
Maximally helicity-violating diagrams in twistor space and the twistor action

Tim Adamo and Lionel Mason

The Mathematical Institute, University of Oxford, 24-29 St Giles’, Oxford OX1 3LB, United Kingdom
(Received 10 May 2012; published 14 September 2012)

Maximally helicity-violating (MHV) diagrams give an efficient Feynman diagramlike formalism for

calculating gauge theory scattering amplitudes on momentum space. Although they arise as the Feynman

diagrams from an action on twistor space in an axial gauge, the main ingredients were previously

expressed only in momentum space and momentum twistor space. Here we show how the formalism can

be elegantly derived and expressed entirely in twistor space. This brings out the underlying super-

conformal invariance of the framework (up to the choice of a reference twistor used to define the axial

gauge) and makes the twistor support transparent. Our treatment is largely independent of signature,

although we focus on Lorentz signature. Starting from the N ¼ 4 super-Yang-Mills twistor action, we

obtain the propagator for the antiholomorphic Dolbeault operator as a delta function imposing collinear

support with the reference twistor defining the axial gauge. The MHV vertices are also expressed in terms

of similar delta functions. We obtain concrete formulas for tree-level NkMHV diagrams as a product of

MHV amplitudes with an R invariant for each propagator; here the R invariant manifests superconformal

as opposed to dual-superconformal invariance. This gives the expected explicit support on kþ 1 lines

linked by k further lines associated to the propagators. The R invariants arising correspond to those

obtained in the dual conformal invariant momentum twistor version of the formalism, but differences arise

in the specification of the boundary terms. Surprisingly, in this framework, some finite loop integrals can

be performed as simply as those for tree diagrams.
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I. INTRODUCTION

An important output of Witten’s twistor-string theory [1]
was the maximally helicity-violating (MHV) diagram for-
malism [2–4]. This is a momentum space Feynman-
diagram formalism for gauge theories that is much more
efficient than standard ones. In this formalism, the propa-
gators are the standard massless scalar propagators, 1=p2,
and the vertices are obtained from a simple off-shell
extension of the Parke-Taylor formula [5,6] for the
‘‘MHV’’ amplitudes (these being, in our conventions, the
tree amplitudes that have the maximal number of negative
helicity external gluons but are nevertheless nontrivial,
leaving just two of positive helicity). This formalism was
shown to give the correct amplitudes at tree-level [7–9] and
for 1-loopMHV [10]. It has also recently been expressed in
momentum twistor space [11] where it was shown to give
the correct planar momentum space loop integrand to all
orders for supersymmetric theories which are cut construc-
tible [12]. We emphasize that this recent work in momen-
tum twistor space [13] is distinct to that in ordinary twistor
space as described in this paper. Momentum twistor space
is essentially a new rational coordinatization of momentum
space that brings out dual superconformal invariance and
only applies to planar gauge theories (really one is comput-
ing a Wilson loop there, not the S matrix [14]). Amplitudes
on twistor space are not locally related to those on mo-
mentum twistor space and have quite different analytic
properties as we shall see. We remark also that the loop
integrands that these studies concern are canonical and

finite, but lead to infrared divergences in four dimensions
when integrated and then require regularization, though we
will not address this major issue in this paper.
MHV diagrams were originally motivated from twistor-

string theory. Twistor-string theory had already led to
formulas for tree-level scattering amplitudes in N ¼ 4
super-Yang-Mills (SYM) as a path integral over curves in

super twistor space CP3j4 [15,16]. In these formulas,
NkMHV amplitudes [i.e., those involving (kþ 2) positive
helicity gluons with the rest negative] correspond to the
part of the amplitude supported on curves in twistor space
of degree kþ 1. Although it has not been possible to
extend these ideas to loop amplitudes (conformal super-
gravity corrupts the calculations beyond tree level [17]) the
MHV formalism is not obstructed in the same way and as
noted above works to all loop orders at the level of the four-
dimensional integrand. It was based on the idea that,
instead of a connected degree kþ 1 curve, one could
consider kþ 1 lines that are geometrically disconnected,
but are joined by propagators [18]. This was expressed
only loosely in twistor space, but has a well-defined mo-
mentum space diagram formalism.
The connection between classical Yang-Mills theory,

twistor-string theory and the MHV formalism was subse-
quently understood in terms of twistor actions for super-
symmetric gauge theories [19–22] on twistor space (see
Refs. [23,24] for other approaches). These actions have
greater gauge freedom than that on space-time; on one
hand they reduce to the space-time actions nonperturba-
tively in one gauge. On the other, twistor actions can be

PHYSICAL REVIEW D 86, 065019 (2012)

1550-7998=2012=86(6)=065019(30) 065019-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.86.065019


gauge fixed in an axial gauge on twistor space that is
inaccessible from space-time; the corresponding Feynman
diagrams are then precisely the MHV diagrams [25].
Although this gave a field theory explanation of the origins
of the MHV formalism in momentum space, it was not able
to exploit the advantages that could have been hoped for
from a twistorial formulation, such as making contact with
ideas from twistor-string theory and being able to exploit
the superconformal invariance of the twistor formulation to
obtain a simpler and more natural formalism.

More recently, however, there has been an emphasis on
understanding amplitudes directly in twistor space rather
than via a momentum space representation; in effect we
consider the scattering of particles that are supported at a
single twistor as an ‘‘elemental state.’’ The first systematic
works [26,27] (following on from some earlier works,
particularly [28])were based onWitten’s half-Fourier trans-
form from momentum space to twistor space using the
transform of the Britto-Cachazo-Feng-Witten (BCFW) re-
cursion relations [29,30]. This required analytic continu-
ation to split signature, which is unphysical, but avoided the
need to worry about the cohomological nature of twistor
wave functions. It led to a superconformally invariant
formulation (up to some symmetry breaking signs) that
clearly brought out the twistor support of the BCFW repre-
sentations of the amplitudes [31,32]. For example, terms in
the BCFW decomposition of an NkMHV tree diagram are
supported on configurations of 2kþ 1 lines containing
k loops (triangles for NMHV). These ideas led to a
Grassmannian representation for the tree amplitudes and
leading singularities [32–34].

In this paper we continue this investigation for the
twistor representation of amplitudes arising from the
MHV formalism. We obtain amplitudes directly in twistor
space starting from the twistor action without referring to
space-time or momentum space. We have also developed
the technology further, using ideas from Refs. [14,16,34] to
obtain a signature-independent formulation that incorpo-
rates the cohomological nature of twistor wave functions
whilst maintaining an explicit and superconformally in-
variant formulation up to the choices required for the axial
gauge fixing. This is based on the use of distributional
ð0; pÞ-forms in the multiple copies of twistor space.
Although at first sight these might seem to go against the
general holomorphic philosophy of twistor theory, there is
no obstruction to basing the calculus on Čech cohomology
that uses holomorphic functions as its representatives.
However, there would then be more gauge freedom and
complicated combinatorics associated with the choice of
cover, whereas these distributional forms provide a more
efficient calculus for the corresponding cohomological
residue calculations in many complex variables. In particu-
lar the delta function support reduces many of the integra-
tions to algebra (much as the Cauchy residue theorem
would in a Čech approach). Although we do not do this

here, there is a direct translation from the formulas ob-
tained in split signature in Ref. [26] to formulas that are
valid in any signature and make better cohomological
sense. Indeed the formulas simplify as the conformal sym-
metry breaking signs of Refs. [26,27] are simply omitted
under this translation.
In more detail, the twistor actions consist of a holomor-

phic Chern-Simons action supplemented by a nonlocal
term that generates the MHV vertex contributions. The
axial gauge arises from a choice of a reference twistor
denoted Z� (or simply *) and is implemented by requiring
that the component of any Dolbeault form should vanish in
the direction of the lines through Z�. In this gauge, the
MHV vertices are the only vertices as the Chern-Simons
cubic vertex vanishes. The propagator is the Green’s func-
tion for the antiholomorphic Dolbeault operator ( �@) on
twistor space. A key tool is a simple expression for this
propagator that first appeared in this form in Ref. [14] but
which built on calculations from space-time representa-
tives appearing in Appendix D (see also the last section of
Ref. [2]). The propagator �ðZ; Z0Þ is essentially a super-

conformally invariant delta function ��2j4ðZ; �; Z0Þ which is
a Dolbeault (0, 2)-form current that imposes the condition
that Z�, Z and Z0 should be collinear. The MHV vertices
also have a description as products of the same
superconformally invariant delta functions that enforce
collinearity of the field insertion points.
EachNkMHV tree diagramyields an integral of a product

of kþ 1 MHV vertices supported on kþ 1 lines and k
propagators with ends inserted on different lines. The
propagators are delta functions that restrict the insertion
points on the MHV vertices to lie on a line through Z�. The
solution for the insertion points is unique and so the inte-
grals over the insertion points can be performed explicitly
against the delta functions in the propagator and vertices.
We are left with the product of the MHV vertices but now
with only external twistors inserted, multiplied by a certain
standard superconformal invariant for each propagator.
These are the twistor R invariants of Ref. [34], but are
now invariants of the standard superconformal group rather
than the dual superconformal group. The R invariants that
arise are quite similar to those that arise in the momentum
twistor version of the MHV formalism [11] (i.e., one for
each propagator), but there are a number of differences: the
R invariants are those built out of ordinary twistors rather
than momentum twistors, the geometry of the shifts for the
boundary terms is different and in the momentum twistor
formulation there are no vertex contributions.
We therefore obtain a straightforward calculus in which

it is possible to perform the integrals arising for generic
diagrams (both trees and loops). Here ‘‘generic’’ is meant
in the sense of fixed NMHV degree k and large particle
number. In this generic case, we have at least two external
particles on each vertex and the location of its correspond-
ing line in twistor space is fixed by its external particles.
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The formulas make manifest the expected support of a
given MHV diagram contribution in twistor space:
NkMHV tree diagrams are supported on kþ 1 lines that
correspond to the MHV vertices, connected by k propaga-
tors. A propagator corresponds to the unique line that
passes through the fixed ‘‘reference twistor’’ and is trans-
versal to the two lines corresponding to the MHV vertices
at each end. Thus, as in the case of a BCFW decomposi-
tion, we obtain support on 2kþ 1 lines for an NkMHV tree
amplitude, but here arranged as a tree with k of the lines
clearly playing a distinct role as propagators.

