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z ¼ 2 Lifshitz field theories for scalar fields. We analyze the issue of chiral symmetry, construct the

Noether axial currents and discuss the chiral anomaly giving explicit results for two-dimensional case. We

also exploit the connection between detailed balance and the dynamics of Lifshitz theories to find different

z ¼ 2 fermionic Lagrangians and construct their supersymmetric extensions.
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I. INTRODUCTION

Lifshitz field theories exhibit an anisotropic scaling
between space and time that breaks Lorentz symmetry.
Introduced in the context of condensed matter phenomena
[1–4], they are also actively investigated in connection
with problems in gravity [5–7] and in particle physics
(see [8] and reference therein).

The anisotropic gauge scaling for spatial coordinates x
and time t takes the form

x ! bx; t ! bzt (1)

where b 2 R is the scaling factor and z 2 Z the degree
of anisotropy which in condensed matter systems is iden-
tified as a dynamical critical exponent. The z¼1 case
corresponds to the ordinary scaling law in the conformal
group. In connection with this, it becomes natural to study,
within the context of gauge/gravity correspondence, met-
rics with anisotropic scaling which could be dual to
Lifshitz field theories in the same way as AdS metrics
allow to establish duality leading to strongly coupled con-
formal field theories [9].

A prototype of a Lifshitz field theory is a (dþ 1)-
dimensional scalar theory with dynamics governed by the
action

S ¼ 1

2

Z
ddxdtðð@t�Þ2 � �2�ð�r2Þz�Þ: (2)

Herer2�@i@i is the spatial Laplacian. The scaling dimen-
sions are ½xi�¼�1 and ½t�¼�z, with ½�� ¼ ðd� zÞ=2 and
½�� ¼ z� 2.

Models with action (2), particularly in the z ¼ 2 case,
interest condensed matter physicists because they exhibit
a line of fixed points parametrized by � and reproduce the
phase diagrams of known materials [2]. Other z � 1 bo-
sonic field theories have been discussed, and also their
gravity duals have been investigated using the holographic

principle with a bulk geometry given (in Poincaré coordi-
nates) by the metric

ds2 ¼ L2

�
�dt2

u2z
þ d~x2

u2
þ du2

u2

�
(3)

which for z ¼ 1 becomes the usual AdS metric.
Defining fermionic Lifshitz theories is an open issue.

Already in Refs. [3,4], dealing with conformal quantum
critical points, the problem is addressed for the case of
z ¼ 2 scaling by defining a ground state wave functional
for the Hamiltonian of a 2þ 1 system in terms of the
(1þ 1) Euclidean Dirac action, but the discussion in this
work is restricted to a bosonized version of the theory.
Self-interacting fermionic Hamiltonians leading to a z ¼ 2
dynamical critical exponent have been constructed in [10]
in 1þ 1 dimensions following an approach different to that
based in theories defined as in (2). More recently fermion
theories with z ¼ 3 have been studied in connection with
its renormalizability, chiral anomaly and renormalization
group flow [11–17].
In this work we undertake the construction of z ¼ 2

fermionic Lifshitz theory following a different way.
Having in mind that the Dirac equation can be seen as
the ‘‘square root’’ of the Klein-Gordon one, we first start
from the bosonic action (2) and derive a �-matrices algebra
which naturally leads to a Lifshitz fermion model in dþ 1
space-time dimensions. In doing so, we introduce the
square root of the Laplacian as the source of the anisotropic
scaling. We consider the z ¼ 2 case which corresponds to

ð�r2Þ1=2 but the power z=2 could be equally considered
giving rise to theories with arbitrary even z. We shall also
discuss the issue of chiral symmetry for massless fermions
and consider the case in which they couple to an Abelian
gauge field. We work out the corresponding classical
Noether currents and we also compute the chiral anomaly
in 1þ 1 space-time dimensions which, as it is well-known,
is closely related to bosonization, one of the issues of
relevance in condensed matter applications of Lifshitz
theories [3].*Associated with CICBA
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Second, we present an approach based on the connection
between the principle of detailed balance and the dynamics
of Lifshitz theories stressed in Refs. [5–7]. The main in-
gredient in this approach is stochastic field theory quantiza-
tion, a useful tool in the construction of Lifshitz field theory
actions. Indeed, starting from the relativistic action for
scalar fields in d Euclidean dimensions stochastic quantiza-
tion leads to a dþ 1 effective action with the fictitious time
derivatives appearing quadratically and those of the d re-
maining derivatives quartically. Following this approach,
we shall analyze the stochastic quantization of fermionic
theories and construct various Dirac-Lifshitz actions with
different anisotropy scaling z including z ¼ 2.

The paper is organized as follows. We establish in Sec. II
a connection between z ¼ 2 bosonic and fermionic theo-
ries leading to a consistent z ¼ 2 Dirac-Lifshitz action in
dþ 1 space-time dimensions. In Sec. III we discuss the
issue of chiral symmetry finding the classically conserved
axial currents and calculating the quantum chiral anomaly
in the particular case of a 1þ 1 dimensional space.
Working within the stochastic quantization approach, we
discuss in Sec. IV the construction of alternative z ¼ 2
fermionic theories in dþ 1 dimensions as well as their
supersymmetric extension. Finally we present in Sec. V a
discussion of our results.

II. CONNECTING BOSONIC AND FERMIONIC
z¼2 LIFSHITZ THEORIES

Consider a Lifshitz bosonic action of the form (2) in
dþ 1 Euclidean space-time with a z ¼ 2 scaling

SL ¼
Z

ddþ1x

�
1

2
ð@0’Þ2 þ �2

2
ðr2’Þ2

�
(4)

or

S¼1

2

Z
ddþ1x

�
1

2
ð@0’Þ2��2

2
ð@i’Þr2ð@i’Þ

�
; i¼1;2;...;d:

(5)

It will be useful for our purposes to write action (5) in the
form

S ¼ 1

2

Z
ddx@�’G��ðr2Þ@�’ (6)

with G�� defined as

ðG��Þ ¼
I1�1 01�n

0n�1 ��2r2In�n

 !
: (7)

The integral on the right-hand side of Eq. (6) can be
regarded as a degenerate scalar product on the space of
vector fields on M,

ð; ÞM: XðMÞ � XðMÞ ! R

such that

ðVðxÞ;WðxÞÞM ¼
Z

ddxðV0W0 � �2Vir2WiÞ: (8)

The associated group of isometries can be obtained from
the invariance relation

ð�ðVÞ;�ðWÞÞM ¼ ðV;WÞM
which explicitly reads

�0��0� � �2�i��i�r2 ¼ G��ðr2Þ: (9)

Taking �, � ¼ 0, we get

�i0�i0 ¼ 0; �2
00 ¼ 1

which implies

�i0 ¼ 0; �00 ¼ �1

respectively. Alternatively, by taking � ¼ i and � ¼ j in
Eq. (9), we determine the relations defining the remaining
components, namely,

