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It is known that the symmetric (massless) state of the Nambu-Jona-Lasinio model in 2þ 1 dimensions

in a magnetic field B is not the ground state of the system at zero temperature due to the presence of a

negative linear in j�þ i�j term in the effective potential for the composite fields �� �c c and

�� �c i�5c , while the quadratic term is always positive (a tachyon is absent). We find that finite

temperature is a necessary ingredient for the tachyonic instability of the symmetric state to occur.

Utilizing the Schwinger-Keldysh real-time formalism, we calculate the dispersion relations for the

fluctuation modes of the composite fields � and �. We demonstrate the presence of the tachyonic

instability of the symmetric state for the coupling constant that exceeds a certain critical value which

vanishes as temperature tends to zero in accordance with the phenomenon of magnetic catalysis.
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I. INTRODUCTION

For many years relativistic quantum field models in
(2þ 1) dimensions have attracted a significant interest
due to both their sophisticated dynamics and the fact that
they describe long wavelength excitations in several planar
condensed matter systems [1], among them graphene [2],
the d-wave state of high Tc superconductors [3], topological
insulators [4], and optical lattices [5]. Recently, there has
been a surge of activity in this area connected with the
experimental discovery of graphene [6] whose quasiparticle
excitations are described by the massless Dirac equation in
(2þ 1) dimensions that leads to many unusual electronic
properties of this material and opens new perspectives for
electronic devices (see, review papers [7]). Lattice effects
necessarily produce local interactions for quasiparticles in
graphene [8] and, thus, one naturally comes to the gauged
Nambu-Jona-Lasinio (NJL) model in 2þ 1 dimensions.

Historically, the Nambu-Jona-Lasinio model [9] was the
first model in which the mass generation and dynamical
symmetry breaking (DSB) were considered in elementary
particle physics and quantum field theory. At present, NJL-
type models have a significant practical value; for example,
the NJL model provides a successful effective theory of
low-energy quantum chromodynamics [10–12]. Dynamical
symmetry breaking occurs in the NJL model only in
supercritical regime when its coupling constant G exceeds
a critical value Gc. This is different from the Bardeen-
Cooper-Schriffer (BCS) theory, where a gap in the quasi-
particle spectrum is generated for any value of coupling
constant. The physical reason for zero value of the critical
coupling constant is connected with the presence of
the Fermi surface in the BCS theory. According to the
renormalization-group studies [13], the renormalization-
group scaling takes place only in the direction perpendicular
to the Fermi surface that lowers effectively the spacetime

dimension by two units to a (1þ 1)-dimensional theory
where, as is well known, symmetry breaking occurs for
arbitrary weak attraction between fermions.
Since dynamical symmetry breaking in (3þ 1) and

(2þ 1)-dimensional theories requires strong coupling
(gc * 1), it makes the quantitative study of DSB a difficult
problem [14]. Therefore, it is very interesting to consider
field-theoretical models where DSB takes place in the
regime of weak coupling (gc � 0). The DSB in a magnetic
field [16,17] (magnetic catalysis) gives the corresponding
example (see also Refs. [18] and a short review Ref. [19]).
The essence of the magnetic catalysis phenomenon is that
the dynamics of the electrons in a magnetic field, B,
corresponds effectively to a theory with spatial dimension
reduced by two units (note a close similarity with the role
of the Fermi surface in the BCS theory) if their energy is

much less than the Landau gap
ffiffiffiffiffiffiffiffiffijeBjp

. The zero-energy
Landau level has a finite density of states and this is a key
ingredient of magnetic catalysis which plays, in fact, the
role of the Fermi surface.
The magnetic catalysis is a universal phenomenon and its

main features are model independent [16,20]. Other than a
(2þ 1)-dimensional NJL-type model, it was studied in the
NJL3þ1 model [17], quantum electrodynamics [21], and
quantum chromodynamics [22]. The universality of this
phenomenon is confirmed by applying holographic tech-
niques which have proven to be a powerful analytic tool in
studying the qualitative properties of strongly interacting
physical systems, such as interacting quark gluon plasma,
graphene, superconductivity, and superfluidity [23].
In the theory of superconductivity, the normal state of a

superconductor is unstable at sufficiently low temperature
with respect to the transition to a superconducting state.
This instability is signaled by a pole in the scattering
amplitude of the electrons with opposite momenta and is
known as the Cooper instability [24]. This instability is
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resolved in the superconducting state through the forma-
tion of a condensate of Cooper pairs [25] that opens a gap
in the electron quasiparticle spectrum.

The instability of the normal state of a quantum statis-
tical or field system has a precursor in the corresponding
one-particle problem which is known as the fall-into-the-
center phenomenon. For example, in the study of dynami-
cal chiral symmetry breaking in strongly coupled QED
[26], the corresponding one-particle problem is formulated
as the Dirac equation for the electron in the field of the
Coulomb center and the precursor of the normal state
instability in QED corresponds to the supercritical charge
problem when the lowest in energy bound state dives into
the lower continuum. Then an electron-positron pair is
spontaneously created from vacuum with the electron
shielding the supercritical charge and positron emitted to
infinity (described by a resonance state) [27,28].

It is interesting to see what is a precursor of the magnetic
catalysis phenomenon in quantum field theories and what
are its characteristics. Recently, the corresponding study
was performed in the case of graphene in Ref. [29], where
the Dirac equation for the electron in the field of the
Coulomb center in a magnetic field was considered and it
was shown that, as suggested by the magnetic catalysis
phenomenon, indeed any charge in the gapless theory is
supercritical. However, no resonance state was found that
is related to the fact that charged particles cannot propagate
freely to infinity in a constant magnetic field in two dimen-
sions. Still it was found that the low-energy bound state
crosses the level of filled states that suggests that the
normal state of the system in a magnetic field should suffer
from a tachyonic instability (i.e., an analog of the Cooper
instability in the theory of superconductivity should exist).

In the present paper, we directly address the problem of
instability of the symmetric state of quantum field theories
with attraction between fermions and antifermions in a mag-
netic field in the framework of theNJL2þ1 model. Themodel
is described in Sec. II. The analysis of the effective potential
indicates the necessity of finite temperature for the tachyonic
instability to be present. In Sec. III, using the Schwinger-
Keldysh real-time formalism, we calculate the dispersion
relations for composite fields in the LLL approximation
and for sufficiently low temperature find a tachyonic insta-
bility. The contribution of higher Landau levels to the dis-
persion relations for composite fields is considered in
Sec. IV. The main results are summarized in the Conclusion.