We obtain a similar support picture for loop diagrams
with lines for each vertex and for each propagator.
Remarkably, it is as easy to perform the integrals for a
loop diagram as it is for a tree diagram, at least when the
diagram is finite. For divergent diagrams, it is also pos-
sible to perform these integrals, but the results require
regulation; there are many loop diagrams that do not lead
to divergences though, and these can be evaluated as
simply as tree diagrams in the generic case. These have
the same structure as tree amplitudes, being a product of
MHV vertices evaluated only on external twistors with R
invariants.

We will discuss a number of further ramifications of
these ideas, including infrared divergencies and their
possible regularization, crossing symmetry, connections
with momentum twistors and the Grassmannian formula-
tion in Sec. VI.

The paper is structured as follows. After some brief
preliminaries to establish notation and conventions,
Sec. II B reviews the twistor action for SYM and develops
the theory of the superconformally invariant delta func-
tions that provide the basic building blocks of the formal-
ism. Section III then provides a derivation of the Feynman
rules for this action in the Cachazo-Svrcek-Witten (CSW)
axial gauge. We obtain formulas for the propagator and for
the MHV amplitudes (which are also the vertices in this
formalism) on twistor space using the superconformal
invariant delta functions developed earlier. Section III C
outlines the proof that these Feynman rules are equivalent
to the momentum space MHV rules of Ref. [2]. Next, we
demonstrate how the twistor space MHV formalism works
at tree level by giving explicit computations for the various
classes of NkMHV tree diagrams in Sec. IV. We go on to
show how this twistor formalism extends to loop diagrams.
We consider the class of finite 1-loop nonplanar MHVand
planar NMHV diagrams and the simplest case of the planar
1-loopMHV diagram in Sec. V, and explain in general how
to identify the divergences. Although we leave a full dis-
cussion of regulation of divergences to another paper, we
discuss this and a number of other key issues in Sec. VI.

The appendices contain discussions of the two-point
vertex on twistor space (A); the particulars of twistor
theory for Euclidean signature space-time (B); the
details of the proof deriving the momentum space MHV

formalisms from that in twistor space (C); and the calcu-
lation of the twistor propagator from space-time represen-
tatives (D) which also demonstrates that the propagator we
use is the Feynman propagator.

II. BACKGROUND, NOTATION AND
CONVENTIONS

We adhere to the conventions of Refs. [35,36] for bo-
sonic twistors but twistor space will be N ¼ 4 super-
twistor space, denoted PT, the Calabi-Yau supermanifold

CP3j4, with homogeneous coordinates:

ZI ¼ ðZ�; �iÞ ¼ ð!A;�A0 ; �iÞ; (1)

where !A and �A0 are respectively negative and positive
chirality Weyl spinors, and �i (for i ¼ 1 . . . 4) are anti-
commuting Grassmann coordinates.

Points ðxAA0
; �iA

0 Þ in complexified chiral super

Minkowski space-time M4j8 correspond to lines Lðx;�Þ in
twistor space by the incidence relation

!A ¼ ixAA
0
�A0 ; �i ¼ �iA

0
�A0 : (2)

These lines Lðx;�Þ are Riemann spheres (CP1s) and will be

parametrized with the homogeneous coordinates �A0 .
The Penrose transform relates helicity n=2 solutions to

the zero-rest-mass (z.r.m.) equations on a region U0 in
complexified Minkowski space to the first cohomology
group of functions of homogeneity degree �n� 2 over
the corresponding region U in bosonic twistor space
(PTb ffi CP3); U is the region swept out by lines corre-
sponding to points of U0. We have

H1ðU;Oð�n� 2ÞÞ ffi fz:r:m: fields onU0 of helicity n=2g;
(3)

H1ðU;Oðn� 2ÞÞ ffi fz:r:m: fields onU0 of helicity �n=2g;
(4)

see for example Ref. [36] for a proof. Here H1 denotes
analytic cohomology. We will use the Dolbeault represen-
tation for the cohomology in which the cohomology
classes are represented as �@-closed (0, 1)-forms modulo
�@-exact ones. (See Sec. VI for further discussion of other
representations.) This transform is most easily realized by
an integral formula

�A0
1
A0
2
...A0

k
¼ 1

2�i

Z
Lx

�A0
1
�A0

2
. . .�A0

k
fðixAA0

�A0 ; �A0 ÞD�;
(5)

�A1A2...Ak
¼ 1

2�i

Z
Lx

@

@!A1

@

@!A2
. . .

@

@!Ak
gðixAA0

�A0 ;�A0 ÞD�;

(6)
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where D� ¼ �C0d�C0
. The fact that these integral formu-

las yield solutions to the field equations can easily be seen
by differentiating under the integral sign.

The standard choices of U for positive/negative fre-
quency fields are the sets

PT� ¼ fZj � Z � �Z � 0g
where Z � �Z ¼ !A ��A þ �A0 �!A0

: (7)

These are the sets that correspond in space-time to the
future/past tubes M�, i.e., the sets on which the imaginary

part of xAA
0
is past or future pointing timelike respectively.

This follows from the fact that if we take x ¼ uþ iv and

substitute into the incidence relation, then Z � �Z ¼
�vAA0

��A�A0 which has a definite sign when v is timelike
depending on whether v is future or past pointing. The
significance of this is that a field of positive frequency,
whose Fourier transform of a field is supported on the
future light cone in momentum space, automatically ex-
tends over the future tube because eip�x is rapidly decreas-
ing there, bounded by its values on the real slice.

Another frequently used set is U ¼ PT0 on which
�A0 � 0; this corresponds to excluding the light cone of
the ‘‘point at infinity’’ in complex space-time.

A. The supersymmetric extension

The transform has a straightforward supersymmetriza-
tion to give an action for the superfield

A ¼ aþ �ic i þ 1

2
�i�j�ij

þ 1

3!
�ijkl�

i�j�k ~c l þ �1�2�3�4g; (8)

where a, ~c ,�, c , and g are of weights 0,�1,�2,�3, and
�4 respectively, corresponding respectively to zero-rest-

mass fields ðFAB;�iA;�ij; ~�
i
A0 ; GA0B0 Þ.

The formulas (6) extend directly to this supersymmetric
context to give superfields on space-times incorporating
derivatives on (5)

F AB :¼ FAB þ �iA
0
@AA0

�
�Bi þ �jB

0
@BB0

�
�ij þ �kC

0
"ijkl

� ~�l
C0

3!
þ �lD

0 GC0D0

4!

���

¼
Z
Lðx;�Þ

@

@!A

@

@!B AðixAA0
�A0 ; �A0 ; �iA

0
�A0 ÞD�

F ij :¼ �ij þ �kC
0
"ijkl

�
~�l
C0 þ �lD

0 GC0D0

2

�
¼

Z
Lðx;�Þ

@

@�i

@

@�j AðixAA0
; �A0 ; �iA

0
�A0 ÞD�: (9)

These fields have the interpretation as being the nonzero parts of the curvature

F ¼ F AB"A0B0dxAA
0 ^ dxBB

0 þF ij"A0B0d�iA
0 ^ d�jB

0
; (10)

of the superconnection

A ¼
�
AAA0 þ �iA0

�
~�A þ �jB

0
@AB0

�
�ij

2!
þ "ijkl�

kC0
�
�l

C0

3!
þ �lD

0 GC0D0

4!

����
dxAA

0

þ
�
�ij þ "ijkl�

kB0
�
�l

B0

2
þ �lC

0 GB0C0

3!

��
�iA0d�jA

0
: (11)

Indeed, this superconnection can be obtained directly from
A via the Ward transform, which treats A geometrically
as a deformation of the �@ operator on a line bundle and
obtains A as a (super)connection on a corresponding line
bundle on space-time.

B. The twistor Yang-Mills action

Here we give a brief review of the twistor action on PT0
for N ¼ 4 SYM [19,20,22] (these papers also discuss
different amounts of supersymmetry, but we will stick to
N ¼ 4 here).

The space-time version of this action is an extension to
N ¼ 4 SYM of one introduced by Chalmers-Siegel for
ordinary Yang-Mills. This action is a reformulation of the

standard one designed in such away as to expand around the
anti-self-dual (ASD) sector. In addition to the connection
1-form AðxÞ on a bundle ~E ! M, they introduce an auxil-
iary SD 2-form G 2 �2þðM;Endð ~EÞÞ, and action [37]:

S½A;G� ¼
Z
M
trðG ^ FÞ � "

2

Z
M
trðG ^GÞ; (12)

where " is the expansion parameter. Splitting the curvature
into its SD and ASD parts, F ¼ Fþ þ F�, this action gives
the field equations

Fþ ¼ "G; r ^G ¼ 0;

with r ¼ dþ A, the connection corresponding to A.
These equations are easily seen to be equivalent to the

TIM ADAMO AND LIONEL MASON PHYSICAL REVIEW D 86, 065019 (2012)

065019-4



full Yang-Mills equations (r ^ F� ¼ 0), but for " ¼ 0,
they reduce to the ASDYang-Mills equations with a back-
ground coupled SD field G.