�0i ¼ 0 �ki�kj ¼ �ij

implying that�ij are the entries of an orthogonal matrix. In

summary, the final form of � is

�00 ¼ 1; �0i ¼ �i0 ¼ 0; �ki�kj ¼ �ij (10)

meaning that isometries of G��ðr2Þ reduce to rotations in

the spatial sector and time reversal map.
One can extend this framework to the case of fermionic

theories in a natural way by defining ‘‘local’’ gamma
matrices � satisfying

f��;��g ¼ 2G��:

An appropriate choice for these gamma matrices is

�i ¼ �ð�r2Þ1=2�i; �0 ¼ �0; i ¼ 1; 2; . . . d

where ð�aÞ � ð�0; �iÞ satisfy the ordinary Euclidean-space
Clifford algebra

f�a; �bg ¼ 2�ab; a ¼ 0; 1; . . . d

and ð�r2Þ1=2 is the nonlocal operator which can be defined
as in [18] (see also Refs. [19–22]).

ð�r2Þ1=2fðxÞ ¼ P:V:
Z
Rd

fðxÞ � fðyÞ
jx� yjdþ1

ddy: (11)

Defined in this way the square root of the Laplacian is an
elliptic pseudodifferential operator of order 1. However, a

better insight of the nonlocal operator ð�r2Þ1=2 is attained
in the context of the harmonic extensions of a compactly
supported function on Rn to Rn � ð0;1Þ, as in Ref. [18],
where it appears as a map from the Dirichlet-type data
problem to the Neumann-type data one. Moreover, it can
be shown that it is self-adjoint and positive-definite (see
[23,24] and references therein). In the Appendix we give a
brief description of this approach and some properties of
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this operator. From now on, we shall use a more compact
notation for the square root of the Laplacian naming it by T

T :¼ ð�r2Þ1=2: (12)

For further developments, it is useful to work out the action
of the operator T on imaginary exponentials. From the
identity

�r2 expðikxÞ ¼ jkj2 expðikxÞ (13)

and the natural definition of the square root Laplacian it
can be established that

T expðikxÞ ¼ jkj expðikxÞ (14)

(see the Appendix for a proof of this result). Let us point
out that, strictly speaking, since the operator symbol jkj is
not smooth at the origin, one needs to define it in a
distributional sense [18], so that an appropriate cutoff
function brings its Schwartz kernel in the class of hipoel-
liptic operators. It is in this way that the square root of the
Laplacian can be defined as a regular elliptical operator. In
brief, the procedure is as follows (for a detailed treatment
see for example [25]). One writes jkj in the form

jkj ¼ �ðkÞjkj þ ð1� �ðkÞÞjkj
where � is smooth, compactly supported and equals 1 near
k ¼ 0. By applying the inverse Fourier transform, one gets
a properly supported operator (an elliptic pseudodifferen-
tial operator of order 1) plus a smoothing operator (i.e., one
with a smooth Schwartz kernel), the sum composing a
regular operator.

In summary, working in the sense of distributions and
using a smoothing function the problem at k ¼ 0 is over-
come in the same way as when distribution theory is used
in Lorentz invariant quantum field theories. Moreover, we
shall see below that this problem has no consequence in our
calculations of the anomaly since continuity of the symbol
at the origin is sufficient and the required regularization
deals, as usual, with the ultraviolet problem.

We shall now propose a vierbein-like connection be-
tween � and �

ðE�
aÞ¼ I 0

0 �TI

� �
�ðx�yÞ; ðEa

�Þ¼ I 0
0 � 1

�TI

� �
�ðx�yÞ

(15)

lowering and raising indices with G�� and �ab so that

ðE�
aEa�Þ ¼ ðG��Þ; ðEa

�E�bÞ ¼ ð�abÞ
with products including an integration over space-time.

This set of matrices f��g naturally induces a definition

of a Dirac-Lifshitz equation in the form

ði��@� �mÞc ¼ 0: (16)

Here m has dimensions of mass squared. In terms of the
ordinary �� matrices Eq. (16) reads

ði�0@0 þ i�Tð�i@iÞ �mÞc ¼ 0: (17)

This is nothing but the Euler-Lagrange equation for action

SDL ¼
Z

ddþ1x �c ði�0@0 þ i�T�i@i �mÞc : (18)

These Dirac-Lifshitz fields share the anisotropic gauge
scaling (1) for z ¼ 2. From this expressions we define
the Dirac-Lifshitz operator

��D� ¼ i�0@0 þ i�T�i@i �m: (19)

It is interesting to note that, as in the ordinary Dirac
equation case, one can proceed to ‘‘square’’ the Dirac-
Lifshitz equation looking for a resulting Klein-Gordon-
like equation. Indeed, multiplying (16) equation by the
operator ði��@�þmÞ and using the identity (seeAppendix)

T@i ¼ @iT (20)

we get the usual z ¼ 2 Lifshitz equation for scalar fields,
subject of many recent investigations

ð@20 � �2ðr2Þ2 �m2Þc ¼ 0: (21)

This is precisely the equation of motion arising from the
z ¼ 2 bosonic action (4) in the m ¼ 0 case and in this
respect Lagrangian (18) seems to be a natural candidate to
study Lifshitz fermionic models in connection with the
problems of the conformal quantum critical points [3].

III. CHIRAL SYMMETRYAND THE z¼2
DIRAC-LIFSHITZ LAGRANGIAN

The issue of chiral symmetry and the quantum anomaly
of z ¼ 3 Lifshitz theories with massless fermions coupled to
a gauge field in 3þ 1 space-time dimensions has been
thoroughly studied in [12,15,16]. Using the path-integral
framework the resulting anomaly A was shown to be
identical to the usual relativistic calculation and this is likely
to be related to its topological character in the sense thatA
is metric independent and its integral—the topological
charge—does not depend on local details but only on global
properties. The calculation for the z ¼ 2 Lifshitz defined in
the preceding section seems more involved since it implies
handling the square root of the Dirac operator both in the
action and as the natural regulator in a sensible definition of
the path-integral measure. We shall now discuss this issue.