II. MODEL AND EFFECTIVE POTENTIAL

The NJL action in (2þ 1) dimensions in a magnetic
field reads

S ¼
Z

d3x

�
�c i��D�c þG0

2
½ð �c ðxÞc ðxÞÞ2

þ ð �c ðxÞi�5c ðxÞÞ2�
�
; (1)

where D� ¼ @� þ ieA� with the vector potential A� ¼
ð0; Bx; 0Þ that describes a constant magnetic field in the
Landau gauge. We use four-component spinors corre-
sponding to a reducible representation of the Dirac algebra
like in Ref. [16]. In 2þ 1 dimensions, one can also
use two-dimensional representations of the Dirac algebra
instead of the four-dimensional one. Using the four-
dimensional representation is equivalent to doubling the
fermion species under consideration [30] and allows one to
have continuous chiral symmetry in 2þ 1 dimensions. In
particular, the action (1) is invariant under theUð1Þ �Uð1Þ
symmetry with the generators I and �5. According to
magnetic catalysis, we expect that the symmetric state of
model (1) is unstable for any G0 > 0. In order to see this,
we calculate the effective potential for the composite fields
�� �c c and �� �c i�5c .
Using the Hubbard-Stratonovich method of auxiliary

fields, model (1) can be equivalently rewritten as follows:

Saux ¼
Z

d3x

�
�c ði��D� � �� i��5Þc � �2 þ �2

2G0

�
:

(2)

Assuming that � ¼ const and � ¼ const, the effective
potential for composite fields � and � was found in the
second paper in Ref. [16] (for more details of the calcu-
lation, see Ref. [31]). The following propagator for fermi-
ons with mass m ¼ h�i was used in the derivation:

Gðx; x0Þ ¼ ei�ðx;x0Þ ~Gðx� x0Þ; (3)

where the Schwinger phase [32] is separated from the

translation invariant part ~Gðx� x0Þ. The translation invari-
ant part of the propagator can be expanded over the Landau
levels (compare with Ref. [16]) and in the mixed !, r
representation it has the form

~Gð!; rÞ ¼ i

2�l2
exp

�
� r2

4l2

� X1
n¼0

1

!2 � E2
n þ i�

�
�
ð�0!þmÞ

�
P�Ln

�
r2

2l2

�
þ PþLn�1

�
r2

2l2

��

� i

l2
�rL1

n�1

�
r2

2l2

��
; (4)

where P� ¼ ð1� isgnðeBÞ�1�2Þ=2, En ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2jeBjnp

are the Landau levels energies, l ¼ 1=
ffiffiffiffiffiffiffiffiffijeBjp

is the mag-
netic length, functions L�

n ðxÞ are the generalized Laguerre
polynomials, and by definition, LnðxÞ ¼ L0

nðxÞ, L��1ðxÞ�0.
Further, according to Refs. [16,17,21], the lowest Landau
level (LLL) contribution is responsible for zero value
of the critical coupling constant. Since we are interested
in the instability of the normal state of the model in the
weak coupling regime, it is clear that only the dynamics in
the LLL can produce this instability. Equation (4) implies
that the LLL fermion propagator in momentum space is
given by
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~GLLLð!;pÞ ¼ ie�p2l2 ð!�0 þmÞP�
!2 �m2 þ i�

: (5)

The effective potential for composite fields� and� at zero
temperature and zero chemical potential in the model
under consideration was calculated in Ref. [16],

Vð�Þ ¼ 1

�

�
�

2
ffiffiffiffi
�

p
� ffiffiffiffi

�
p
g

� 1

�
�2

�
ffiffiffi
2

p
l3

�

�
� 1

2
;
ð�lÞ2
2

þ 1

�
� �

2l2

�
; (6)

where � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p
, g ¼ G0�=�, � is the UV cut-off,

and �ðs; qÞ is the generalized Riemann zeta function. For
� ! 0, at weak coupling g � ffiffiffiffi

�
p

, we have

Vð�Þ � �2

2G0

� �

2�l2
: (7)

The presence of the negative linear term �=ð2�l2Þ
clearly indicates that the true minimum of the effective
potential corresponds to a state with broken symmetry.
However, the second derivative of the effective potential
with respect to � is always positive, hence the tachyon is
absent. This situation is rather unusual and the reason for
the existence of the linear term was explained in [16].
Since the gap equation is given by @Vð�Þ=@� ¼ 0, the
effective potential can be reconstructed up a constant by
integrating the gap equation. It suffices to consider only the
field � (the dependence of the effective potential on � can
be easily restored using the chiral symmetry). Further, the
gap equation in the model under consideration equals

� ¼ G0h0j �c c j0i: (8)

The point crucial for the existence of the linear term in the
effective potential is that the chiral condensate h0j �c c j0i
does not vanish as � ! 0 even in the free noninteracting
theory. It suffices to keep only the LLL contribution. Then
we have

h0j �c c j0i ¼ �i lim
�!0

4�

ð2�Þ3
Z

d!d2p
e�p2l2

!2 � �2
¼ � 1

2�l2
:

(9)

Integrating it, we find the linear term in the effective poten-
tial (7). Since fluctuations are described by quadratic terms
in the effective action, the linear term present in the effective
potential does not influence fluctuations. Consequently, a
tachyonic instability is absent in the spectrum of the model
at zero temperature.

The situation changes crucially at finite temperature. At
T � 0, the effective potential was calculated in Refs. [16,31].
For small �=T � 1, at weak coupling it is given by

VTð�Þ¼
�
1

G0

� 1

GcðT;BÞ
�
�2

2
; GcðT;BÞ¼4�Tl2: (10)

Clearly, for G0 >GcðT; BÞ, we have an instability of the
conventional (tachyonic) type. The critical couplingGcðT; BÞ

tends to zero as T ! 0, and the symmetry broken ground
state occurs at arbitrary small attractive interaction in accor-
dance with the phenomenon of magnetic catalysis. The ab-
sence of the linear term at finite temperature is consistent with
the absence of chiral condensate in the free theory at T � 0,

h0j �c c j0iT ¼ � lim
�!0

4�T

ð2�Þ2

� Xþ1

n¼�1

Z
d2p

e�p2l2

ð�Tð2nþ 1ÞÞ2 þ �2

¼ � lim
�!0

1

2�l2
tanh

�

2T
¼ 0: (11)

This result suggests that in order to find a tachyonic insta-
bility, we should study quadratic fluctuations of the model at
finite temperature. To do this, we will calculate in the next
section the dispersion relations for composite fields � and �
at finite temperature in the LLL approximation and analyze
them.

III. TACHYONIC INSTABILITY FOR COMPOSITE
FIELDS IN THE REAL-TIME FORMALISM

IN THE LLL APPROXIMATION

The analysis in the previous section shows that in the
model under consideration, a tachyonic instability can
appear only at finite temperature. Since instability is an
inherently dynamical process and the Matsubara imaginary
time formalism is mainly used for the study of theories at
thermodynamical equilibrium, in order to analyze the ta-
chyonic instability we will utilize the Schwinger-Keldysh
real-time formalism [33,34] (for a review, see Ref. [35]).
The action in the real-time formalism contains integrals
over positive time branch tþ and negative one t�. Then
action (2) transforms into

S ¼
Z
p
d3x �c ði��D���� i��5Þc �

Z
p
d3x

�2þ�2

2G0

;

(12)

where the time integration proceeds along the closed path
time contour [35]

Z
p
dt ¼

Z þ1

�1
dtþ þ

Z �1

þ1
dt� ¼

Z þ1

�1
dtþ �

Z þ1

�1
dt�:

(13)

Since the fields �� and �� are defined on the positive and
negative time parts of the contour, in what follows it is
convenient to consider their linear combinations

�c;� ¼ �þ � ��
2

; �c;� ¼ �þ � ��
2

: (14)

Integrating over fermions in the functional integral, we find
the following effective action for the composite fields:
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S eff ¼ �
Z
p
d3x

�2 þ �2

2G0

� iTr ln½G�1�; (15)

where G�1 ¼ �iði��D� � �� i��5Þ	pðx� yÞ and

	pðx� yÞ is a contour 	-function, the trace Tr in

Eq. (15) is taken in the functional sense. The equations
of motion for composite fields follow from this effective
action and are given by (the physically sensible case
corresponds to �� ¼ �� ¼ 0) [35,36]

2�cðxÞ
G0

¼ �i
	Tr ln½G�1�
	��ðxÞ

����������¼��¼0

¼ �iTr

�
G

	G�1

	��ðxÞ
�����������¼��¼0

; (16)

2�cðxÞ
G0

¼ �i
	Tr ln½G�1�
	��ðxÞ

����������¼��¼0

¼ �iTr

�
G

	G�1

	��ðxÞ
�����������¼��¼0

: (17)

Here Gðx; yÞ is the two-point correlation function
defined as

Gðx; yÞ ¼ TrðTpðc ðxÞ �c ðyÞÞ�̂Þ � hTpðc ðxÞ �c ðyÞi; (18)

�̂ is the thermal density matrix, and Tp is the time-ordering

operator along a complex path p. Since x, y can take values
on either positive or negative time branches, it is conve-
nient to represent Gðx; yÞ as 2� 2 matrix:

Gðx; yÞ ¼ Gþþ Gþ�
G�þ G��

 !