The fullN ¼ 4 SYM action can be similarly written as
a sum of two terms:

S½A;�;�; ~�; G� ¼ SASD½A;�;�; ~�; G�
� "

2
I½A;�;�; ~�; G�; (13)

where SASD accounts for the purely ASD sector and I
accounts for the remaining interactions which couple via

the parameter ".�iA and
~�i
A0 are respectively the ASD and

SD spinor parts of the multiplet and �ij ¼ 1
2"ijkl�

kl the

scalars. Explicitly,

SASD½A;�;�; ~�;G�¼
Z
M
tr

�
1

2
G �Fþ ~�i

A0rAA0
�iA

�1

8
ra�ijra�ijþ�ij�A

i �jA

�
d4x;

I½A;�;�; ~�;G�¼1

2

Z
M
tr

�
G �Gþ�ij

~�i
A0 ~�jA0

þ1

4
�ik�ij�

jl�kl

�
d4x: (14)

1. The Twistor Action

We now consider a topologically trivial vector bundle
E ! PT with �@ operator �@A ¼ �@þA for A 2
�0;1ðPT0;EndðEÞÞ. If the �@ operator is integrable,
�@2A ¼ 0, the supersymmetricWard transform [36,38] gives

a correspondence between such holomorphic vector
bundles on twistor space and solutions to the anti-self-
dual sector of N ¼ 4 SYM. The integrability conditions
�@2A ¼ 0 are the field equations of holomorphic Chern-

Simons theory with action

SASD½A� ¼ i

2�

Z
PT0

D3j4Z ^ tr

�
A ^ �@A

þ 2

3
A ^A ^A

�
: (15)

Here A depends holomorphically on the fermionic coor-
dinates �i and has no components in the �� directions. We
can expand A in terms of the �i to get

A ¼ aþ �ic i þ 1

2
�i�j�ij þ 1

3!
�ijkl�

i�j�k ~c l

þ �1�2�3�4g: (16)

Since A has weight 0 and �i has weight 1, we find that a

has weight 0, c weight �1, � weight �2, ~c weight �3
and g weight �4. When taken to be cohomology classes,
these give the multiplet appropriate toN ¼ 4 SYM under
the Penrose transform with the lower case quantity on
twistor space corresponding to its upper case counterpart
on space-time.

To introduce the remaining interactions of the theory, we
add the term

I½A� ¼
Z
M4j8

R

d4j8x logdetð �@AjLðx;�Þ Þ; (17)

where Lðx;�Þ is the line or CP1 corresponding to ðx; �Þ 2
M4j8

R in PT0 andM4j8
R is a real four-dimensional contour in

the complexified Minkowski space M4j8; �@AjLðx;�Þ is the

restriction of the deformed complex structure �@A to this

Lðx; �Þ; and d4j8x is the natural holomorphic volume form
on chiral superspace:

d 4j8x ¼ 1

4!
�abcddx

a ^ dxb ^ dxc ^ dxd ^ d8�:

Although detð �@AjLðx;�Þ Þ might seem rather intimidating at

first sight, we will see that it is easy to understand pertur-
batively and indeed this leads both to the finite set of terms
in the space-time action in one gauge and the infinite set of
MHV vertices in another. Although it is a section of a line

bundle L over M4j8, it can be checked that the integral of
its log is independent of the choice of gauge as a conse-
quence of the fermionic integration in this context [20].
Hence, the twistor action for N ¼ 4 SYM is

SPT½A� ¼ SASD½A� � "

2
I½A�: (18)

This action has gauge freedom

�@A ! h �@Ah�1; h 2 �ðPT0;EndðEÞÞ; (19)

and since PT0 has six real bosonic dimensions, SPT has
much more gauge freedom than the Yang-Mills action in
space-time. In order to prove that (18) is equivalent to
N ¼ 4 SYM on space-time, we must make a gauge
choice which reduces (19) to the freedom of ordinary
space-time gauge transformations. One particularly useful
choice is a harmonic gauge up the fibers of a Euclidean
fibration first introduced by Woodhouse [39] and this leads
to the reduction to the space-time action as described in
Refs. [20,22].

III. THE TWISTOR SPACE MHV FORMALISM

In Ref. [25], the MHV formalism on momentum space
was recovered as the Feynman diagrams of the twistor
action (18) in an axial gauge. This was done by using
twistor cohomology classes that correspond to momentum
eigenstates as the basic scattering states. Although this
provides an explanation of the origin of the MHV formal-
ism, it does not exploit the advantages that one might hope
to gain from a twistorial formulation such as making con-
tact with ideas from twistor-string theory and being able to
exploit the superconformal invariance of the twistor for-
mulation. The novelty of the following treatment is that the
presentation will be self-contained in twistor space, using
twistor cohomology classes that are supported at points of
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twistor space. This will bring out the underlying super-
conformal invariance up to the choices that are required to
impose the gauge condition, and also make explicit the
support of the various contributions to the amplitude.

We must first introduce the distributional wave functions
that we will use as the asymptotic states for scattering
processes: the elemental states supported at points of
twistor space (these will in fact be the twistor transform
of those originally introduced by Andrew Hodges [40]).
These distributions turn out to be part of a framework of
distributions supported at points, lines, planes and the
bosonic ‘‘body’’ in supertwistor space. These allow us to
give a more careful treatment of the propagator and to
better understand the MHV vertices.

A. Amplitudes, cohomology and distributional forms

As has already been mentioned, the asymptotic states for
the particles in a scattering process are given by cohomol-
ogy classes on twistor space inH1

�@
ðU;OðnÞÞ forU ¼ PT�.

We will represent these as (0, 1)-forms� that are �@ closed,
�@� ¼ 0, defined modulo the gauge freedom � ! �þ �@f

on some domain U � CP3j4. Amplitudes are functionals
of such asymptotic states. The kernel of an n-particle
amplitude will therefore be in the n-fold product of the
dual to suchH1’s. Although we could use the Hilbert space
structure on such H1’s, this turns out to be complicated in
our context; we obtain the best formalism by representing
the kernel of an amplitude using a local duality between
(0, 1)-forms and distributional (0, 2)-forms that are com-
pactly supported. This is simply given by

�0;2
c; ðPT;OÞ 	�0;1ðU;OÞ ! C;

ð�;�Þ �
Z
PT

D3j4Z ^ � ^�:

For manifest crossing symmetry, we must be able to take
our asymptotic states to be of both positive and negative
frequency, and so we must be able to take both U ¼ PTþ
or PT�. This will be possible if the compact support of the
amplitude is within PN ¼ PTþ \ PT� ¼ fZjZ � �Z ¼ 0g.
See below (35) for the example of the MHVamplitude and
Sec. VI for further discussion.

Tree-level amplitudes in N ¼ 4 SYM can be decom-
posed in terms of color-sector subamplitudes; an n-particle
tree amplitude A0

n can be written as

A 0
n ¼

X
�2Sn=Zn

trðTa�ð1ÞTa�ð2Þ � � �Ta�ðnÞ ÞA0
nð�ð1Þ; . . . ; �ðnÞÞ;

where the sum runs over all noncyclic permutations of the
n particles and the Ta’s are the generators of the gauge
group. In this paper, we will be interested in the color-
stripped amplitudes A0

n; due to the color trace, these objects
obey a cyclic symmetry in their arguments, and this will
extend to the twistorial amplitude as a function of twistor
wave functions or distributional forms. We make use of

this cyclic symmetry both explicitly and implicitly often
for the remainder of this work.
The amplitude will be defined modulo �@-exact forms

with compact support as these will give 0 by integration by
parts. In an ideal world, an n-particle amplitude would take
values in H2n

c ð
nPT;OÞ. However, we will see that our
amplitudes, including in particular the MHV amplitude,
fail to be �@ closed due to anomalies arising from infrared
divergences; see (57) below. This failure of the amplitude
to be �@ closed will lead to anomalies in gauge invariance.
This is mitigated by the fact that throughout we will fix a
gauge and, if we were to change the gauge fixing condition,
quantum field theory would lead to very different formulas
for the amplitudes. It is nevertheless a feature that should
be understood better. See Sec. VI for further discussion.
In order to obtain explicit formulas, we need to intro-

duce some natural distributions on twistor space. We first
note that on C with coordinate z ¼ xþ iy, the delta func-
tion supported at the origin is naturally a (0, 1)-form which
we denote

�� 1ðzÞ ¼ �ðxÞ�ðyÞd�z ¼ 1

2�i
�@
1

z
; (20)

the second equality being a consequence of the standard
Cauchy kernel for the �@ operator. This second representa-
tion makes clear the homogeneity property ��ð	zÞ ¼
	�1 ��ðzÞ.
The fermionic delta function in the fermionic variable


 is

�0j1ð
Þ ¼ 
:

This follows from the Berezinian integration ruleR

d
 ¼ 1 so that

R
fð
Þ
d
 ¼ fð0Þ.

