idea has been recently performed in
Ref. [33], where comparison with current observational
data including SnIa, BAO, CMB, and BBN has been
presented; see also Refs. [29,34–38] with related discus-
sions. The conclusion was that the model (1) is consistent
with all presently available data, and we refer the reader to
these papers on analysis of the observational data.
Finally, what is perhaps more remarkable is the fact that

the ‘‘topological Casimir effect’’ which is the subject of this
work can be, in principle, experimentally tested in heavy ion
collisions, where a similar environment can be achieved; see
Refs. [18,19] for the details. In particular, the P odd corre-
lations observed at Relativistic Heavy Ion Collider and LHC
have been interpreted in Refs. [18,19] as a result of the long-
range order represented by the ‘‘topological Casimir effect’’.
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