¼ hTðc ðxÞ �c ðyÞi �h �c ðyÞc ðxÞi
hc ðxÞ �c ðyÞi h ~Tc ðxÞ �c ðyÞi

 !
; (19)

where T and ~T are the usual time-ordering operator and
anti-time-ordering operators, respectively. Note the iden-
tity Gþþ þG�� ¼ Gþ� þG�þ which follows from the
identity for the step functions 
ðx� yÞ þ 
ðy� xÞ ¼ 1.

Since we are interested in physical excitations, we will
consider time-dependent solutions of the above equations
which deviate weakly from constant values �cðxÞ ¼
~�ðxÞ þ �� and �cðxÞ ¼ ~�ðxÞ, where �� ¼ const. Then we
obtain

2ð~�ðxÞþ ��Þ
G0

¼�iTr

�
G

	G�1

	��ðxÞ
�����������¼��¼0;�c¼ ��

þ i
Z
p
d3yTr

�
G

	G�1

	��ðxÞG
	G�1

	�cðyÞ
�����������¼��¼0;�c¼ ��

~�ðyÞ;

(20)

2 ~�ðxÞ
G0

¼�iTr

�
G

	G�1

	��ðxÞ
�����������¼��¼0;�c¼ ��

þ i
Z
p
d3yTr

�
G

	G�1

	��ðxÞG
	G�1

	�cðyÞ
�����������¼��¼0;�c¼ ��

~�ðyÞ:

(21)

In the single time representation 	pðx� yÞ ¼ �3	ðx� yÞ,
where �3 is the third Pauli matrix, and the variational
derivatives and functional traces are calculated according
to the rules

	G�1ðx; yÞ
	��ðzÞ

¼ i
	�ðxÞ
	��ðzÞ	pðx� yÞ

¼ i	pðx� yÞ	pðx� zÞ ¼ i	ðx� yÞ	ðx� zÞ;
(22)

Tr

�
G

	G�1

	��ðxÞ
�
¼
Z
p
d3ud3vtr

�
Gðu;vÞ	G

�1ðv;uÞ
	��ðxÞ

�

¼
Z
d3ud3vtr

�
�3Gðu;vÞ�3	G

�1ðv;uÞ
	��ðxÞ

�

¼
Z
d3ud3vtr

�
Gðu;vÞ	G

�1ðv;uÞ
	��ðxÞ

�
: (23)

To calculate the right-hand sides of Eqs. (20) and (21), we
should determine the fermion Green‘s function in the real-
time formalism. As we discussed in the previous section,
for our purposes it suffices to use the LLL approximation.
The LLL Green‘s function in the real-time formalism
equals

GLLLðx; x0Þ ¼ P�Kðx;x0Þ Gþþðt� t0Þ Gþ�ðt� t0Þ
G�þðt� t0Þ G��ðt� t0Þ

 !
;

(24)

where

Kðx;x0Þ ¼ 1

2�l2
exp

�
�ðx� x0Þ2

4l2
þ i�ðx;x0Þ

�
(25)

is the space-dependent part of the LLL fermion propagator
and

Gþþð!Þ ¼ i
�0!þ ��

!2 � ��2 þ i�

� 2�ð�0!þ ��ÞnFð ��Þ	ð!2 � ��2Þ; (26)

G��ð!Þ ¼ �i
�0!þ ��

!2 � ��2 � i�

� 2�ð�0!þ ��ÞnFð ��Þ	ð!2 � ��2Þ; (27)

Gþ�ð!Þ¼�2�ð�0!þ ��ÞnFð!Þsgnð!Þ	ð!2� ��2Þ; (28)

G�þð!Þ¼2�ð�0!þ ��ÞnFð�!Þsgnð!Þ	ð!2� ��2Þ (29)
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are the Fourier transforms of GijðtÞ, i, j ¼ �. Here
nFð ��Þ ¼ ðexpð ��=TÞ þ 1Þ�1 is the Fermi-Dirac distribu-
tion function.

Further, it is convenient to perform the unitary Keldysh
transformation [34,35]

G!UyGU¼ 0 Ga

Gr Gc

 !
; U¼ 1ffiffiffi

2
p 1 1

�1 1

 !
; (30)

where

Gað!Þ ¼ 1

2
ðGþþ �G�� þGþ� �G�þÞ

¼ Gþþ �G�þ ¼ i
�0!þ ��

!2 � ��2 � i�sgn!
; (31)

Grð!Þ ¼ 1

2
ðGþþ �G�� �Gþ� þG�þÞ

¼ Gþþ � Cþ� ¼ i
�0!þ ��

!2 � ��2 þ i�sgn!
; (32)

Gcð!Þ ¼ Gþþ þG�� ¼ Gþ� þG�þ

¼ 2� tanh
��

2T
ð�0!þ ��Þ	ð!2 � ��2Þ (33)

are the advanced, retarded, and correlation functions. For
time-dependent and spatially homogeneous modes ~�ðtÞ
and ~�ðtÞ, Eqs. (20) and (21) imply the following equations:

~�ðtÞ ¼ G0

Z
dt0��ðt� t0Þ~�ðt0Þ; (34)

~�ðtÞ ¼ G0

Z
dt0��ðt� t0Þ~�ðt0Þ; (35)

where

��ðt� t0Þ ¼ �i

4�l2
tr½Grðt� t0ÞGcðt0 � tÞ

þGcðt� t0ÞGaðt0 � tÞ� ¼ 0; (36)

��ðt� t0Þ ¼ �i

4�l2
tr½i�5Grðt� t0Þi�5Gcðt0 � tÞ

þ i�5Gcðt� t0Þi�5Gaðt0 � tÞ�

¼ 2 ��

�l2
tanh

��

2T

Z d�

2�

e�i�ðt�t0Þ

4 ��2 ��2
: (37)

Hence, Eq. (34) gives ~�ðtÞ ¼ 0. Note that the equality
��ðtÞ ¼ 0 is due to the LLL approximation used in this
section. On the other hand,��ðtÞ � 0 in the same approxi-
mation. In the next section we obtain expressions for
��;�ðtÞ, where all Landau levels are taken into account.