A. The free massless fermion theory

In them ¼ 0 case the free fermion Lifshitz action (18) is
invariant under chiral rotations

c ! expð�5�Þc ; �c ! �c expð�5�Þ: (22)

There should then be, at the classical level, a continuity
equation for the chiral current and an associated conserved
chiral charge. To obtain their explicit form one can proceed
as follows. One promotes the global change to a local
(infinitesimal for simplicity) one
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c ! c 0 ¼ expð�ðxÞ�5Þc � ð1þ �ðxÞ�5Þc
�c ! �c 0 ¼ �c expð�ðxÞ�5Þ � �c ð1þ �ðxÞ�5Þ

(23)

under which the action should necessarily change,

�SDL¼
Z
ddþ1x �c ð1þ�5�ðxÞÞði�0@0þi�T�i@iÞ

�ð1þ�5�ðxÞÞc�SDL:

After some work one finds

�SDL¼
Z
ddþ1xi �c�1�5c @0�þ

Z
ddþ1xi� �cT�i�5c @i�

¼�i
Z
ddþ1x �c ð�0�5c @0þ�T�i�5Þc �: (24)

For constant � this term should be absent and then we get a
continuity equation and the explicit form of the chiral
current

@�j
�
5 ¼ 0 j05 ¼ �c�0�5c ; ji5 ¼ � �c�i�5Tc : (25)

As it was to be expected, the chiral charge coincides with
the usual (Dirac theory) one,

Q5 ¼
Z

ddx �c�0�5c ¼
Z

ddxc y�5c : (26)

There is of course a Uð1Þ global invariance with asso-
ciated current

j0 ¼ �c�0c ; ji ¼ � �c�iTc (27)

so that again, the conservedUð1Þ charge coincides with the
usual one,

Q ¼
Z

ddx �c�0c ¼
Z

ddxc yc : (28)

B. Coupling fermions to Uð1Þ gauge fields
In order to couple massless z ¼ 2 Lifshitz fermions to a

Uð1Þ gauge field background A�, we introduce the exten-

sion of the Lifshitz-Dirac operator (19)

D ¼ ��D�½A� ¼ �0D0½A� þ ��1D1½A�T ½A� (29)

where we have defined

T ½A� ¼ ðDj½A�Dj½A�Þ1=2 (30)

with covariant derivatives given by

D0 ¼ i@0 þ eA0; Di ¼ i@i þ eAi: (31)

Some properties of operator T ½A� are discussed in the
Appendix. In particular, T ½A� is an Hermitian operator
so that D defined as in (29) is also Hermitian.

A z ¼ 2 Dirac-Lifshitz action can be compactly written
in terms of the Dirac-Lifshitz operator D�½A� as

SDL½A� ¼
Z

ddþ1x �c��D�½A�c : (32)

As in the free case, this action remains invariant under
global chiral transformations (as well as under local Uð1Þ
gauge transformation). So, there should be a classically
conserved axial current. Concerning the quantum level,
one should expect an anomaly which we shall calculate
within the path-integral framework following the well-
honored Fujikawa’s approach [26,27]. We start from the
partition function written in the form

Z ¼
Z

D �cDc expð�S½A�Þ (33)

and consider the infinitesimal local path-integral change of
variables given by Eq. (23). The action in the exponential
now gets, as in the case of the free fermion classical action,
a contribution proportional to @��; and concerning the

path-integral measure, there is a Fujikawa Jacobian J5½��.
So, the partition function changes to

Z ¼
Z

D �c 0Dc 0J5½�� expð�S½A� � �S½A;@���Þ: (34)

As in the free fermion case, we shall show below that �S
can be accommodated as

�S½A; @��� ¼
Z

ddxð@��ðxÞÞj�5 (35)

so that Z can be written as

Z ¼
Z

D �c 0Dc 0J5½�� expð�S½A� � �ðxÞð@�j�5 ÞÞ: (36)

Since the generating functional cannot depend on the pa-
rameter �ðxÞ introduced by the change of variables one has

1

Z

�Z

��ðxÞ ¼ 0 (37)

which leads to the anomaly equation

h@�j�5 i ¼ A (38)

where

A ¼ � logJ5
��ðxÞ : (39)

Let us now prove Eq. (35). The action S½A� can bewritten as
S½A� ¼

Z
ddþ1x �c ð�0D0 þ ��iðDi½A�T ½A�ÞÞc : (40)

After the change of variables (23) one has

�S½A�¼S0½A�þS1½A��S½A�(41)
with

S0½A�¼
Z
ddþ1x �c ð1þ�5�ðxÞÞ�0D0ð1þ�5�ðxÞÞc

S1½A�¼�
Z
ddþ1x �c ð1þ�5�ðxÞÞ�iDiT ½A�ð1þ�5�ðxÞÞc :

(42)

The term S0 contains the same variation arising in an
ordinary Dirac theory and can then be written in the form
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S0¼�
Z
ddþ1x�ðxÞ@ið �c�0�5c Þþ

Z
ddx �c i�0D0c : (43)

In order to handle �S1 in a similar way, we first integrate
by parts

�S2½A�¼�
Z
ddþ1xD�

i
�c ð1þ�5�ðxÞÞ�iT ½A�ð1þ�5�ðxÞÞc

��
Z
ddþ1x �c�iDiT ½A�c (44)

finally getting

�S2 ¼ �i�
Z

ddþ1xð@i�Þ �c�5�1T ½A�c

¼ i�
Z

ddþ1x�ðxÞ@ið �c�5�1T ½A�c Þ: (45)

Putting all this together we have for the complete variation
of the action

�S ¼
Z

ddþ1x�ðxÞ@�j�5 (46)

with

j05 ¼ �c�5�
0c ; ji5 ¼ � �c�5�

iT ½A�c (47)

which differs from the free fermionic case because ji5
contains the operator T ½A� ¼ ðDiDiÞ1=2 instead of

T ¼ ð�r2Þ1=2 and hence depends on Ai.
We have now to compute the Fujikawa Jacobian asso-

ciated to the chiral change of variables. For simplicity we
shall consider the 1þ 1-dimensional case in which
Lagrangian in action (32) takes the simple form

L ¼ �c�0ðD0Þc þ � �c ð�1D1T ½A�Þc : (48)

Our choice of gamma matrices is

�0¼
0 1

1 0

 !
; �1¼

0 i

�i 0

 !
; �5¼ i�0�1¼

1 0

0 �1

 !
:

(49)

Following Fujikawa’s approach, we consider a change of
variables as in (23) and calculate the associated Jacobian
J5½��ðxÞ� which gives

J5½��ðxÞ� ¼ exp

�
2
Z

d2x
X
n

’y
n ðxÞ�5’nðxÞ��ðxÞ

�
: (50)

From the fact that the generating functional cannot depend
on the parameter �ðxÞ introduced by the change of variables

�Z

��ðxÞ ¼ 0 (51)

one then gets

@�j
�
5 ¼ � logJ5

��ðxÞ ¼ A (52)

with A given by the ill-defined formula

A ¼ 2
X
n

’y
n ðxÞ�5’nðxÞ ¼ lim

y!x
2 tr�5�

ð2Þðx� yÞ (53)

which thus requires an appropriate regularization

A reg ¼ lim
y!x

2 tr�5�
ð2Þðx� yÞjreg: (54)

A practical regularization approach is the so-called heat-
kernel method which consists of introducing an appropri-
ate regulating operator R2 and a cutoff massM in the form