Following Ref. [34], to obtain delta functions on projec-
tive space we first introduce the Dolbeault delta functions

on C4j4:

�� 4j4ðZÞ ¼ Y3
�¼0

��ðZ�ÞY4
i¼1

�i: (21)

This is a (0, 4)-form on C4j4 of weight 0. We then define
projective delta functions by

�� 3j4ðZ1; Z2Þ ¼
Z
C

ds

s
��4j4ðZ1 þ sZ2Þ:

These can easily be seen to be antisymmetric and to satisfy
the obvious delta function relation

fðZ0Þ ¼
Z
PT

fðZÞ ��3j4ðZ; Z0ÞD3j4Z:

By integrating against further parameters, we can obtain
the following superconformally invariant delta functions
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��2j4ðZ1; Z2; Z3Þ :¼
Z
CP2

D2c

c1c2c3
��4j4ðc1Z1 þ c2Z2 þ c3Z3Þ

¼
Z
C
C

ds

s

dt

t
��4j4ðZ3 þ sZ1 þ tZ2Þ

¼
Z
C

ds

s
��3j4ðZ1; Z2 þ sZ3Þ; (22)

where D2c ¼ c1dc2 ^ dc3 þ cyclic permutations. The

delta function ��2j4ðZ1; Z2; Z3Þ will play a large role in
what follows, giving both a representation of the propaga-
tor and being an ingredient of the MHV amplitude. It is
antisymmetric in its arguments and has support where the
three points Z1, Z2, and Z3 are collinear and has simple
poles where two of them coincide.

We can similarly define a coplanarity delta function

��1j4ðZ1; Z2; Z3; Z4Þ
:¼

Z
CP3

D3c

c1c2c3c4
��4j4ðc1Z1 þ c2Z2 þ c3Z3 þ c4Z4Þ

¼
Z
C3

ds

s

dt

t

du

u
��4j4ðZ4 þ sZ3 þ tZ2 þ uZ1Þ

¼
Z
C

ds

s
��2j4ðZ1; Z2; Z3 þ sZ4Þ: (23)

Finally we can define the rational ‘‘R invariant’’

½Z1; Z2; Z3; Z4; Z5�
:¼ ��0j4ðZ1; Z2; Z3; Z4; Z5Þ

¼
Z
CP4

D4c

c1c2c3c4c5
��4j4

�X5
i¼1

ciZi

�

¼ �0j4ðð1234Þ�5 þ cyclicÞ
ð1234Þð2345Þð3451Þð4512Þð5123Þ ; (24)

where D4c ¼ c1dc2dc3dc4dc5 þ cyclic and ð1234Þ ¼
�����Z

�
1Z

�
2 Z

�
3Z

�
4 . We will also abbreviate ½Z1; Z2;

Z3; Z4; Z5� by [1, 2, 3, 4, 5]. Although there are no longer

bosonic delta functions, on the support of this fermionic
delta function, the five twistors span a four-dimensional

space inside C4j4 so that this can be thought of as a delta
function supported on a choice of bosonic body of super-
twistor space. In the context of momentum twistors this is
the standard dual superconformal invariant of Ref. [41].
The second formula is obtained by integration against the
delta functions; see Ref. [34] for full details. This will also
play a significant role in this story here, but as an invariant
of the usual superconformal group as opposed to the dual
superconformal group.
It will be useful to know how these delta functions

behave under the �@ operator. In general we have relations
of the form

�@ ��rj4ðZ1; � � � ; Z5�rÞ

¼ ð2�iÞX5�r

i¼1

ð�1Þiþ1 ��rþ1j4ðZ1; . . . ; Ẑi; . . . ; Z5�rÞ;

where Ẑi is omitted. The right-hand side necessarily van-
ishes for r ¼ 3. We will have frequent use for the case of
r ¼ 2

�@Z ��2j4ðZ1; Z2; Z3Þ ¼ 2�ið ��3j4ðZ1; Z2Þ
þ ��3j4ðZ2; Z3Þ þ ��3j4ðZ3; Z1ÞÞ; (25)

so we give the derivation in full detail and leave the
remaining relations as an exercise.

Since ��4j4ðZÞ is a top degree form, it is �@ closed. Thus

�@ T
��4j4ðc1Z1 þ c2Z2 þ c3Z3Þ ¼ 0;

where �@T ¼ �@c þ �@Z is the total �@ operator on the space of
parameters ðc0; c1; c2Þ together with the twistors Zi, where
�@c is that on the c’s alone and �@Z is that on the Z’s alone.

We can use this to calculate �@Z ��2j4ðZ1; Z2; Z3Þ as
follows:

�@Z ��2j4ðZ1;Z2;Z3Þ¼
Z
CP2

D2c

c1c2c3
^ �@Z ��4j4ðc1Z1þc2Z2þc3Z3Þ¼

Z
CP2

D2c

c1c2c3
^ð� �@cÞ ��4j4ðc1Z1þc2Z2þc3Z3Þ

¼
Z
CP2

�@c

�
D2c

c1c2c3

�
^ ��4j4ðc1Z1þc2Z2þc3Z3Þ¼

Z
CP2

D2c

�X3
i¼1

1

ciþ1ciþ2

�@c
1

ci

�
��4j4ðc1Z1þc2Z2þc3Z3Þ

¼ 2�i
Z
C

ds

s
ð ��4j4ðZ1þ sZ2Þþ ��4j4ðZ2þ sZ3Þþ ��4j4ðZ1þ sZ3ÞÞ

¼ 2�ið ��3j4ðZ1;Z2Þþ ��3j4ðZ2;Z3Þþ ��3j4ðZ3;Z1ÞÞ:

In the first equality we have taken �@Z under the integral; in the second, we have used �@Z ¼ �@T � �@c and used the fact that
�@2T ¼ 0; in the third we have integrated by parts; and in the fourth we have expanded out �@c using finally �@c1=ci ¼
2�i ��ðciÞ to perform one of the c integrals to reduce it down to just one parameter.

We finally remark that with these distributional delta functions, many integrals can be performed essentially
algebraically. Examples that we will frequently use are
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Z
��2j4ðZ1; Z2; ZÞ ��2j4ðZ; Z3; Z4ÞD3j4Z

¼ ��1j4ðZ1; Z2; Z3; Z4ÞZ
��2j4ðZ1; Z2; ZÞ ��1j4ðZ; Z3; Z4; Z5ÞD3j4Z

¼ ��0j4ðZ1; Z2; Z3; Z4; Z5Þ: (26)

B. The CSW gauge and twistor space Feynman rules

In order to obtain the dual form of the amplitude de-
scribed above, instead of inserting H1 wave functions into
color-stripped amplitudes or vertices to obtain a number,
we will insert external fields Aa (for a ¼ 1; . . . ; n),

A aðZÞ ¼ ��3j4ðZa; ZÞ; (27)

to obtain an expression for the amplitude taking values in
the n-fold tensor product of H2ðPT;OÞ (one for each
external particle).

To recover the MHV formalism on twistor space, we
impose an axial gauge. The choice of reference spinor 
A in
the MHV formalism corresponds to the choice of a twistor
‘‘at infinity’’ denoted Z� ¼ ð
A; 0; 0Þ 2 PT; this induces a
foliation of PT� f�g by the lines that pass through Z�. We
require thatA should vanish when restricted to the leaves
of this foliation:

Z� � @

@Z
5 A ¼ 0: (28)

This gauge explicitly breaks conformal invariance due to
the choice of *, but we will obtain a formalism that is
invariant up to this choice. We will often refer to this as the
CSW gauge as it was first introduced in Ref. [2].

The main benefit is that it reduces the number of
components of A from three to two, so the cubic Chern-
Simons vertex in SASD½A� will vanish. Since this cubic
vertex corresponds to the anti-MHV three-point amplitude,
the choice of CSW gauge eliminates this vertex; anti-MHV
amplitudes will of course still exist, but are now con-
structed from the remaining vertices of the theory. The
twistor action becomes

SPT½A� ¼ i

2�

Z
PT0

D3j4Z ^ trðA ^ �@AÞ

� "

2

Z
E4j8

d4j8x logdetð �@AjLðx;�Þ Þ: (29)

We now determine the Feynman rules of this action in
twistor space.

1. Propagator

Usually the propagator is determined by the quadratic
part of the action. However, there are two such contribu-
tions in (29): one from the kinetic Chern-Simons portion
and another from the perturbative expansion of the log det

[see (31) below]. Since it occurs as part of a generating
functional of vertices, we choose to treat this latter con-
tribution perturbatively, so it will not enter into our defini-
tion of the propagator. However, this means that our
formalism will include a two-point vertex. We discuss
this issue in great detail later, and in Appendix A, but the
main point is that the two-point vertex itself vanishes as a
consequence of momentum conservation, and so never
appears as a vertex in the diagram formalism. However,
it does also play a role as a constituent of the higher-point
MHV vertices where it is no longer forced to vanish.
Hence, the propagator is fixed by the kinetic part of the

action,

Z
PT0

D3j4Z ^ trðA ^ �@AÞ;

to be the inverse of the �@ operator on PT0 acting on (0, 1)-
forms in the CSW gauge (28):

�@�ðZ1; Z2Þ ¼ ��3j4ðZ1; Z2Þ;
ð� � @1Þ 5 � ¼ ð� � @2Þ 5 � ¼ 0:

The final answer is simply one of our superconformal delta
functions

� ¼ ��2j4ðZ1; �; Z2Þ :¼
Z
C
C

dsdt

st
��4j4ðZ1 þ sZ� þ tZ2Þ:

(30)

In order to check this, we need to see that it is indeed a
Green’s function for �@ and is also in the CSW gauge. The

gauge condition ð� � @1Þ 5 � ¼ ð� � @2Þ 5 � ¼ 0 follows
from the fact that to obtain a nontrivial integral we must
take the coefficient of d�s in the expansion of the form part

of ��4j4ðZ1 þ sZ� þ tZ2Þ and since this is accompanied by
the constant �Z�, the remaining form indices are skew
symmetrized with �Z�. To see that � indeed defines a
Green’s function, we have from (25) that, taking Z1, Z2 2
PT0 and Z3 ¼ Z� as the reference twistor we have

�@� ¼ 2�ið ��3j4ðZ1; Z2Þ þ ��3j4ðZ1; �Þ þ ��3j4ðZ2; �ÞÞ:
The first term is the delta function that we would like to
have, whereas the last two terms essentially vanish in the
degrees relevant to the inversion of the �@ operator on 1-
forms; � should be a (0, 1)-form in each variable, Z1 and
Z2, whereas the error terms arise from (0, 2) components in
Z1 and Z2. Such minor ‘‘errors’’ (or at least unphysical
poles in momentum space) in the propagator are a familiar
feature of axial gauges and are not problematic. Indeed, if
we restrict ourselves to the open set inPT that excludes the
point at infinity (i.e.,U ¼ PT0), then the error terms do not
have support and the Green’s function equation is satisfied
exactly.
We need to be sure that we have found the correct

Feynman propagator with the appropriate i� prescription.
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This is addressed in the remarks in Sec. VI and
Appendices B, C, and D.