For the Fourier transform ~�ð�Þ, we find�
2�l2

G0

� 4 �� tanh ��
2T

4 ��2 ��2

�
~�ð�Þ ¼ 0 (38)

that implies

�2 ¼ 4 ��

�
��� G0

2�l2
tanh

��

2T

�
: (39)

For �� ! 0,

�2 ¼ 4 ��2

�
1� G0

4�Tl2

�
: (40)

Obviously, for T less than the critical value

Tc ¼ G0

4�l2
; (41)

we have a tachyon. This result is perfectly consistent with
the effective potential at finite temperature (10) whose
symmetric and symmetry broken phases are separated by
the curve

1

G0

� 1

4�l2T
¼ 0; (42)

that leads to the critical temperature (41).

IV. EQUATIONS OF MOTION FOR COMPOSITE
FIELDS IN THE REAL-TIME FORMALISM

BEYOND THE LLL APPROXIMATION

In Sec. III, we calculated the correlators ��ðt� t0Þ and
��ðt� t0Þ given by Eqs. (36) and (37) in the LLL approxi-
mation. In the present section, we calculate these quantities
taking into account the contribution of all Landau levels. In
addition, we determine the dependence of �� and �� on
spatial coordinates, i.e., calculate ��ðt� t0;x� x0Þ and
��ðt� t0;x� x0Þ (note that �� and �� are translation
invariant in spatial coordinates because the Schwinger
phases cancel out for a closed fermion loop with two
vertices).
In the real time formalism, the propagator in a magnetic

field and at finite temperature can be written in the form

Gðx; yÞ ¼ Kðx; yÞ
Z d!

2�
e�iðx0�y0Þ! X1

n¼0

Dnðx� y; !Þ

� Gþþ
n ð!Þ Gþ�

n ð!Þ
G�þ

n ð!Þ G��
n ð!Þ

 !
; (43)

where the factor Kðx; yÞ is given by Eq. (25) and

Dnðr; !Þ ¼ ð�0!þ ��Þ
�
P�Ln

�
r2

2l2

�

þ PþLn�1

�
r2

2l2

��
� i

�r

l2
L1
n�1

�
r2

2l2

�
: (44)

Further,

Gþþ
n ð!Þ ¼ i

!2 � E2
n þ i0

� 2�nFðEnÞ	ð!2 � E2
nÞ; (45)
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G��
n ð!Þ¼� i

!2�E2
n� i0

�2�nFðEnÞ	ð!2�E2
nÞ; (46)

G�þ
n ð!Þ ¼ 2�nFð�!Þsgnð!Þ	ð!2 � E2

nÞ;
Gþ�

n ð!Þ ¼ �2�nFð!Þsgnð!Þ	ð!2 � E2
nÞ;

(47)

and En ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��2 þ 2jeBjnp

.
The correlators ��ðx� x0Þ;��ðx� x0Þ (x ¼ ðt;xÞ) are

defined by the expressions,

��ðx� x0Þ ¼ �iTr½Gðx; x0ÞGðx0; xÞ�;
��ðx� x0Þ ¼ �iTr½i�5Gðx; x0Þi�5Gðx0; xÞ�; (48)

and the trace Tr also includes the trace (tr) over Dirac
indices. Performing the Keldysh transformation, the matrix
in Eq. (43) takes the form like in Eq. (30) with

Gr;að!; nÞ ¼ i

!2 � E2
n � i�sgn!

¼ i

ð!� i�Þ2 � E2
n

;

Gcð!; nÞ ¼ 2� tanh
En

2T
	ð!2 � E2

nÞ: (49)

Taking the Fourier transform of ��ðt;xÞ we obtain

��ð�;kÞ¼�i
Z d!

2�

Z
d2reikrtr½Grðr;!ÞGcð�r;!þ�Þ

þGcðr;!ÞGað�r;!þ�Þ�

¼�i
X1

n;m¼0

Z d!

2�
½Grð!;nÞGcð!þ�;mÞ

þGcð!;nÞGað!þ�;mÞ�
Z d2r

ð2�l2Þ2e
ikr�r2=2l2

� tr½Dnðr;!ÞDmð�r;!þ�Þ�: (50)

The space integral equals

Z d2r

2�l2
eikr�r2=2l2 tr½Dnðr; !ÞDmð�r; !þ�Þ�

¼ 2snmðyÞð!ð!þ�Þ þ ��2Þ � 4jeBjrnmðyÞ; (51)

where

snmðyÞ ¼
Z d2r

4�l2
eikr�r2=2l2

�
Ln

�
r2

2l2

�
Lm

�
r2

2l2

�

þ Ln�1

�
r2

2l2

�
Lm�1

�
r2

2l2

��

¼ ð�1Þnþm

2
e�yðLn�m

m ðyÞLm�n
n ðyÞ

þ Ln�m
m�1ðyÞLm�n

n�1 ðyÞÞ;
y ¼ k2l2=2; (52)

rnmðyÞ ¼
Z d2r

2�l2
r2

2l2
eikr�r2=2l2L1

n�1

�
r2

2l2

�
L1
m�1

�
r2

2l2

�
¼ ð�1Þmþne�ymLn�m

m ðyÞLm�n
n�1 ðyÞ: (53)

[for the evaluation of the integrals snmðyÞ, rnmðyÞ, see
Appendix A in Ref. [37]]. Therefore, we get

��ð�; kÞ ¼ 1

�l2

Z 1

�1
d!

X1
n;m¼0

tm	ð!2 � E2
mÞ
�ðð!��Þ!þ ��2ÞsnmðyÞ � 2jeBjrnmðyÞ

ð!��þ i0Þ2 � E2
n

þ ðð!þ�Þ!þ ��2ÞsnmðyÞ � 2jeBjrnmðyÞ
ð!þ�� i0Þ2 � E2

n

�

¼ X1
n;m¼0

�
tm
Em

E2
mðE2

m � E2
n ��2ÞsnmðyÞ � ðE2

n � E2
m ��2ÞðsnmðyÞ ��2 � 2jeBjrnmðyÞÞ

�l2ððEm þ EnÞ2 ��2ÞððEm � EnÞ2 ��2Þ þ ðm $ nÞ
�
; (54)

where tm ¼ tanhðEm=2TÞ. The calculation of the correlator �� results in the same expression except ��2 is replaced by
� ��2. Thus, we write

��;�ð�; kÞ ¼ X1
n;m¼0

�
tm
Em

E2
mðE2

m � E2
n ��2ÞsnmðyÞ � ðE2

n � E2
m ��2Þð�snmðyÞ ��2 � 2jeBjrnmðyÞÞ

�l2ððEm þ EnÞ2 ��2ÞððEm � EnÞ2 ��2Þ þ ðm $ nÞ
�
; (55)

where � signs correspond to �� and ��, respectively.
To find the dispersion laws at small � and jkj, it is

convenient to evaluate the sum over the Landau levels.
This can be done explicitly if temperature is much lower

than the value of a magnetic field, T � ffiffiffiffiffiffiffiffiffijeBjp
. The details

of calculations are given in the Appendix. The dispersion
relations are given by the equations,

� 1

G0

þ��;�ð�; kÞ ¼ 0: (56)
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For �� � 0, the dispersion relations for ~� and ~� modes
at small �l � 1 and y ¼ k2l2=2 � 1 take the form,
respectively,

� 1

G0

þ V�

�3=2l
þ�2 lQ�

4�3=2

þ y

�
P�

�3=2l
þ ��ð1� tanhð ��=2TÞÞ

�

�
¼ 0; (57)