A reg ¼ lim
y!x

2 trð�5 expð�R2=�½M�2Þ�ð2Þðx� yÞÞ (55)

where �½M� ¼ Mq with q chosen so that ½�� ¼ ½R� ¼ q.
A finite result for the anomaly is obtained by interchanging
trace and limit

A ¼ lim
M!1 lim

y!x
2 trð�5 expð�R2=�2Þ�ð2Þðx� yÞÞ: (56)

Now, the regulator should be chosen so as to preserve the
basic invariances of the theory, in the present case gauge
invariance and also the invariance under the anisotropic
scaling (1). This makes it natural to use as a regulator the
operator appearing in the Lagrangian so that R2 ¼ DD
and then one has to choose �½M� ¼ M4.
In two space-time dimensions the Dirac-Lifshitz opera-

tor reduces to

D ¼ i�0D0 þ ��1D1½A�T ½A� (57)

and T ½A� is simply

T ½A� ¼ ðD1½A�D1½A�Þ1=2: (58)

In the Appendix we show that T ½A� can be also written in
the form

T ½A� ¼ W�1½A1�TW½A1� (59)

where

W½A1� ¼ expð�ie
Z x

A1ðyÞdyÞ: (60)

At this point, it is important to note that one can gauge
away one component of the gauge potential just by a gauge
transformation. In particular, we shall considerW½A1� as a
Uð1Þ-gauge group element W½A1� so that

ðA0; A1Þ ! ðW½A1�A0W
�1½A1�; 0Þ

which is formally implemented as

A� ! A� þW½A1�ði@�ÞW�1½A1�: (61)

This gauge will greatly simplify calculations leading to a
result that can be trivially extended to a general gauge.
The regulator D2 can be now written in the form

D2 ¼ ID0D0 � i��5½D0; W
�1½A1�ði@1ÞTW½A1��

þ �2IW�1½A1�ð�@21Þ2W½A1�: (62)
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Under the gauge transformation (61) D� changes

according to

D� ! W½A1�D�W
�1½A1�

so that the regularizing operator becomes

W½A1�D2W�1½A1�¼ IW½A1�D0D0W
�1½A1�þ�2Ið�@21Þ2

� i��5½W½A1�D0W
�1½A1�;ði@1ÞT�

(63)

with this and the �ð2Þðx� yÞ function written in term of the
plane wave basis Eq. (56) becomes

Areg¼ 1

ð2	Þ2 lim
M!1 limy!x

�
Z
d2p2trð�5e

�ip�y�e�ðW½A1�D2W�1½A1�Þ=M4
eip�x�Þ:

(64)

Taking now the limit y ! x, the operator content of
Areg becomes

e�ip�x�W½A1�D2W�1½A1�eip�x�

¼ I�ðA; pÞ � i��5�ðA; pÞ þ p2
0 þ �2Ip4

1:

Here we have used that

e�ip1x1W½A1� ¼ W

�
A1 þ p1

e

�
and introduced � and � defined as

�ðA; pÞ ¼ W

�
A1 þ p1

e

�
ðD2

0 � 2p0ði@0ÞÞW�1

�
A1 þ p1

e

�

�ðA;pÞ¼
�
W

�
A1þp1

e

�
ði@0ÞW�1

�
A1þp1

e

�
;

e�ip1x1ði@1ÞTeip1x1

�
:

Making the substitution p0 ¼ M2k0 and p1 ¼ Mk1, the
anomaly becomes

Areg¼ 1

ð2	Þ2 lim
M!1

Z
d2p2M3ðexp�ðk20þ�2k41ÞÞ

� trð�5 expð�ðI�ðA;M2k0;Mk1Þ
� i��5�ðA;M2k0;Mk1ÞÞ=M4ÞÞ: (65)

By M power counting in the argument of the exponential,
one concludes that only the linear term in�ðA;M2k0;Mk1Þ
survives after taking M ! 1 and the �-matrix trace. In
order to carry out the explicit calculation of this contribu-
tion, recall that before differentiating with respect to �ðxÞ
the regulated Jacobian includes an integral over two-
dimensional space and hence one can use the integration
by parts properties of T (see the Appendix) and then
differentiate, thus obtaining

�ðA;M2k0;Mk1Þ ¼ ieMjk1jF01:

The anomaly can then be finally written in a gauge invari-
ant way as

Areg ¼ � e

4	
"��F�� (66)

which coincides with the result for the ordinary relativistic
two-dimensional

@�j
�
5 ¼ � e

4	
"��F��: (67)

As observed in Refs. [12,15] for z ¼ 3 models in 3þ 1
dimensions (and then generalized to arbitrary values of z in
[16]), the coincidence between the anomaly of relativistic
z ¼ 1 and Lifshitz z � 1 theories is not surprising in
retrospect since the anomaly A is related to a topological
density that coincides with a total divergence, so that
Eq. (67) is the only possible result for the anomaly, includ-
ing the universal coefficient, independently of the value of
z. To confirm this in the 1þ 1-dimensional case, we briefly
describe the 1þ 1 anomaly calculation for the z ¼ 3
model, with the action in the form usually taken in the
literature,

S ¼
Z

ddxdt �c��Dð3Þ
� c : (68)

Here the Dirac-Lifshitz operator is given by

Dð3Þ ¼ ��Dð3Þ
�

¼ �0D0 þ 1

2
�iðDið�DkDkÞ þ ð�DkDkÞDiÞ (69)

with the covariant derivatives defined as in (31). Again, at
the classical there is a conserved Noether charge associated
to a global chiral transformation. At the quantum level, one
should take into account the change in the fermionic
measure and one ends with the anomaly Eq. (52)

A ¼ lim
M!1 limy!x

2trð�5 expð�Dð3ÞDð3Þ=M6Þ�ð2Þðx�yÞÞ:
(70)

As before, the regulator has been chosen so as to preserve
the basic invariances of the theory (i.e. gauge invariance
and also the anisotropic scaling invariance) and hence
�½M� in (55) should be �½M� ¼ M6.
In1þ1 dimensions theDirac-Lifshitz operator reduces to

Dð3Þ ¼ i�0D0 � ��1D
3
1

andDð3Þ2 is given by

Dð3Þ2 ¼ ID2
0 � i��5½D0; D

3
1� þ �2ID6

1: (71)

We shall not repeat the details of the calculation that follow
closely those that leading to (67) in the z ¼ 2 case. We just
quote the only nonvanishing M ! 1 term in A which
instead of integral (67) is now given by
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A ¼ �3e�
2

ð2	Þ2 F01

�Z
d2ke�ðk20þ�2k6

1
Þk21
�

which can be easily integrated to give

A ¼ �3e�
2

ð2	Þ2
ffiffiffiffi
	

p
F01

�Z
k21dk1e

��2k6
1

�

¼ � e

2	
F01 ¼ � e

4	
"��F��

which again coincides with the ordinary result for the two-
dimensional anomaly. Let us note that the above-mentioned
problem regarding the smoothness of operator T at k ¼ 0
has not played any role in the derivation of this result since at
each stage of the calculation the integrands are infrared safe.