2. Vertices

In the CSW gauge the vertices all come from the loga-
rithm of the determinant in (29) (the interactions of the full
theory that we added to the ASD action). These vertices
can be made explicit by perturbatively expanding out the
logarithm of the determinant which gives [20,25]

logdetð �@AjLÞ

¼ trðlog �@jLÞþ
X1
n¼2

1

n

Z
Ln
trð �@j�1

L A1
�@j�1
L A2 � � � �@j�1

L AnÞ:

(31)

Here, �@jL is the restriction of the �@ operator fromPT toL ffi
CP1, andAa is a field inserted at a point Za 2 L. The �@j�1

L

are the Green’s functions for the �@ operator restricted toL. If
we suppose that the lineL is that joining twistorsZA and ZB,
we can introduce the coordinate � on L by

Zð�Þ ¼ ZA þ �ZB: (32)

In terms of this coordinate, �@j�1
L is just integration against

the Cauchy kernel

ð �@j�1
L AÞð�a�1Þ ¼ 1

2�i

Z AðZð�aÞÞ ^ d�a

�a � �a�1

;

Thus, the nth term in our expansion yields the vertex

1

n

�
1

2�i

�
n Z

M
d4j8x

Z
Ln
tr

�Yn
a¼1

AaðZð�aÞÞ ^ d�a

�a � �a�1

�
: (33)

Here the index a is understood cyclically with �a ¼ �nþa

and M denotes a real slice of complexified space-time. In
the action of course all the Aa ¼ A, but as a vertex in
the Feynman rules, all the Aa are allowed to be different.
When the Aa are the twistor wave functions that corre-
spond to momentum eigenstates, we will see that this
reduces to the standard n-particle Parke-Taylor formula
(43) for the MHV amplitude [25]; (recall that scattering
amplitudes for n incoming gluons in which kþ 2 gluons
have positive helicity with the rest negative will be the
NkMHV amplitudes in our conventions) see Fig. 1 for the
support on twistor space. This form, as an integral over the
space of lines in twistor space, is a Dolbeault analogue of
Nair’s original twistor formulation [42].

A key point in this formula is that the bosonic part of the

d4j8x integral is a contour integral in the space of complex
x, performed over the four-dimensional real sliceM which
can be taken to be some real slice of complex Minkowski
space. The choice of signature of this slice will determine
the support of the vertices that we obtain; if it is taken to be
the standard Minkowski slice, our vertices will clearly
be supported in PN as all the lines in the integration will
lie in PN.

In order to obtain a manifestly conformally invariant

formulation, we represent the volume form d4j8x as

d 4j8x ¼ D4j4ZA ^ D4j4ZB

volðGLð2;CÞÞ ; (34)

i.e., rather than represent the line L as Lx via (2) we
use (32) and quotient by GL(2) corresponding to the choice
of ZA and ZB on L.
Defining Aa as in (27) will now give us the super-

conformally invariant formula

VðZ1; . . . ; ZnÞ ¼
Z D4j4ZA ^ D4j4ZB

volðGLð2;CÞÞ



Z
ðLABÞn

Yn
a¼1

��3j4ðZa; Zð�aÞÞd�a

ð�a � �a�1Þ ; (35)

where we suppress color indices and the implicit trace.
This form most fully manifests the symmetry of the am-
plitude, including the cyclic symmetry mentioned earlier.
It is the twistor-string formulation [1,15] given as a
‘‘path integral’’ over the space of lines. Having defined
our external fields Aa as (0, 3)-forms on PT0, in (35), the
integration over d�a reduces the (0, 3)-form to a (0, 2)-
form in each Za variable.
We can reexpress higher-point MHV vertices in terms of

lower-point ones multiplied by delta functions by the
relation

VðZ1; . . . ; Znþ1Þ ¼ VðZ1; . . . ; ZnÞ ��2j4ðZn; Znþ1; Z1Þ: (36)

To see this, observe that if we replace the �nþ1 variable by

s ¼ �nþ1 � �1

�n � �nþ1

;

then

ð1þ sÞZð�nþ1Þ ¼ Zð�nÞ þ sZð�1Þ and

d�nþ1

ð�nþ1 � �nÞð�1 � �nþ1Þ ¼
ds

sð�n � �1Þ :

Using this in the defining formula (35) for VðZ1; . . . ; Znþ1Þ,
we can separate out VðZ1; . . . ; ZnÞ and an s integral

VðZ1; . . . ;Znþ1Þ¼VðZ1; . . . ;ZnÞ
Z ds

s
��3j4ðZnþ1;ZnþsZ1Þ;

which leads to (36) as desired. This relationship between
the (n� 1)-point MHV amplitude and the n-point ampli-
tude appeared in a totally real version of (36) in Ref. [26]
and has become known as an inverse soft limit [27].
This can be used to reduce the general MHV vertex to a

product of delta functions and the two-point vertex in many
different ways. A typical such formula is

VðZ1; . . . ; ZnÞ ¼ VðZ1; Z2Þ
Yn
i¼2

��2j4ðZ1; Zi�1; ZiÞ: (37)
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This formula exhibits explicit superconformal invariance and
has a minimal number of residual integrations, but at the
expense of the cyclic symmetry which is manifest in (35).
We can obtain many such formulas for the MHVamplitude.
The different versions are generated by the identity arising
from the cyclic symmetry of the four-point amplitude

VðZ1;Z2;Z3Þ ��2j4ðZ1;Z3;Z4Þ¼VðZ2;Z3;Z4Þ ��2j4ðZ2;Z4;Z1Þ:
(38)

This can be understood pictorially via Fig. 2, where (38) is
the statement that the two triangulations of the square rep-
resented by blue lines are equivalent and that the location of
Vði; j; kÞ is interchangeable with that of any ��2;4ð. . .Þ. For a
MHV vertex with n points, we can give a polygon represen-

tation of formula (37) in which the ��2j4ðZ1; Zi�1; ZiÞ factors
correspond to a triangulation of the polygon using just the
triangles (1, i� 1, i) (with there being one special line (1, 2)
representing the residual two-point MHV amplitude). Then
(38) allows us to change the given triangulation to an essen-
tially arbitrary triangulation leading to many alternate for-
mulas for the MHV vertices. In general we will just use
equation (36) and its cyclic permutations as necessary to pull
out the dependence on twistors that need to be integrated and
leave the remaining MHV vertices as residual factors in the
answer.

In Appendix A the two-point vertex VðZ1; Z2Þ is reduced
to the integral

VðZ1;Z2Þ¼
Z
M
ðCP1Þ2

D3ZAD
3ZB

��3
0;�4ðZ1;ZAÞ ��3

0;�4ðZ2;ZBÞ;

(39)

where the CP1 factors in the contour are now understood
as arising from integrating ZA and ZB over the CP1 corre-
sponding to x 2 M and then integrating over the real slice
M of complexified Minkowski space (some other more
concrete formulas are also given there but this will be
sufficient for our purpose here). This is an integral of a
12-form over an eight-dimensional contour so that we are
left with a 4-form in Z1 and Z2 [a (0, 2)-form in each
factor]. In particular if M is the Minkowski real slice, Z1

and Z2 are pinned to lying on a line in PN and since the
remaining collinearity delta functions in (37) force the
remaining points to lie on this line, the general MHV
vertex is supported for Zi 2 PN.
The two-point vertex does not vanish, and indeed is a

nontrivial factor in each of our vertices. Moreover it plays a
nontrivial role in the calculation of correlation functions in
the context of Wilson loops [14]. However, it is shown in
Appendix A that it is �@ exact in the sense of compactly
supported cohomology, so if it appears on the exterior of a
diagram, then it will give a vanishing contribution because
it will be integrated against a �@-closed form. A more subtle
argument should obtain when it appears in the interior of a
diagram (see Sec. and Appendix A for discussion). Thus it
never appears in the Feynman diagram calculus. In
Ref. [25] it is shown that its evaluation on momentum
eigenstates vanishes explicitly. However, because our am-
plitudes are cohomological they don’t need to vanish ex-
plicitly to be trivial in cohomology.