� 1

G0

þ Vþ

�3=2l
þ tanh ��=2T � 1

2�l2 ��

þ�2

�
lQþ

4�3=2
þ tanhð ��=2TÞ � 1

8�l2 ��3

�

þ y

�
Pþ

�3=2l
þ 1� tanhð ��=2TÞ

2�l2 ��

�
¼ 0; (58)

where the quantities V�, Q�, P� are given by Eqs. (A16)–
(A19). At the minimum of the effective potential, the ~�
mode corresponds to a Nambu-Goldstone boson and ��
satisfies the gap equation,

� 1

G0

þ Vþ

�3=2l
þ tanh ��

2T � 1

2�l2 ��
¼ 0: (59)

The gap equation written in the form (�ðs; vÞ is the gener-
alized zeta function),

� 2l	 ��þ 1

l
tanh

��

2T
þ ffiffiffi

2
p

���

�
1

2
; 1þ ð ��lÞ2

2

�
¼ 0;

	 ¼ �

�
1

G0

� 1

G0c

�
; G0c ¼ 2�3=2

3�
; (60)

is in agreement at T ¼ 0with the one obtained in Ref. [16].
Fixing the intrinsic scale 	 the gap equation determines ��
as a function of temperature T and magnetic field eB ¼
1=l2 (we recall that in the used approximation Tl � 1).
The critical line separating symmetric and symmetry bro-
ken phases is obtained from Eq. (60) when �� ! 0:

1

2Tcl
¼ 2l	� ffiffiffi

2
p

�

�
1

2

�
; (61)

and in the weak coupling limit G0 � G0c, it agrees with
Eq. (42). The gap equation (60) was analyzed in Ref. [16]
at T ¼ 0where three regions of different behavior of �� as a
function of a magnetic field were revealed. In the near
critical region G0 ’ G0c, where j	jl � 1, the dependence
on the ultraviolet cutoff � disappears and we find ��l ’
0:45. In the other two regions, subcritical (G0 <G0c) and
supercritical (G0 >G0c), and for j	jl 	 1, the solution of
the gap equation behaves

��l ’ 1

2	l
� 1; 	 > 0; (62)

��l ’ j	jl 	 1; 	 < 0: (63)

At finite temperature a nontrivial solution for �� in sub-
critical region (	 > 0) exists for magnetic fields satisfying

l	 <
1

2
ffiffiffi
2

p
2
4�ð1=2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ð1=2Þ þ 2	

T

s 3
5; (64)

i.e., for magnetic fields exceeding some critical value. The
dispersion laws take the following form:

�2¼v2
�k

2; v2
�¼ 2

ffiffiffi
2

p ð ��lÞ2ffiffiffi
2

p
tanh ��

2Tþð ��lÞ3�ð32 ;1þð ��lÞ2
2 Þ

; (65)

for the ~� mode, and

�2 ¼ M2
� þ v2

�k
2; (66)

M2
� ¼ 8

��l3

ffiffiffi
2

p
tanh ��

2T þ ð ��lÞ3�ð32 ; 1þ ð ��lÞ2
2 Þ

2�ð32 ; 1þ ð ��lÞ2
2 Þ � ð ��lÞ2�ð52 ; 1þ ð ��lÞ2

2 Þ
; (67)

v2
� ¼ 4

ffiffiffi
2

p
��l tanh ��

2T þ ð ��lÞ2�ð12 ; 1þ ð ��lÞ2
2 Þ þ ð ��lÞ4

2 �ð32 ; 1þ ð ��lÞ2
2 Þ

�ð32 ; 1þ ð ��lÞ2
2 Þ � ð ��lÞ2

2 �ð52 ; 1þ ð ��lÞ2
2 Þ

; (68)

for the ~� mode, respectively. At zero temperature
Eqs. (65)–(68) coincide with those obtained in Ref. [16].
One can check that the quantities v2

�, v
2
� are positive and

remain always less than 1 (we set the velocity of light c ¼
1). Their behavior for a chosen value of a temperature (T ¼
10�5j	j) is shown in Fig. 1 where the gap ��ðT; lÞ is
determined from Eq. (60). The behavior of M2

�=	
2 as a

function of the magnetic field is shown in Fig. 2. All
dimensionful quantities in Figs. 1 and 2 are measured in
units of j	j. Asymptotical behavior of the quantities v2

�, v
2
�

in subcritical and supercritical regions and for j	lj 	 1 is
given by the expressions (for simplicity we take T ¼ 0),

v2
� ’

8<
:

1
2ð	lÞ2 ; 	 > 0;

1� 1
4ð	lÞ4 ; 	 < 0;

v2
� ’

8<
:

2
ffiffi
2

p
�ð3=2Þ	l ; 	 > 0;

1� 1
6ð	lÞ4 ; 	 < 0;

(69)

and for the square mass M2
�,

M2
� ’

8>>><
>>>:

8
ffiffi
2

p
�ð3=2Þ

	
l ; 	 > 0;

6	2

�
1þ 1

2ð	lÞ4
�
; 	 < 0:

(70)
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These asymptotics should be compared with those
obtained in Ref. [16].

V. CONCLUSION

According to the magnetic catalysis phenomenon [16],
an arbitrary weak attraction between fermions and their
antiparticles leads to chiral symmetry breaking and gap
generation in (3þ 1) and (2þ 1)-dimensional theories in a
magnetic field. Consequently, the normal state of these
theories should be unstable in a magnetic field even in
the weak coupling regime. It is worth noting that the
instability of the normal state in a magnetic field is quali-
tatively different for theories in (3þ 1) and (2þ 1) dimen-
sions. Since constant magnetic field effectively reduces
[16,17] the spacetime dimension by two units for fermions
in the infrared region, (3þ 1)-dimensional theories are
reduced to effective (1þ 1)-dimensional theories, where
bound states are easily formed in the weak coupling

regime and resonance states describing emitted antiparticles
propagating to infinity are realized in the standard way in the
corresponding quantum mechanical one-particle problems.
As noted in the Introduction, the situation is different in

(2þ 1)-dimensional theories. The dimensional reduction
in a magnetic field means that the corresponding effective
theories are (0þ 1)-dimensional ones. Consequently, no
emission to infinity is possible. This conclusion is explic-
itly confirmed by the study of the (2þ 1)-dimensional
Dirac equation for the electrons in the field of the
Coulomb center in graphene in a magnetic field performed
in Ref. [29] where no resonance state was found.
In the present paper, in order to study the normal state

instability connected with the magnetic catalysis phenome-
non in a (2þ 1)-dimensional theory, we considered the
weakly coupled NJL2þ1 model in a magnetic field at
finite temperature. The choice of the model was made
basically from the requirement of the simplicity of analy-
sis. Certainly, the generalization to the case of long-range
gauge models would be of significant interest.
Using the Hubbard-Stratonovich method of auxiliary

fields, we looked for tachyonic excitations in the normal
state of the NJL2þ1 model in a magnetic field at finite
temperature. We would like to note that the consideration
of the theory at finite temperature is a necessary feature of
our analysis. As discussed in Sec. II, although the symmet-
ric state of the effective potential is unstable, its quadratic
form of fluctuations that follows from (7) is positive defi-
nite, hence, tachyonic excitations are absent. The situation
changes at finite temperature, where the effective potential
(10) has the instability typical of a second-order phase
transition. Utilizing the Schwinger-Keldysh real-time for-
malism, the dispersion relations for the composite fields
�c c and �c i�5c were calculated in the LLL approximation
in Sec. III, and for temperature less than a critical one, a
tachyonic excitation in the normal ground state was found.
Thus, although there is no resonance state in the quantum
mechanical one-particle problem, the corresponding quan-
tum field-theoretic problem in a magnetic field does have a
tachyonic excitation in the normal state for temperature
less a critical one. The contribution of higher Landau levels
into dispersion relations for the composite fields � and �
was taken into account in Sec. IV.
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FIG. 1 (color online). Velocities v2
� (red lines starting from the

value 0.35) and v2
� (black lines starting from the value 0.63) as

functions of lj	j for temperature T ¼ 10�5j	j. The solid
(dashed) line corresponds to 	 > 0 (	 < 0).
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FIG. 2. M2
�=	