IV. LIFSHITZ FERMIONS AND
STOCHASTIC QUANTIZATION

It has been recently observed that field theory models
with the anisotropic scaling (1) can be thought of as stem-
ming from a stochastic quantization process [6,7,28,29]. In
this way, a dþ 1-dimensional bosonic Lifshitz theory like
that defined by action (4), with z ¼ 2 can be thought of as
descending from a free bosonic action in d Euclidean
dimensions,

SðdÞ ¼
Z

ddx@i�@i�; i ¼ 1; 2 . . . ; d: (72)

The dynamics in extra time variable 
 is ruled by a
Langevin equation, namely, a first-order differential equa-
tion with a dissipative (drift) term and driven by a source
of stochastic noise. As far as the quantization of a
d-dimensional theory is concerned (the asymptotic equi-
librium state), there exists some arbitrariness in the elec-
tion of this stochastic process. One may take some profit
from this freedom to build up theories in dþ 1 dimensions
with different behaviors under ‘‘time’’ and space scaling.

In the case of the bosonic field (4), to get a z ¼ 2 Lifshitz
theory one introduce an extra dependence of the fields on
this extra time variable, �ðxÞ ! �ðx; 
Þ, and compose the

Langevin equation with �SðdÞ=�� playing the role of a
drift force, and a white noise source as the stochastic force
[30]. The case of fermionic fields can be treated analo-
gously [31,32], with c and �c taken as independent fields,
each one with its own Langevin equation

@c ðx; 
Þ
@


¼ ��S½ �c ; c �
� �c

þ �ðx; 
Þ
@ �c ðx; 
Þ

@

¼ �S½c ; c �

�c
þ ��ðx; 
Þ

(73)

where �, �� are anticommuting fermionic Gaussian noises
satisfying

h��ðx; 
Þi ¼ h ���ðx; 
Þi ¼ 0 (74)

h��ðx1; 
1Þ ��
ðx2; 
2Þi ¼ 2�ðt1 � t2Þ�ðdÞðx1 � x2Þ��


(75)

with �, 
 the spinor indices. Such normalization arises
from the following definition of the (Fokker-Planck) gen-
erating functional

Z½J; �J� ¼
Z

D ��D� exp

�
� 1

2

Z
dx

Z 


0
d
0 ���

�

� exp

�Z
dx

Z 


0
d
0ð ��Jþ �J�Þ

�

¼ exp

�
2
Z

dx
Z 


0
d
0 �JJ

�
(76)

where spinor indexes have been omitted and J, �J are
fermionic external sources.
Now, as already noted in [31,32], when S is taken as the

Dirac action one should in general include an appropriate
kernel Kðx; yÞ to ensure that the relaxation process is such
that the system tends to the equilibrium when 
 ! 1.
Different kernels produce stochastic process which can
differ in the behavior under scaling. In any case,
Langevin Eqs. (73) are then replaced by

@c ðx; 
Þ
@


¼ �
Z

dyKðx; yÞ�S½
�c ; c �

� �c ðy; 
Þ þ �ðx; 
Þ
@ �c ðx; 
Þ

@

¼
Z

dy
�S½c ; c �
�c ðy; 
Þ Kðy; xÞ þ ��ðx; 
Þ

(77)

and Eq. (75) by

h��ðx1;
1Þ ��
ðx2;
2Þi¼2�ðt1� t2ÞKðx1�x2Þ��
: (78)

The usual choice for K

Kðx; yÞ ¼ ði6@x þmÞ�ðx� yÞ (79)

in the case S is the Dirac action for a massive fermion,

S ¼
Z

ddx �c ðxÞði6@�mÞc ðxÞ (80)

gives rise to the Langevin equations

@c ðx; 
Þ
@


¼ ðr2 �m2Þc þ �ðx; 
Þ
@ �c ðx; 
Þ

@

¼ ðr2 �m2Þ �c þ ��ðx; 
Þ

(81)

where a z ¼ 2 anisotropic scaling turns evident.
Let us now come back to the general fermionic stochas-

tic process defined by the Langevin Eqs. (78). In the
presence of the kernel K the partition function associated
to (76) takes the form

Z¼
Z
D ��D�exp

�
�1

2

Z
ddxddyd
 ��ðx;
ÞK�1ðx;yÞ�ðy;
Þ

�
:

(82)

We now proceed to change variables from ��, � to �c , c
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Z¼
Z
D �cDc det�1 � ��

� �c
det�1 ��

�c

�exp

�
�1

2

Z
ddxddyd
 ��ðx;
ÞK�1ðx;yÞ�ðy;
Þ

�
: (83)

Using Langevin Eqs. (81) written in the form

K�1@c

@

¼� �S

� �c
þK�1�

@ �c

@

K�1¼ �S

�c
þ ��K�1 (84)

we end with

Z ¼
Z

D �cDc det�1

�
K�1 @

@

� �2S½ �c ; c �

� �c�c

�

� det�1

�
K�1 @

@

þ �2S½ �c ; c �

�c� �c

�

� exp

�
� 1

2

Z
ddxd


�
@ �c

@

K�1 � �S½c ; c �

�c

�

�
�
@c ðx; 
Þ

@

þ K

�S½ �c ; c �
� �c

��
(85)

where we have used the identity

�

�c 

K�1

��@
c � ¼ K�1
�;
@
: (86)

Determinants in (85) can defined as the (regularized) prod-
uct of eigenvalues of the equation�

ðK�1Þ�
 @

@

� �2S

� �c ��c 


�
�


i ¼ ���
i (87)

and a similar one for the other factor. These determinants
can then be represented as quadratic path-integrals over
two complex commuting fields ��

i ði ¼ 1; 2Þ carrying a
spinorial index which can be identified with the spinorial
ghosts for ghosts [33]. With this, the partition function Z
can be written as

Z ¼
Z

D �cDcD ��1D ��2D�1D�2

� exp

�
�
Z

dxd
Leff½ �c ; c ; �1; �2�
�

(88)

where

Leff ¼ 1

2

�
@ �c ðx; 
Þ

@

K�1 � �S½c ; c �

�c

�

�
�
@c ðx; 
Þ

@

þ K

�S½ �c ; c �
� �c

�

þ ��1

�
K�1 @

@

� �2S½ �c ; c �

� �c�c

�
�1

þ ��2

�
K�1 @

@

þ �2S½ �c ; c �

�c� �c

�
�2 (89)

or

Leff ¼1

2

@ �c ðx;
Þ
@


K�1@c ðx;
Þ
@


�1

2

�S½ �c ;c �
�c

K
�S½ �c ;c �

� �c

þ ��1

�
K�1 @

@

��2S½ �c ;c �

� �c�c

�
�1

þ ��2

�
K�1 @

@

þ�2S½ �c ;c �

�c� �c

�
�2: (90)