C. Derivation of momentum space MHV formalism

As a reality check, we now show that the Feynman rules
for the twistor action in the CSW axial gauge lead directly
to the momentum space MHV formalism of Ref. [2]. This
formalism was based on the use of the Parke-Taylor MHV
amplitudes (43) below as vertices and scalar 1=p2 propa-
gators, with the off-shell prescription for the vertices that
the primed spinor associated to an off-shell momentum
pAA0 should be taken to be pA0 ¼ pAA0 
̂A for some reference
spinor 
̂A (which, as the notation suggests, is the Euclidean
conjugate of the spinor part of the reference twistor).
In this complex framework, it is no longer possible to

use the half-Fourier transform to convert the twistor
amplitudes used here to momentum space. Nevertheless,
it is possible to transform the ingredients of the MHV

FIG. 1. MHV amplitude in twistor space.

FIG. 2 (color online). Geometric realization of (38).

TIM ADAMO AND LIONEL MASON PHYSICAL REVIEW D 86, 065019 (2012)

065019-10



formalism on twistor space term by term into their
counterparts on momentum space using (super)momentum
eigenstates with supermomenta P ¼ ðpAA0 ; 
iÞ. For the
propagator we will necessarily have p2 � 0, but the exter-
nal particles will be on shell with

Pa ¼ ðpAA0 ; 
iÞ ¼ ð~pApA0 ; 
iÞ: (40)

For such an on-shell momentum eigenstate we have the
twistor cohomology class

A P ¼
Z ds

s
eðsð!A ~pAþ�i
iÞÞ ��2ðs�A0 � pA0 Þ: (41)

That this gives the space-time momentum eigenstates can
be verified directly for the component fields using (5) and
(6); the integral is performed algebraically against the delta
function enforcing s�A0 ¼ pA0 (see Ref. [43] for a discus-
sion of such individual momentum eigenstates).

To obtain the momentum space formula corresponding
to a final integrated diagram on twistor space, we integrate
out the (0, 2)-form in each external twistor variable against
the above Dolbeault (0, 1)-forms representing momentum
eigenstates. However, we can go further and show that
when expressed in momentum space, the vertices and
propagators yield the appropriate CSW counterparts. We
start with the vertices.

Momentum space representations break conformal in-
variance. So there is no loss in using a version of the MHV
vertex in which the GL(2) symmetry has been fixed by
coordinatizing the line Lðx;�Þ by the �A0 coordinate. This

reduces the volume form on M to d4j8x, as in (2), yielding
the formula

Z
MR

d4j8x
Z
Ln
tr

�Yn
a¼1

AaðixAA0
�A0a; �A0a; �

A0
i �aA0 Þ ^D�a

½�a�1�a�
�
;

(42)

where as usual ½� �� denotes the spinor inner product and we
have ignored normalization factors. The first check is to
show that these MHV vertices give the standard momen-
tum spaceMHVamplitudes. This can be done by taking the
Aa to be momentum eigenstates as above (41). It is now
easily seen that the delta functions allow the � integrals to
be done directly, simply enforcing s�A0a ¼ pA0a. The re-
maining integral of the product of exponential factors over

d4j8x now gives the supermomentum-conserving delta
function to end up with the Parke-Taylor [5,6,42] formula
for the MHV tree amplitude extended to N ¼ 4 SYM:

A0
MHVðP1; . . . ; PnÞ ¼ �4j8ðPn

a¼1 PaÞQ
n
a¼1½pa�1pa� ; (43)

where we have stripped off a normalization and an overall
color trace factor, and the supermomentum-conserving
delta function is

Z
expi

�X
a

pa � xþ 
aipaA0�iA
0
�
d4j8x ¼ �4j8

�X
Pa

�

¼ �4j0
�X

pa

�
�0j8

�X
a


i
apaA0

�
;

with

�0j8
�X

a


apaA0

�
¼ Y

i;A0

�X
a


i
apaA0

�
:

These Parke-Taylor MHV amplitudes (43) are the verti-
ces in the momentum space MHV formalism extended off
shell by associating the primed spinor pA0 ¼ pAA0 
̂A to an
off-shell momentum pAA0 . To see how this arises from our
twistor space formalism, we first remark that the integrals
in (42) are over (a contour in) the spin bundle PS coor-

dinatized by ðxAA0
; �iA

0
; �A0 Þ where ðx; �Þ is real. This has a

natural projection to twistor space following from (2)
given by

q: PS ! PT;

ðxAA0
; �iA

0
; �A0 Þ � ðixAA0

�A0 ; �iA
0
�A0 ; �A0 Þ:

The MHV vertex is evaluated by first pulling back the
cohomology classes for the external fields and for the
propagators �ðZ; Z0Þ to the spin bundle PS, and then in-
tegrating using (42). In order to obtain a momentum space
representative, wewish to Fourier transform the ingredients
so as to replace the d4x integral by a correspondingmomen-
tum space integral; this is a conventional Fourier transform

over a real slice. We pull �ðZ; Z0Þ ¼ ��2j4ðZ; �; Z0Þ back to
PS
 PS using q and Fourier transform in the x and x0
variables to obtain the Fourier representation

�ðx; �; �; x0�0; �0Þ ¼
Z

d4pd4
eiðx�x0Þ�pþ
�ð�j����0j�0�Þ


 ~�ðp;
;�;�0Þ: (44)

After some calculation we obtain

~�ðpÞ ¼
��1ðh
̂jpj��Þ ^ ��1ðh
̂jpj�0�Þ

p2
; (45)

where 
̂A is related to the original constant spinor 
A (the
primary part of Z�) by means of a quaternionic complex
conjugation induced by the choice of Euclidean real slice
(see Appendix B). Appendix C contains the details of these
calculations; in order to obtain the correct answer here, it
was necessary to perform the Fourier transform on a
Euclidean real slice.
If we now substitute this expression for the propagator

into the MHV vertex (42), then the delta functions in� and
�0 again allow these � integrals to be done algebraically
with the effect of substituting them with the primed spinor
pA0 ¼ 
̂ApAA0 . The integral over ðx; �Þ then incorporates the
supermomentum ðpAA0 ; pA0
iÞ into the supermomentum-
conserving delta function. This corresponds exactly with

MAXIMALLY HELICITY-VIOLATING DIAGRAMS IN . . . PHYSICAL REVIEW D 86, 065019 (2012)

065019-11



the prescription given by Ref. [2] for the momentum space
MHV formalism as required.

1. The vanishing of the two-point vertex

It is now straightforward to show, via this transform to
momentum space, that the two-point vertex does not play a
role in the formalism: if it is present in a diagram, the
whole diagram will vanish. The most nontrivial case is
when the vertex is in the middle of the diagram with
propagators attached to each leg with supermomenta
ðP;
Þ and ðP0; 
0Þ. The fermionic part of the momentum-
conserving delta function in (43) then reduces to

½pp0�4�0j4ð
Þ�0j4ð
0Þ and so the spinor products cancel
those in the denominator, yielding an overall ½pp0�2 in
the numerator. The bosonic delta function then forces
Pþ P0 ¼ 0 so that p ¼ �p0, and the numerator factor
then forces the vertex to vanish.

IV. TREE DIAGRAMS

Having demonstrated that the twistor action in CSW
gauge produces a perturbative expansion equivalent to
the momentum space MHV formalism, we now endeavor
to calculate amplitudes in a manner which is self-contained
on twistor space. The Feynman rules using the propagator
and vertices we have just obtained lead to formulas for
amplitudes in terms of integrals over intermediate twistors
in the standard way. We will see that for generic diagrams
all these integrals can be performed explicitly. We will find
that each NkMHV diagram yields a product of kþ 1MHV
amplitudes/vertices multiplied by k R invariants. The
MHV vertices are those corresponding to the external
legs of each of the vertices and there is an R invariant for
each propagator; the R invariant has five arguments, one of
which is always the reference twistor and the other four are
the external twistors adjacent to the propagator when
propagators are not inserted adjacent to each other at a
vertex. Such a picture holds when no propagators are
adjacent at a vertex and we will refer to these as generic
diagrams (which is the case for fixed k and large n, but will
not be the case when k approaches n). When propagators
are adjacent we call the diagram a boundary term and
either the nearest external twistor, or a shifted version
thereof, is used to determine the R invariant. There are
also boundary-boundary terms in which some vertex has
fewer than two external vertices. Here there are not suffi-
cient delta functions to integrate out all the internal twist-
ors and some integrals remain.

A. Tree-level NMHV amplitudes

A tree-level NMHVamplitude is expressed in the MHV
formalism by a sum over tree diagrams, each with two
MHV vertices joined by a single propagator. The corre-
sponding picture in twistor space, given in Fig. 2, has a line

corresponding to each of the two MHV vertices of (37)
connected by a propagator as given by (30). Thus, the
contribution of such a term to the NMHV amplitude is

Z
PT
PT

D3j4ZD3j4Z0Vðbþ 1; . . . ; a; ZÞ

 ��2j4ðZ; �; Z0ÞVðaþ 1; . . . ; b; Z0Þ:

We can simplify this using (36) to obtain

Vðbþ 1; . . . ; aÞVðaþ 1; . . . ; bÞ



Z
PT
PT

D3j4ZD3j4Z0 ��2j4ða; bþ 1; ZÞ

 ��2j4ðZ; �; Z0Þ ��2j4ðb; aþ 1; Z0Þ:

The first two factors here are MHV amplitudes. The re-
maining factor can be integrated explicitly against the delta
functions using (22) as follows

Z
PT
PT

D3j4ZD3j4Z0 Z
C
C

dsdt

st
��3j4ðZ; Za þ sZbþ1Þ


 ��2j4ðZ; Z0; �Þ ��3j4ðZ0; Zb þ tZaþ1Þ
¼

Z
C
C

dsdt

st
��2j4ðZa þ sZbþ1; �; Zb þ tZaþ1Þ

¼ ½bþ 1; a; �; b; aþ 1�:
Hence, we see that such a contribution to the NMHV
amplitude is given by

Vðbþ 1; . . . ; aÞVðaþ 1; . . . ; bÞ½bþ 1; a; �; b; aþ 1�:
The sum over tree diagrams gives the NMHVamplitude as

A0
NMHV ¼ X

a<b

Vðbþ 1; . . . ; aÞ½b; bþ 1; �; a; aþ 1�


 Vðaþ 1; . . . ; bÞ: (46)

We remark that the corresponding formula in momentum
twistor space is A0

NMHV ¼ P
a<b½a; aþ 1; �; b; bþ 1�,

which is the formula above stripped of the MHV factors.