2 dependence on lj	j for temperature T ¼
10�5j	j. The solid (dashed) line corresponds to 	 > 0 (	 < 0).
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APPENDIX: CLOSED FORM FOR THE
CORRELATORS ��;�

To perform the summation over the Landau levels in

Eq. (55), we assume that T � ffiffiffiffiffiffiffiffiffijeBjp
. Then we can set

tm ¼ 1 for all m 
 1 while keeping t0 ¼ tanhð ��=2TÞ, and
expression (55) takes the form

��;�ð�;kÞ¼ 2 ��

�l2

�
tanh

��

2T
�1

�

�X1
n¼0

�2jeBjnð1�1Þ��2ð1�1Þ
ðE2

n�ð ��þ�Þ2ÞðE2
n�ð ����Þ2Þsn0

þ 1

�l2
X1

n;m¼0

EmþEn

ðEmþEnÞ2��2

�
�
snmðyÞ��snmðyÞ ��2�2jeBjrnmðyÞ

EnEm

�
:

(A1)

Thus, in the considered approximation, the temperature
dependence is described by the terms in the first line of
the above equation. To calculate the first sum over the
Landau levels in Eq. (A1) we use the representation 1=a ¼R1
0 dte�at valid for Rea > 0, and take into account that

s0nðyÞ ¼ sn0ðyÞ ¼ yne�y=2n!. The evaluation of the sec-
ond sum in Eq. (A1) is more involved. First, we use the
chain of transformations

EmþEn

ðEnþEmÞ2��2

�
1;

1

EnEm

�

¼
Z 1

�1
d!

�

ð!ð!þ i�Þ;1Þ
ðð!þ i�Þ2þE2

nÞð!2þE2
mÞ

¼ 1ffiffiffiffi
�

p
Z 1

0

dt1dt2ffiffiffiffiffiffiffiffiffiffiffiffiffi
t1þ t2

p e
�2t1t2
t1þt2

�t1E
2
n�t2E

2
m

�
t1þ t2þ2t1t2�

2

2ðt1þ t2Þ2
;1

�
;

(A2)

valid for �2 < E2
0. Then the sum

Sðt1; t2Þ ¼
X1

n;m¼0

snmðyÞe�t1E
2
n�t2E

2
m (A3)

is evaluated using the integral representation (52) and the
summation formula,

X1
n¼0

L�
n ðzÞxn¼ð1�xÞ�ð�þ1Þexp

�
xz

x�1

�
; jxj<1: (A4)

Finally, the space integral over r in Eq. (52) gives

Sðt1;t2Þ¼1

2
cothðjeBjðt1þ t2ÞÞ

�exp

�
� ��2ðt1þ t2Þ�2ysinhjeBjt1 sinhjeBjt2

sinhjeBjðt1þ t2Þ
�
:

(A5)

Similarly, for another sum we obtain (rn0ðyÞ ¼
r0mðyÞ ¼ 0),

Rðt1; t2Þ �
X1

n;m¼1

rnmðyÞe�t1E
2
n�t2E

2
m

¼ e� ��2ðt1þt2Þ

4sinh2jeBjðt1 þ t2Þ
� exp

�
� 2y sinhjeBjt1 sinhjeBjt2

sinhjeBjðt1 þ t2Þ
�

�
�
1� 2y sinhjeBjt1 sinhjeBjt2

sinhjeBjðt1 þ t2Þ
�
: (A6)

Thus, we get the following representation for the
correlators:

��;�ð�; kÞ ¼ 2 ��

�l2

�
tanh

��

2T
� 1

�
e�y

�
1

4 ��2 ��2

1� 1

2
�
Z 1

0
dt1dt2e

ðt1þt2Þ�2þ2 ���ðt1�t2Þ

�
�
2jeBjye�2jeBjðt1þt2Þeye�2jeBjðt1þt2Þ 1� 1

2
þ�2ðeye�2jeBjðt1þt2Þ � 1Þ 1� 1

2

��

þ 1

�
ffiffiffiffi
�

p
l2

Z 1

0

dt1dt2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t1 þ t2

p e
�2t1t2
t1þt2

�
t1 þ t2 þ 2t1t2�

2 � 2 ��2ðt1 þ t2Þ2
2ðt1 þ t2Þ2

Sðt1; t2Þ þ 2jeBjRðt1; t2Þ
�
; (A7)

which is convenient for expansions in k2 and �2. It is
also very useful for obtaining the zero field limit, for which
we get

��;�ð�; kÞ

¼ 1

2�3=2

Z 1

1=�2

d�e� ��2�

�3=2

Z 1

0
dxe�ðk2��2Þ�xð1�xÞ

�
�
3

2
þ �ðð�2 � k2Þxð1� xÞ � ��2Þ

�
; (A8)

where an ultraviolet cutoff � is introduced at the lower
limit of the integral.
It is obvious that the contribution of the first term in

square brackets in Eq. (A7) is given by

��
1 ð�; kÞ ¼ 0; ��

1 ð�; kÞ ¼ 2

�l2
��ðtanh ��

2T � 1Þ
4 ��2 ��2

e�y:

(A9)

The contribution of other terms can be expanded in y and
�2=jeBj, and keeping only the first order terms, we get
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��ð�; kÞ ¼ ��
1 ð�; kÞ þ y

�
��

�
1� tanh

��

2T

�

þ 1

�3=2l
��ð�; kÞ; (A10)

��ð�; kÞ ¼ ��
1 ð�; kÞ þ 1

�3=2l
�þð�; kÞ; (A11)

where

�� ¼ V� þ�2l2

4
Q� þ yP�; (A12)

and

V� ¼
Z 1

�

d�

4
ffiffiffiffi
�

p e�m2�

�
ð1� 2m2�Þ coth�þ 2�

sinh2�

�
;

m2 ¼ ��2l2; (A13)

Q�¼1

2

Z 1

0
d�

ffiffiffiffi
�

p
e�m2�

��
1�2m2�

3

�
coth�þ 2�

3sinh2�

�
;

(A14)

P� ¼
Z 1

0

d�ffiffiffiffi
�

p e�m2�

�
1� 2m2�

4�
coth�þ 1

sinh2�

�
� ð1� � coth�Þ: (A15)

The integral in the expression for V� is divergent, and we
regularized it by introducing a lower limit cutoff � ¼
1=�2l2. Finally, we get

V� ¼ 3

2
ffiffiffi
�

p þ
ffiffiffiffi
�

2

r �
�

�
1

2
; 1þm2

2

�

�m2�

�
3

2
; 1þm2

2

�
1� 1

4
þ 1� 1

2
ffiffiffi
2

p
m

�
; (A16)

Q� ¼ 1

2

ffiffiffiffi
�

2

r �
�

�
3

2
; 1þm2

2

�

�m2�

�
5

2
; 1þm2

2

�
1� 1

4
þ 1� 1

m3
ffiffiffi
2

p
�
; (A17)

Pþ ¼ �
ffiffiffiffi
�

2

r
1ffiffiffi
2

p
m
; (A18)

P�¼�
ffiffiffiffi
�

2

r �
m2�

�
1

2
;1þm2

2

�
þm4

2
�

�
3

2
;1þm2

2

�
þ ffiffiffi

2
p

m

�
;

(A19)

where �ðs; vÞ is the generalized zeta function.
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[3] M. Franz and Z. Tes̆anović, Phys. Rev. Lett. 87, 257003

(2001); I. F. Herbut, Phys. Rev. B 66, 094504 (2002).
[4] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802

(2005); M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82,
3045 (2010).