We can see now how the choice of the stochastic process,
defined by a kernel K, gives rise to different scaling
behaviors. Indeed, starting with a d-dimensional free mas-
sive fermion Dirac action and using a trivial kernel

Kðx; yÞ ¼ �ðx� yÞ (91)

(this being consistent for m � 0 the fermionic part of the
effective fermion Lagrangian (90) will have second deriva-
tives both in time and space variables

Lfer ¼ 1

2

@ �c ðx; 
Þ
@


@c ðx; 
Þ
@


þ �c ðr2 þm2ÞÞc (92)

which corresponds to a Lifshitz theory with z ¼ 1, i.e., a
theory with isotropic scaling. If one instead chooses as
d-dimensional action a Klein-Gordon fermionic action

S ¼
Z

ddx �c ðxÞðr2 þm2Þc ðxÞ (93)

one ends with a z ¼ 2 Lifshitz theory with Lagrangian

LKG2
fer ¼ 1

2

@ �c ðx; 
Þ
@


@c ðx; 
Þ
@


þ �c ðr2 þm2Þ2c : (94)

We shall end this section by making use of another
remarkable attribute of the stochastic quantization scheme,
namely, the inherent supersymmetry of the partition func-
tion, in order to supersymmetrize the Lifshitz fermionic
models constructed above [34]. Alternatively, and follow-
ing the ideas introduced in the Sec. II, we may consider the
d-dimensional action for fermions

SLF ¼
Z

ddx �c ði�ð�r2Þ1=2�i@i �mÞc

which gives rise through the stochastic quantization ap-
proach to the fermionic Lifshitz Lagrangian

Leff ¼1

2

@ �c ðx;
Þ
@


@c ðx;
Þ
@


�1

2
�c ð��2ð�r2Þ1=2

��i@ið�r2Þ1=2�j@jþm2Þc

¼1

2

@ �c ðx;
Þ
@


@c ðx;
Þ
@


þ1

2
�c ð�2ðr2Þ2�m2Þc (95)

which also exhibits a z ¼ 2 anisotropic behavior under
scaling.
Starting from partition function Z as given in (88) with

Lagrangian (90), we introduce fermionic auxiliary fields
�F, F so that Z becomes [35]
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Z ¼
Z

D �cDcD�1D�2D ��1D ��2D �FDF

� exp

�
�
Z

ddxd
Leff½ �c ; c ; �1; �2; �F; F�
�

(96)

Leff ¼ 2 �FK�1Fþ i

�
@ �c ðx; 
Þ

@

K�1 � �SEf ½c ; c �

�c

�
F

þ i �F

�
@c ðx; 
Þ

@

þ K

�SEf ½ �c ; c �
� �c

�

þ ��1

�
K�1 @

@

� �2SEf ½ �c ; c �

� �c�c

�
�1

þ ��2

�
K�1 @

@

þ �2SEf ½ �c ; c �

�c� �c

�
�2: (97)

We now define fermion superfields in the form

� ¼ c þ ���1 þ ��2�þ i ���F

�� ¼ �c þ ���2 þ ��1�þ i ��� �F
(98)

and supercovariant derivatives D and �D acting on super-
fields according to

D ¼ @

@ ��
� �

@

@

; �D ¼ @

@�
(99)

D2 ¼ �D2 ¼ 0; fD; �Dg ¼ � @

@

¼ �H: (100)

Supersymmetry generators Q and �Q take the form

Q ¼ @

@ ��
; �Q ¼ @

@�
þ ��

@

@

(101)

so that

fQ; �Qg ¼ @

@

¼ H: (102)

A supersymmetry transformation with parameters ð�; ��Þ on
superfields reads

Q� ¼ ��Qþ �Q�: (103)

In order to write the suppersymmetry transformations in
component fields we consider the action of Q and �Q on
superfields

Q� ¼ @

@ ��
ðc þ ���1 þ ��2�þ i ���FÞ ¼ �1 þ i�F

�Q� ¼
�
@

@�
þ ��

@

@


�
ðc þ ���1 þ ��2�þ i ���FÞ

¼ ��2 � ��Fþ �� _c þ ��� _��2 (104)

so that

Q� ¼ ��ð�1 þ i�FÞ þ ð ��2 � i ��Fþ �� _c þ ��� _��2Þ�
(105)

and then

�c ¼ ���1 þ ��2� ��1 ¼ ��ð _c � iFÞ
��2 ¼ i ��F �F ¼ �i _�2�:

(106)

Let us consider the action

S1 ¼
Z

d ��d� �D ��D� (107)

that is written in terms of component fields given by

S1 ¼
Z

d ��d�
@

@�
ð �c þ ���2 þ ��1�þ i ��� �FÞ

�
�
@

@ ��
� �

@

@


�
ðc þ ���1 þ ��2�þ i ���FÞ

¼
Z

d ��d�ð ��1 � i �� �FÞð�1 þ i�F� � _c þ ��� _�1Þ
¼ ��1

_�1 þ �FFþ i �F _c : (108)

Define also

S2 ¼
Z

d ��d� �D�D �� (109)

or

S2 ¼
Z

d ��d�
@

@�
ðc þ ���1 þ ��2�þ i ���FÞ

�
�
@

@ ��
� �

@

@


�
ð �c þ ���2 þ ��1�þ i ��� �FÞ

¼
Z

d ��d�ð ��2 � i ��FÞð�2 þ i� �F� � _�c þ ��� _�2Þ

¼ ��2
_�2 þ F �Fþ iF _�c (110)

so that

S1 þ S2 ¼
Z

d ��d�ð �D ��D�þ �D�D ��Þ

¼ ��1
_�1 þ ��2

_�2 þ 2 �FFþ ið �F _c þ _�cFÞ: (111)

For the case K ¼ K�1 ¼ I the terms in the right-hand side
exhaust all terms in (97) containing temporal derivatives.
For nontrivial K one has just to make the following change
of variables:

�FK�1! �F; F!F �cK�1! �c ; c !c

��1K
�1! ��1; �1!�1

��2K
�1! ��2; �2!�2

(112)

and the calculation reduces to the K ¼ K�1 one.
As for the terms in (97) depending on action S, one has

just to add to Lagrangian (111) the following term:

SS ¼
Z

d ��d�S½ ��;��: (113)

Expanding the action in powers of the superfield the only
terms that contribute to the ��, � integral are
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SS ¼
Z

d ��d�S½ ��;��

¼ �F
�S

� �c
þ �S

�c
Fþ ��1

�2S

�c� �c
�1 þ ��2

�2S

�c� �c
�2

(114)

so that the fermionic sector of superaction

S ¼
Z

d ��d�ddxd
ð �D ��D�þ �D�D ��þ SEf ½ ��;��Þ
(115)

coincides with the action defined from Lagrangian (90).