B. Tree-level N2MHV amplitudes

At N2MHV, there is still essentially one family of dia-
grams, Fig. 3, with the external legs distributed around it in
all possible ways. However, our treatment will be different
in the two cases either where the two propagators are not or
are adjacent (i.e., not separated by external particles) in
Fig. 3 or 4 respectively. We refer to these as ‘‘generic’’ and
‘‘boundary’’ diagrams. The twistor space support of these
diagrams is also shown in Figs. 3 and 4.

1. Generic terms

Applying our twistor space Feynman rules for the MHV
formalism, a diagram of this sort gives
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Z
D3j4Z½1�D3j4Z½2�D3j4Z½3�D3j4Z½4� ��2j4ð½1�; �; ½2�Þ ��2j4ð½3�; �; ½4�Þ 
 Vðb2 þ 1; . . . ; a1; ½1�Þ

 Vð½2�; a1 þ 1; . . . ; a2; ½3�; b1 þ 1; . . . ; b2ÞVð½4�; a2 þ 1; . . . ; b1Þ:

We can use (36) four times (twice on the middle vertex and once each on the others) to replace a MHV vertex by one with
one fewer arguments multiplied by a ��2j4ð. . .Þ to isolate the dependence on the propagator variables Z½i� to get

Z
D3j4Z½1�D3j4Z½2� ��2j4ð½1�;�;½2�Þ ��2j4ða2;b1þ1;½3�Þ ��2j4ðb1;a2þ1;½4�Þ
D3j4Z½3�D3j4Z½4� ��2j4ð½3�;�;½4�Þ ��2j4ða1;b2þ1;½1�Þ

 ��2j4ðb2;a1þ1;½2�Þ
Vðb2þ1; . . . ;a1ÞVða1þ1; . . . ;a2;b1þ1; . . . ;b2ÞVðb1; . . . ;a2þ1Þ:

These integrations can be done against the delta functions just as in the NMHV case to obtain R invariants. This gives an R
invariant for each propagator multiplied by a MHV amplitude for each vertex to yield

½a1; b2 þ 1;�; a1 þ 1; b2�½a2; b1 þ 1;�; a2 þ 1; b1� 
Vðb2 þ 1; . . . ; a1ÞVða1 þ 1; . . . ; a2; b1 þ 1; . . . ; b2ÞVðb1; . . . ; a2 þ 1Þ;
(47)

for the general contribution to the N2MHV amplitude with
nonconsecutive propagators.

Hence, after the integral over propagator insertions has
been performed, the remaining external legs on the middle
line of Fig. 3 can be treated as a single MHV vertex, with
the propagator insertions removed.

2. Boundary terms

A boundary diagram, on the other hand, is one in which
the propagator insertions are adjacent on the middle vertex
(see Fig. 4). We obtain

Z
D3j4Z½1�D3j4Z½2�D3j4Z½3�D3j4Z½4� ��2j4ð½1�; �; ½2�Þ

 ��2j4ð½3�; �; ½4�Þ 
 Vðb2 þ 1; . . . ; a1; ½1�ÞVð½2�; ½3�;

 b1 þ 1; . . . ; b2ÞVð½4�; a1 þ 1; . . . ; b1Þ:

As before we can use (36) to factor out three MHVampli-
tudes/vertices, one for each vertex, depending only on the
external twistors. Because of the adjacency of Z½2� and Z½3�
on the middle vertex there are two ways to do this depend-
ing on which of these propagator insertions we use (36) on
first. Taking Z½2� first we obtain

FIG. 3. Twistor support of a typical NMHV tree diagram.

FIG. 4. Twistor support of a nonboundary N2MHV tree diagram.
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Z
D3j4Z½1�D3j4Z½2�D3j4Z½3�D3j4Z½4� ��2j4ð½1�;�;½2�Þ

 ��2j4ð½3�;�;½4�Þ
 ��2j4ða1;½1�;b2þ1Þ ��2j4ðb2;½2�;½3�Þ

 ��2j4ðb2;½3�;b1þ1Þ ��2j4ðb1;½4�;a1þ1Þ

Vðb2þ1; . . . ;a1ÞVðb1þ1; . . . ;b2Þ

Vða1þ1; . . . ;b1Þ:

Proceeding to do the Z½1� and Z½2� integrals as before, we
obtain

Z
½a1; b2 þ 1; �; b2; ½3�� ��2j4ð½3�; �; ½4�Þ ��2j4ðb1; a1 þ 1; ½4�Þ

 ��2j4ðb1 þ 1; b2; ½3�ÞD3j4Z½3�D3j4Z½4�Vðb2 þ 1; . . . ; a1Þ

 Vðb1 þ 1; . . . ; b2ÞVða1 þ 1; . . . ; b1Þ:

Here we see that Z½3� is inserted into the first R invariant but

will be fixed by integration against the remaining delta
functions. It is clear that Z½3� is uniquely determined to be

at the intersection between the line Lb1þ1;b2 joining Zb1þ1

to Zb2 and the plane spanned by h�; b1; a1 þ 1i. We

therefore define

Zdb1þ1
¼ Lb2;b1þ1 \ h�; b1; a1 þ 1i;

which will be the final value of Z½3�. Now, integrating out

Z½3� and Z½4� against the delta functions we obtain

½a1; b2 þ 1;�; db1 þ 1; b2�½b2; b1 þ 1;�; a1 þ 1; b1�

Vðb2 þ 1; . . . ; a1ÞVðb1 þ 1; . . . ; b2ÞVða1 þ 1; . . . ; b1Þ:

(48)

If we had decomposed the middle MHV vertex using
(36) in a different order, removing Z½3� first and then Z½2�,
we would have obtained a different, albeit equivalent,
formula. Following the above procedure, we obtain

½a1; b2 þ 1;�; b1 þ 1; b2�½b̂2; b1 þ 1;�; a1 þ 1; b1�

Vðb2 þ 1; . . . ; a1ÞVðb1 þ 1; . . . ; b2ÞVða1 þ 1; . . . ; b1Þ

(49)

where

Zb̂2
¼ Lb2;b1þ1 \ ha1; b2 þ 1; �i:

As in the momentum twistor case, these two shifts are
equivalent in the sense that (48) and (49) are equal.

3. Boundary-boundary terms

There is a final class of N2MHV diagrams that doesn’t
quite fit into the above framework: those in which there is
only one external particle on the middle vertex (see the first
diagram of Fig. 8). This yields

Vðb1 þ 1; . . . ; a1ÞVða1 þ 2; . . . ; b1Þ



Z
D3j4Z½2�D3j4Z½3�Vð½2�; a1 þ 1; ½3�Þ


 ��1j4ðb1 þ 1; a1; �; ½2�Þ ��1j4ða1 þ 2; b1; �; ½3�Þ;
and by pulling out a delta function from the middle vertex
reducing it to a two-vertex, we can integrate out Z½3� to
reduce to

Vðb1þ1; . . . ;a1ÞVða1þ2; . . . ;b1Þ

Z
D3j4Z½2�Vð½2�;a1þ1Þ


½a1þ2;b1;�;a1þ1;½2�� ��1j4ðb1þ1;a1;�;½2�Þ: (50)

At this point the remaining integrations can be performed
in various ways; for example one can use the remaining
explicit delta function or one of those implicit in the two-
point vertex to perform (some of) the remaining Z½2�
integration. [If one were working in Euclidean signature,
we could use (A9) to obtain a formula as a product of R
invariants but involving a complex conjugate twistor.]
However, the integral over the space of lines through the
given fixed point Zaþ1 on the middle vertex is essential. If
these lines are to correspond to points of real Minkowski
space, then this is a one-dimensional integral, but in
Euclidean signature this would be zero dimensional.
The full N2MHV amplitude is a sum over generic,

boundary and boundary-boundary diagrams using (47),
(48), and (50).

C. NkMHV tree amplitudes

We now extend this computational strategy to general
NkMHV tree amplitudes. For arbitrary k, the amplitude is
built from a sum of diagrams, the building blocks of which
we have already encountered at the N2MHV level: generic
terms (i.e., diagrams with no adjacent propagator inser-
tions); boundary terms (i.e., diagrams in which one or more
vertices have two or more adjacent propagator insertions);
and boundary-boundary terms (i.e., boundary terms in
which a vertex with adjacent propagator insertions has
fewer than two external legs). We deal with each type of
term separately in what follows.