[5] S.-L. Zhu, B. Wang, and L.-M. Duan, Phys. Rev. Lett. 98,
260402 (2007); A. Singha, M. Gibertini, B. Karmakar, S.
Yuan, M. Polini, G. Vignale, M. I. Katsnelson, A. Pinczuk,

L. N. Pfeiffer, K.W. West, and V. Pellegrini, Science 332,
1176 (2011).

[6] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y.

Zhang, S. V. Dubonos, I. V. Grigorieva, and A.A. Firsov,

Science 306, 666 (2004).
[7] V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, Int. J.

Mod. Phys. B 21, 4611 (2007); A.H. Castro-Neto,

F. Guinea, N.M.R. Peres, K. S. Novoselov, and A.K.

Geim, Rev. Mod. Phys. 81, 109 (2009); D. S. L. Abergel,
V. Apalkov, J. Berashevich, K. Ziegler, and T.

Chakraborty, Adv. Phys. 59, 261 (2010); N.M. R. Peres,
Rev. Mod. Phys. 82, 2673 (2010); V. N. Kotov, B. Uchoa,

V.M. Pereira, A. H. Castro Neto, and F. Guinea, Rev. Mod.

Phys. 84, 1067 (2012); S. Das Sarma, S. Adam, E. H.

Hwang, and E. Rossi, Rev. Mod. Phys. 83, 407 (2011).
[8] J. Alicea and M. P.A. Fisher, Phys. Rev. B 74, 075422

(2006).
[9] Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961).
[10] H. Kleinert, in Understanding the Fundamental

Constituents of Matter, edited by A. Zichichi (Plenum

Press, New York, 1978), p. 289.
[11] M.K. Volkov, Ann. Phys. (N.Y.) 157, 282 (1984).
[12] T. Hatsuda and T. Kunihiro, Phys. Lett. B 145, 7 (1984).
[13] R. Shankar, Rev. Mod. Phys. 66, 129 (1994); J. Polchinski,

in Proceedings of the 1992 TASI, edited by J. Harvey and

J. Polchinski (World Scientific, Singapore, 1993).
[14] In quantum electrodynamics in three-dimensional space-

time, the role of the dimensionless coupling constant is

played by 1=N where N is the number of fermion species,
while the dimensional coupling constant e2 plays a role

similar to the QCD scale �. The chiral symmetry breaking

takes place if N <Nc where Nc is a critical number of

fermion species [15].
[15] T. Appelquist, D. Nash, and L. C. R. Wijewardhana, Phys.

Rev. Lett. 60, 2575 (1988); C. D. Roberts and A.G.

Williams, Prog. Part. Nucl. Phys. 33, 477 (1994); V. P.

Gusynin, A. H. Hams, and M. Reenders, Phys. Rev. D 53,
2227 (1996); 63, 045025 (2001); A. Bashir, A. Raya, I. C.

Cloet, and C.D. Roberts, Phys. Rev. C 78, 055201 (2008).

O. V. GAMAYUN, E. V. GORBAR, AND V. P. GUSYNIN PHYSICAL REVIEW D 86, 065021 (2012)

065021-10

http://dx.doi.org/10.1103/PhysRevD.29.2375
http://dx.doi.org/10.1016/0550-3213(86)90167-7
http://dx.doi.org/10.1016/0550-3213(86)90167-7
http://dx.doi.org/10.1103/PhysRevB.42.4748
http://dx.doi.org/10.1103/PhysRevD.45.1342
http://dx.doi.org/10.1103/PhysRevB.48.3892
http://dx.doi.org/10.1103/PhysRevB.48.3892
http://dx.doi.org/10.1103/PhysRevLett.53.2449
http://dx.doi.org/10.1103/PhysRevLett.87.257003
http://dx.doi.org/10.1103/PhysRevLett.87.257003
http://dx.doi.org/10.1103/PhysRevB.66.094504
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/PhysRevLett.98.260402
http://dx.doi.org/10.1103/PhysRevLett.98.260402
http://dx.doi.org/10.1126/science.1204333
http://dx.doi.org/10.1126/science.1204333
http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1142/S0217979207038022
http://dx.doi.org/10.1142/S0217979207038022
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1080/00018732.2010.487978
http://dx.doi.org/10.1103/RevModPhys.82.2673
http://dx.doi.org/10.1103/RevModPhys.84.1067
http://dx.doi.org/10.1103/RevModPhys.84.1067
http://dx.doi.org/10.1103/RevModPhys.83.407
http://dx.doi.org/10.1103/PhysRevB.74.075422
http://dx.doi.org/10.1103/PhysRevB.74.075422
http://dx.doi.org/10.1103/PhysRev.122.345
http://dx.doi.org/10.1016/0003-4916(84)90055-1
http://dx.doi.org/10.1016/0370-2693(84)90936-5
http://dx.doi.org/10.1103/RevModPhys.66.129
http://dx.doi.org/10.1103/PhysRevLett.60.2575
http://dx.doi.org/10.1103/PhysRevLett.60.2575
http://dx.doi.org/10.1016/0146-6410(94)90049-3
http://dx.doi.org/10.1103/PhysRevD.53.2227
http://dx.doi.org/10.1103/PhysRevD.53.2227
http://dx.doi.org/10.1103/PhysRevD.63.045025
http://dx.doi.org/10.1103/PhysRevC.78.055201


[16] V. P. Gusynin, V.A. Miransky, and I. A. Shovkovy, Phys.
Rev. Lett. 73, 3499 (1994); Phys. Rev. D 52, 4718 (1995).

[17] V. P. Gusynin, V.A. Miransky, and I. A. Shovkovy, Phys.
Lett. B 349, 477 (1995).

[18] I. V. Krive and S. A. Naftulin, Phys. Rev. D 46, 2737
(1992); K. G. Klimenko, Z. Phys. C 54, 323 (1992);
Theor. Math. Phys. 89, 1161 (1991); C. N. Leung, Y. J.
Ng, and A.W. Ackley, Phys. Rev. D 54, 4181 (1996); K.
Farakos and N. E. Mavromatos, Int. J. Mod. Phys. B 12,
809 (1998); G. Jona-Lasinio and F.M. Marchetti, Phys.
Lett. B 459, 208 (1999); G. Jona-Lasinio, Prog. Theor.
Phys. 124, 731 (2010); E. J. Ferrer and V. de la Incera,
Phys. Lett. B 481, 287 (2000).

[19] V. P. Gusynin, Ukr. J. Phys. 45, 603 (2000).
[20] G.W. Semenoff, I.A. Shovkovy, andL.C.R.Wijewardhana,

Phys. Rev. D 60, 105024 (1999).
[21] V. P. Gusynin, V.A. Miransky, and I.A. Shovkovy, Phys.