V. DISCUSSION

The source of the anisotropic scaling in the Lagrangian
formulation of Lifshitz theories is the choice of spatial and
time derivatives of different orders. This is generally
achieved by replacing first-order spatial derivatives in rela-
tivistic Lagrangians by the Laplacian operator (or integer
powers of it) while leaving unchanged the term with time
derivatives. Concerning bosonic theories, whose standard
relativistic Lagrangian is quadratic in spatial derivatives,
such replacement gives rise to a z ¼ 2 anisotropy (or z > 2
for higher Laplacian powers [8]). For fermionic theories,
application of the same strategy to the Dirac Lagrangian
leads to an anisotropy degree z ¼ 3 (or z > 3 [16]). Now,
Lifshitz theories have recently received much attention in
connection with condensed matter systems for which the
z ¼ 2 case is of particular interest. In particular, in [3,4]
the issue of a z ¼ 2 fermionic systems in 2þ 1 dimension
has been related to a bosonic z ¼ 2 Hamiltonian, invoking a
bosonization approach.

We have proposed in this work another route to study
Lifshitz fermion actions with z ¼ 2 in dþ 1 space-time
dimensions, by introducing the square root of the Laplacian,
and its natural extension when fermions are coupled to
gauge fields. Roughly, it consists of replacing spatial de-

rivatives @i by the operator ð�r2Þ1=2@i, which naturally
leads both to bosonic and fermionic z ¼ 2 Lifshitz theories.
We have stressed (and briefly explained in the Appendix)

that although ð�r2Þ1=2 is a nonlocal operator, it can be
handled as a local one in the context of the harmonic
extension to an additional dimension. Exploiting this fact,
one can prove useful identities that allow to discuss relevant
physical properties of the systems with dynamics governed
by Lagrangians containing such operator.

A z ¼ 2 Lifshitz action for massive free fermions was
presented in Eq. (18) and for massless fermions coupled to
a Uð1Þ gauge field in Eq. (32). It should be pointed that
‘‘squaring’’ the resulting Dirac-Lifshitz equation (17) one
gets the prototypical equation for Lifshitz bosons (Eq. (2)
with z ¼ 2) in the same way as the Klein-Gordon equation
can be obtained by squaring the Dirac one.

The z¼2Dirac-Lifshitz action that we have proposed for
massless fermions is invariant under chiral transformations

and we have constructed the associated Noether current
which leads to classically conserved charges. The j05 com-

ponent coincides with the usual chiral charge density arising
in the relativistic case but the spatial components ji5 differ.
They have however a very simple form given by Eq. (27)
for free fermions and Eq. (47) for fermions coupled to an
Abelian gauge field. This should be contrasted with the z ¼
3 case in which j5i turns out to be much more complicated

[15]. In any case the coupling of gauge fields to Lifshitz
fermions makes the resulting chiral current depend on the
gauge field even in the Uð1Þ case, in contrast with what
happens with the relativistic theory. It should be noticed that
the same phenomenon takes place for the case of z ¼ 3
theories constructed from local operators [15,16].
As it was to be expected, there is an anomaly at the

quantum level which we have calculated in the two-
dimensional case, showing that it takes the same form as
in the ordinary Dirac theory. The fact that the anomaly is
the same for relativistic and Lifshitz fermions is in agree-
ment with the results in Refs. [13,15,16] for the z ¼ 3 case
in 3þ 1 dimensions, and should be related to the connec-
tion between the obstruction to the chiral current conser-
vation law and the topological charge of the gauge field
configuration.
In view of the connection between the anomaly in two-

dimensional space-time and bosonization (see [36] and
references therein) one could expect to find the rules to
connect the z ¼ 2 fermionic theorywe proposewith a z ¼ 2
two-dimensional bosonic theory, possibly with action (2).
Finally,wediscussed inSec. IV fermionicLifshitz theories

with z ¼ 2 within the stochastic quantization framework, a
natural one recalling that in Parisi andWu approach [30] one
passes from a d-dimensional Euclidean action to a dþ1
effective actionswhich in general exhibit anisotropic scaling.
Since one can introduce in the Langevin equation different
kernels acting on the drift force, one can find different
effective dþ1 actions which nevertheless correspond to the
same d-dimensional quantum theory. Exploiting this fact we
were able to construct several z ¼ 2 fermionic Lifshitz theo-
ries. Moreover, through the well-known connection between
the Fokker-Plank partition function and supersymmetry, we
were able to find the supersymmetric extensions of the
resulting fermionic z ¼ 2 theories.
Let us end this section by discussing possible applications

of our proposal on Lifshitz fermionic actions governing the
dynamics of condensed matter systems. As stated in the
introduction, Lifshitz theories were introduced in the context
of condensed matter phenomena in Refs. [1–4], as a way to
study models describing strongly correlated materials.
In particular, Ardone et al. discussed in Ref. [3] a two-
dimensional quantum systems that exhibits a time-
independent form of conformal invariance related to the
Lifshitz points of three-dimensional quantum dimer
models of relevance, for example, in the context of super-
conductivity. Lines of fixed points as those resulting from
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theories with action (18) arise at finite temperature multi-
critical points in the phase diagrams of known materials
(as, for example, layered uranium compounds, see [2] and
references therein for a large number of systems in which
Lifshitz points may occur).

A bosonic Hamiltonian which belongs to the same uni-
versality class as the square-lattice quantum dimer model
was analyzed in Ref. [3] in terms of a 2þ 1-dimensional
Euclidean action of the form (2). The resulting zero-energy
ground statewave functional�0½�� of such system takes the
form

�0½�� ¼ 1ffiffiffiffi
Z

p exp

�
��

2

Z
d2xðr�Þ2

�
(116)

where Z is the partition function for a (Lorentz invariant)
two-dimensional free boson theory.

Fermionic counterparts of ground state functionals for
bosonic theories like that in Eq. (116) are relevant in
quantum dimer models which interpolate between the
square and triangular lattices. In order to treat fermionic
models, a bosonized version of the fermionic theory was
proposed in [3]. Now, bosonization in 2þ 1 dimensions has
only been formulated in Lorentz invariant theories [37] and
this to lowest order in the inverse of the fermion mass. The
fermionic action presented in Eq. (18), for d ¼ 2 spatial
dimensions and withm ¼ 0, provides a natural candidate to
parallel Ardone et al. bosonic studies [3] to obtain ground
state functionals and correlation functions in the case of
fermionic models. Such investigation would help to under-
stand, in particular, z ¼ 2 Lifshitz models originally intro-
duced to describe paramagnetic ground states of quantum
antiferromagnets, exhibiting topological phases. We hope
to develop this approach and discuss possible applications
in condensed matter problems in a forthcoming work.
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APPENDIX: SQUARE ROOT OPERATORS

In order to handle the operator ð�r2Þ1=2 onRn we follow
Ref. [18] where it is defined in terms of the harmonic
extension problem to the upper half space Rn � ð0;1Þ of
functions on Rn. That is, given a function f: Rn ! R, one
looks for an harmonic function u: Rn � ð0;1Þ ! R such
that its restriction toRn coincides with f. Thus, the problem
reduces to solve the Dirichlet problem

uðx; 0Þ ¼ fðxÞ r2
nþ1uðx; yÞ ¼ 0 (A1)

where r2
nþ1 is the Laplacian operator in Rnþ1, x 2 Rn

and y 2 R. This is a well studied problem: for a smooth

function on C1
0 ðRnÞ, there is a unique harmonic extension

u 2 C1ðRn � ð0;1ÞÞ.
One then introduces an operator T defined on

functions f: Rn ! R having an harmonic extension
u: Rn � ð0;1Þ ! R, such that

ðTfÞðxÞ ¼ �@uðx; yÞ
@y

��������y¼0
: (A2)

Thus, since ðTfÞðxÞ has also an harmonic extension to
Rn � ð0;1ÞÞ, namely uyðx; yÞ provided uðx; yÞ is the har-

monic extension of f, the successive applications of T give

ðTðTfÞÞðxÞ¼@2uðx;yÞ
@y2

��������y¼0
¼�r2

nuðx;yÞjy¼0¼�r2
nfðxÞ:

It is equivalent to write

T2fðxÞ ¼ ð�r2
nÞfðxÞ:

Then one can identify

T ¼ ð�r2
nÞ1=2: (A3)

Let us consider the case n ¼ 1, so f: R ! R and we
look for harmonic extensions to R� ð0;1Þ. For instance,
taking fðxÞ ¼ coskx, it is easy to see that uðx; yÞ ¼
e�jkjy coskx, y 2 ð0;1Þ, is a bounded harmonic extension
of fðxÞ,�
@2

@x2
þ @2

@y2

�
uðx; yÞ ¼ �k2e�jkjy coskxþ jkj2e�jkjy coskx

¼ 0:

Hence, we may evaluate the action of the operator

ð�r2
1Þ1=2 ¼ ð�@21Þ1=2 on f

ð�@21Þ1=2 coskx ¼ TðcoskxÞ ¼ �uyðx; yÞjy¼0 ¼ jkj coskx:
The same arguments hold if one takes f ¼ sinkx since the

function vðx; yÞ ¼ e�jkjy sinkx is a bounded harmonic ex-
tension on R� ð0;1Þ of sinkx�
@2

@x2
þ @2

@y2

�
vðx; yÞ ¼ �k2e�jkjy sinkxþ jkj2e�jkjy sinkx

¼ 0

and

ð�@21Þ1=2 sinkx ¼ TðsinkxÞ ¼ �vyðx; yÞjy¼0 ¼ jkj sinkx:
We can then write the action of ð�@21Þ1=2 on eikx as

ð�@21Þ1=2eikx ¼ ð�@21Þ1=2 coskxþ ið�@21Þ1=2 sinkx
or

ð�@21Þ1=2eikx ¼ jkjeikx (A4)

thus proving Eq. (16).
Remark 1: Suppose that the function fðxÞ admits an

harmonic extension uðx; yÞ, so ðTfÞðxÞ ¼ �uyðx; 0Þ.
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Then, functions @ifðxÞ, i ¼ 1; . . . ; n, have harmonic exten-
sions @iuðx; yÞ and

ðTð@ifÞÞðxÞ¼�@yð@iuðx;yÞÞjy¼0¼�@iuyðx;yÞjy¼0

¼@iðTfÞðxÞ
provided that u 2 C2ðR� ð0;1ÞÞÞ. From this, we con-
clude that

ð�r2
nÞ1=2@i ¼ @ið�r2

nÞ1=2: (A5)

Remark 2: We now address the self-adjointness of the
operator T, following Ref. [24]. Let uðx; yÞ and vðx; yÞ be
harmonic extensions to C ¼ Rn � ð0;1ÞÞ of gðxÞ and fðxÞ,
respectively. Also, assume that both the harmonic exten-
sions vanish for jxj, jyj ! 1, thenZ

C
rnþ1uðx; yÞ 	 rnþ1vðx; yÞdxdy

¼
Z
C
rnþ1 	 ðuðx; yÞrnþ1vðx; yÞÞdxdy

¼
Z
@C
uðx; yÞrnþ1vðx; yÞdxdy

¼ �
Z
Rn

uðx; yÞ @
@y

vðx; yÞjy¼0dx: (A6)

Here, @C indicates the border of C. To obtain this identity
we have written the integral of the (nþ 1)-dimensional
divergence(A6) as a surface integral over the component of
the vector field normal to the surface @Cwhich is taken as a
finite (nþ 1)-dimensional cube with a face at y ¼ 0. Then
we have made the 2nþ 1 faces other than y ¼ 0 to go to
infinity, where functions u and v vanish.

Hence, for the harmonic extensions u,v to
C ¼ Rn � ð0;1Þ of g, f, respectively, we haveZ
C
uðx;yÞr2

nþ1vðx;yÞdxdy�
Z
C
vðx;yÞr2

nþ1uðx;yÞdxdy¼0

or, using (A8),Z
Rn
ðuðx; yÞ @

@y
vðx; yÞ � vðx; yÞ @

@y
uðx; yÞÞjy¼0dx ¼ 0:

In terms of gðxÞ and fðxÞ this identity readsZ
Rn

�
gðxÞ@fðxÞ

@y
� @gðxÞ

@y
fðxÞ

�
dx ¼ 0

or, equivalently

Z
Rn

gðxÞTfðxÞdx ¼
Z
Rn

fðxÞTgðxÞdx: (A7)

Concerning the case in which fermions are coupled to
the Uð1Þ gauge field, we introduce the operator T ½A�
defined as

T ½A� ¼ ð�Di½A�Di½A�Þ1=2 (A8)

with the covariant derivative given by

Di ¼ i@i þ eAi: (A9)

In the case of d ¼ 1 space dimensions this simplifies to

T ½A� ¼ ð�D1½A�D1½A�Þ1=2: (A10)

The covariant derivative D1½A� can be written as

D1½A�¼ exp

�
ie
Z x

A1dy

��
i
d

dx

�
exp

�
�ie

Z x
A1dy

�
(A11)

which in terms of a Wilson line

W½A1� ¼ exp

�
�ie

Z x
A1dy

�
(A12)

takes the compact form

D1½A� ¼ W�1½A1�i ddxW½A1�: (A13)

One then has

ðD1½A�Þ2 ¼ W�1½A1�
�
i
d

dx

�
2
W½A1� ¼ W�1½A1�T2W½A1�

(A14)

or

ðD1½A�Þ2 ¼ W�1½A1�TW½A1�W�1½A1�TW½A1� (A15)

so that

T ½A1� ¼ W�1½A1�TW½A1� (A16)

showing that T ½A1� is Hermitian.
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