Rev. D 52, 4747 (1995); Phys. Rev. Lett. 83, 1291 (1999);
Nucl. Phys. B 563, 361 (1999); V. P. Gusynin and A.V.
Smilga, Phys. Lett. B 450, 267 (1999); C.N. Leung and S.-Y.
Wang, Nucl. Phys. B 747, 266 (2006); E. Rojas, A. Ayala, A.
Bashir, and A. Raya, Phys. Rev. D 77, 093004 (2008).

[22] I. A. Shushpanov and A.V. Smilga, Phys. Lett. B 402, 351
(1997); V. A. Miransky and I. A. Shovkovy, Phys. Rev. D
66, 045006 (2002); R. Gatto and M. Ruggieri, Phys. Rev.
D 83, 034016 (2011); A. J. Mizher, E. S. Fraga, and
M.N. Chernodub, Proc. Sci., FACESQCD (2010) 020
[arXiv:1103.0954].

[23] V. G. Filev, C. V. Johnson, and J. P. Shock, J. High Energy
Phys. 08 (2009) 013; V.G. Filev and R. C. Raskov, Adv.
High Energy Phys. 2010, 1 (2010); V.G. Filev and

D. Zoakos, J. High Energy Phys. 08 (2011) 022; J. L.
Davis, H. Omid, and G.W. Semenoff, J. High Energy
Phys. 09 (2011) 124.

[24] J. R. Schrieffer, Theory of Superconductivity (W. A.
Benjamin, New York, 1964).

[25] L. N. Cooper, Phys. Rev. 104, 1189 (1956).
[26] P. I. Fomin, V. P. Gusynin, V.A. Miransky, and Yu.A.

Sitenko, Riv. Nuovo Cimento 6, No. 5, 1 (1983).
[27] Ya. B. Zeldovich and V.N. Popov, Sov. Phys. Usp. 14, 673

(1972).
[28] W. Greiner, B. Muller, and J. Rafelski, Quantum

Electrodynamics of Strong Fields (Springer-Verlag,
Berlin, 1985).

[29] O. V. Gamayun, E. V. Gorbar, and V. P. Gusynin, Phys.
Rev. B 83, 235104 (2011); Ukr. J. Phys. 56, 688 (2011).

[30] T.W. Appelquist, M. Bowick, D. Karabali, and L. C. R.
Wijewardhana, Phys. Rev. D 33, 3704 (1986).

[31] E. J. Ferrer, V. P. Gusynin, and V. de la Incera, Eur. Phys. J.
B 33, 397 (2003).

[32] J. S. Schwinger, Phys. Rev. 82, 664 (1951).
[33] J. S. Schwinger, J. Math. Phys. (N.Y.) 2, 407

(1961).
[34] L. V. Keldysh, Sov. Phys. JETP 20, 1018 (1965).
[35] A. J. Niemi and G.W. Semenoff, Ann. Phys. (N.Y.) 152,

105 (1984); K. C. Chou, Z. B. Su, B. L. Hao, and L. Yu,
Phys. Rep. 118, 1 (1985); N. P. Landsman and Ch.G. van
Weert, Phys. Rep. 145, 141 (1987).

[36] W. Fu, D. Huang, and F. Wang, Nucl. Phys. A 849, 203
(2011).

[37] P. K. Pyatkovskiy and V. P. Gusynin, Phys. Rev. B 83,
075422 (2011).

MAGNETIC FIELD DRIVEN INSTABILITY IN THE . . . PHYSICAL REVIEW D 86, 065021 (2012)

065021-11

http://dx.doi.org/10.1103/PhysRevLett.73.3499
http://dx.doi.org/10.1103/PhysRevLett.73.3499
http://dx.doi.org/10.1103/PhysRevD.52.4718
http://dx.doi.org/10.1016/0370-2693(95)00232-A
http://dx.doi.org/10.1016/0370-2693(95)00232-A
http://dx.doi.org/10.1103/PhysRevD.46.2737
http://dx.doi.org/10.1103/PhysRevD.46.2737
http://dx.doi.org/10.1007/BF01566663
http://dx.doi.org/10.1007/BF01015908
http://dx.doi.org/10.1103/PhysRevD.54.4181
http://dx.doi.org/10.1142/S0217979298000478
http://dx.doi.org/10.1142/S0217979298000478
http://dx.doi.org/10.1016/S0370-2693(99)00685-1
http://dx.doi.org/10.1016/S0370-2693(99)00685-1
http://dx.doi.org/10.1143/PTP.124.731
http://dx.doi.org/10.1143/PTP.124.731
http://dx.doi.org/10.1016/S0370-2693(00)00482-2
http://dx.doi.org/10.1103/PhysRevD.60.105024
http://dx.doi.org/10.1103/PhysRevD.52.4747
http://dx.doi.org/10.1103/PhysRevD.52.4747
http://dx.doi.org/10.1103/PhysRevLett.83.1291
http://dx.doi.org/10.1016/S0550-3213(99)00573-8
http://dx.doi.org/10.1016/S0370-2693(99)00145-8
http://dx.doi.org/10.1016/j.nuclphysb.2006.04.028
http://dx.doi.org/10.1103/PhysRevD.77.093004
http://dx.doi.org/10.1016/S0370-2693(97)00441-3
http://dx.doi.org/10.1016/S0370-2693(97)00441-3
http://dx.doi.org/10.1103/PhysRevD.66.045006
http://dx.doi.org/10.1103/PhysRevD.66.045006
http://dx.doi.org/10.1103/PhysRevD.83.034016
http://dx.doi.org/10.1103/PhysRevD.83.034016
http://arXiv.org/abs/1103.0954
http://dx.doi.org/10.1088/1126-6708/2009/08/013
http://dx.doi.org/10.1088/1126-6708/2009/08/013
http://dx.doi.org/10.1155/2010/473206
http://dx.doi.org/10.1155/2010/473206
http://dx.doi.org/10.1007/JHEP08(2011)022
http://dx.doi.org/10.1007/JHEP09(2011)124
http://dx.doi.org/10.1007/JHEP09(2011)124
http://dx.doi.org/10.1103/PhysRev.104.1189
http://dx.doi.org/10.1007/BF02740014
http://dx.doi.org/10.1070/PU1972v014n06ABEH004735
http://dx.doi.org/10.1070/PU1972v014n06ABEH004735
http://dx.doi.org/10.1103/PhysRevB.83.235104
http://dx.doi.org/10.1103/PhysRevB.83.235104
http://dx.doi.org/10.1103/PhysRevD.33.3704
http://dx.doi.org/10.1140/epjb/e2003-00181-8
http://dx.doi.org/10.1140/epjb/e2003-00181-8
http://dx.doi.org/10.1103/PhysRev.82.664
http://dx.doi.org/10.1063/1.1703727
http://dx.doi.org/10.1063/1.1703727
http://dx.doi.org/10.1016/0003-4916(84)90082-4
http://dx.doi.org/10.1016/0003-4916(84)90082-4
http://dx.doi.org/10.1016/0370-1573(85)90136-X
http://dx.doi.org/10.1016/0370-1573(87)90121-9
http://dx.doi.org/10.1016/j.nuclphysa.2010.11.004
http://dx.doi.org/10.1016/j.nuclphysa.2010.11.004
http://dx.doi.org/10.1103/PhysRevB.83.075422
http://dx.doi.org/10.1103/PhysRevB.83.075422