1. Generic terms

For diagrams in which there are no adjacent propagator
insertions at any vertex, our twistor space Feynman rules
generalize directly from our prior investigations. At each

vertex, using (36), we can strip off a ��2j4 at each propagator
insertion leaving a MHV vertex that depends only on the
external particles at that vertex. Each propagator
��2j4ðZ1; �; Z2Þ is then multiplied by the ��2j4ðZ1; �; �Þ and
��2j4ðZ2; �; �Þ that have been stripped off from the MHV
vertices at each end. Here � and � are the two nearest
external particles on one side of the propagator, while �
and � are the closest on the other side (see Fig. 5). As
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before, the integrations over Z1 and Z2 can be done alge-
braically against the delta functions to yield the R invariant
½�;�; �; �; ��.

As an example, consider the generic term with a diagram
in twistor space given by Fig. 6. Stripping off all external
MHV amplitudes and then integrating over propagator
insertions gives, in the numbering scheme for the external
particles used by the diagram,

Vðbk þ 1; . . . ; a1ÞVðak þ 1; . . . ; b1Þ


 Yk�1

j¼1

Vðaj þ 1; . . . ; ajþ1; bk�j þ 1; . . . ; bkþ1�jÞ


Yk
j¼1

½bkþ1�j þ 1; aj; �; aj þ 1; bkþ1�j�:

Of course, for generic nonboundary tree diagrams, the
precise form of the contribution to the overall amplitude
will depend on the diagram’s topology. However, the for-
mula is constructed algorithmically as described above
with kþ 1 MHV amplitudes built from external particles
at each vertex, and k R invariants built by connecting the
external particles closest to the two ends of each propaga-
tor and the reference twistor.

2. Boundary terms

A boundary term will be a diagram for which some
propagators are inserted next to each other on some verti-
ces, although we will for the time being require that there
are at least two external particles on each vertex.

For boundary terms, the formulas are similar to the
nonboundary case: we obtain a product of kþ 1 MHV
amplitudes, one for each vertex containing only the twist-
ors for the external particles at that vertex, and k R invar-
iants, one for each propagator. However, because of

adjacent propagator insertions, some of the entries in the
R invariants associated to the propagators are now shifted.
The rule for the shifts can be obtained by studying each

end of the propagator separately; the R invariant for a given
propagator will still have two pairs of twistors inserted into
it, each pair lying on one of the two lines associated to the
vertices into which the ends of the propagator are inserted.
To give the most general case, we compute the shifts at a

vertex with k adjacent propagators as in Fig. 7. We now use
(36) to decompose the central vertex into a product

��2j4ðb2; ½1�; ½3�Þ ��2j4ðb2; ½3�; ½5�Þ . . .

 ��2j4ðb2; ½2j� 1�; ½2jþ 1�Þ � � �

 ��2j4ðb2; ½2k� 1�; b1Þ 
 Vðb1; . . . ; b2Þ:

It is clear that we have made a choice in doing this and we
could easily have chosen the opposite orientation or indeed
made other choices. The factor of Vðb1; . . . ; b2Þ will be left
as part of our final answer, but we will seek to use the delta
functions to integrate out the Z½2j�1�. Introducing the

propagators, the relevant integrals for the Z½2j�1� are

Z Yk
j¼1

D3j4Z½2j�1� ��2j4ð½2j�; �; ½2j� 1�Þ


 ��2j4ðb2; ½2j� 1�; ½2jþ 1�Þ; (51)

where Z½2kþ1� ¼ Zb2 . These can be done inductively start-

ing from Z½2k�1� and decreasing using the fact that we know
that the Z½2j� lie on the lines Lcj;dj . Performing the Z½2k�1�
integral against the delta functions ��2j4ð½2k�; �; ½2k� 1�Þ

��2j4ðb2; ½2k� 1�; b1Þ yields ��1j4ð½2k�; �; b1; b2Þ. Given that
Z½2k� is fixed to lie on the line Lck;dk , Z½2k�1� must be fixed to

lie not only on Lb1;b2 but also on the plane through * and

Lck;dk . Thus we can substitute

Z½2k�1� ¼ Lb1;b2 \ h�; ck; dki; (52)

into the remaining formulas. Now that Z½2k�1� is fixed we

can carry on and integrate Z½2k�3� and so on by induction.

We finally obtain for the integral (51)

Yk
j¼1

��1j4ð½2j�; �; b2; ½2jþ 1�Þ; (53)

FIG. 5. Twistor support of a boundary N2MHV tree diagram.

FIG. 6. Propagator contributions.

MAXIMALLY HELICITY-VIOLATING DIAGRAMS IN . . . PHYSICAL REVIEW D 86, 065019 (2012)

065019-15



where now the Z½2j�1� are fixed twistors defined by

Z½2j�1� ¼ Lb1;b2 \ h�; cj; dji: (54)

To obtain a product of R invariants we must now integrate

out the Z½2j� against the ��2j4 obtained from (36) applied to

the vertex on which it lies. Assuming no adjacent propaga-
tors to these on those vertices we obtain, as before, for the
diagram in Fig. 7 the contribution

Vðb1; . . . ; b2Þ
Yk
j¼1

Vðcj; . . . ; djÞ½½2j� 1�; b1; �; cj; dj�:

We have done this calculation for the case where just one
end of a propagator is adjacent to another, but we can state
the rules for a general diagram as follows:
(i) Each vertex in the diagram gives rise to a factor of a

MHV vertex in the answer that depends only on the
external legs at that vertex.

(ii) Each propagator corresponds to an R invariant

½â1; a2; �; b̂1; b2� where a1 and a2 are the nearest
external twistors with a1 < a2 in the cyclic ordering
on the vertex at one end of the propagator, and
similarly for b1 < b2 on the vertex at the other
end. Let p be the insertion point on the vertex
containing a1 and a2. We have that â1 is shifted
according to the rule

Zâ1 ¼

8>>><
>>>:
Za1 if p is next to a1

La1;a2 \ hc; d; �i if p is next to the propagator on thea1 side

that connects toLc;d:

(55)

The rule for b̂1 follows by a $ b.

FIG. 7. Twistor support of an example nonboundary NkMHV term.

FIG. 8. NkMHV boundary term with k adjacent propagators.

TIM ADAMO AND LIONEL MASON PHYSICAL REVIEW D 86, 065019 (2012)

065019-16



3. Boundary-boundary terms

We now turn to the boundary-boundary contributions
when there are fewer than two external legs on some
vertices where the above prescription breaks down: there
will be no line La1;a2 to use in the definition of the shifted

Zas so the shifts prescribed by (55) for the boundary terms
cannot be defined. See Fig. 8 for simple examples of such
diagrams; we already considered the first of these in our
discussion of the N2MHV case. In that case there remained
one external leg on the diagram, and we were left with an
integral over one remaining internal twistor in (50),
although in principle, this can be reduced to an integral
over the space of real lines through the given fixed twistor
Zaþ1 which in Minkowski signature is one dimensional,
and in Euclidean signature, zero dimensional. In general it
can be worse than this: we can have vertices with no
external legs and our procedure will leave us with two
remaining twistors to integrate out. The simplest of these
is the second diagram in Fig. 8 and we work through this.

The N3MHV ‘‘cartwheel’’ diagram represents essen-
tially the worst-case scenario for a boundary-boundary
term. It gives rise to the integral

Vðb1 þ 1; . . . ; a1ÞVða1 þ 1; . . . ; b1ÞVða2 þ 1; . . . ; b1Þ



Z
D3j4Z½2�D3j4Z½5� ��1j4ðb1 þ 1; a1; �; ½2�Þ


 ��1j4ða2 þ 1; b1; �; ½5�ÞVð½2�; ½5�Þ

 ½a1 þ 1; a2; �; ½2�; ½5��;

where Vð�; �Þ is the two-point MHV amplitude given
by (39).

We emphasize that although we have not been able to
reduce boundary-boundary terms to a simple expression in
terms of shifted twistors, they are still fully described by
the twistorial MHV formalism. It is possible to reduce
these further using the remaining delta functions, but there
is no reason not to be integrating over the full real four-
dimensional space of real lines. It seems to be impossible
to obtain an expression built only out of R invariants and
MHV vertices. However, we again stress that with a choice
of real contour these remaining integrals could be per-
formed (and do not introduce divergences); this would

simply entail the introduction of new signature-dependent
machinery which we choose to avoid here.
A full NkMHV tree amplitude is then computed in the

MHV formalism on twistor space by summing the contri-
butions for all nonboundary, boundary, and boundary-
boundary terms for the given specification of external
particles and MHV degree.

V. LOOP DIAGRAMS IN TWISTOR SPACE

We know that loops are calculated correctly from the
MHV formalism in momentum space at least at 1-loop [10]
and as far as the loop integrand in the planar part of the
theory is concerned it has been shown to be correct to all
loops for four-dimensional cut-constructable theories [12].
The status of the MHV formalism at 1-loop and beyond in
nonsupersymmetric gauge theories is still speculative, be-
cause MHV rules miss the rational contributions to a
scattering amplitude. Furthermore, these loop amplitudes
are generically divergent in four dimensions and require
regularization. We give here only a very superficial analy-
sis and consider only the simplest finite diagrams. We
consider also some of the diagrams of the MHV 1-loop
amplitude but our analysis here will be inconclusive. In
particular, we will not regularize or introduce the Feynman
i� prescription (but see Sec. VI for some discussion
of this).

A. Finite examples

In order to start with finite examples, we consider first a
nonplanar diagram at MHVand secondly a planar diagram
at NMHV to show the simplicity of the extension of the
above ideas to loop amplitudes.

1. Nonplanar 1-loop MHV diagrams

For 1-loop diagrams at MHV we have two vertices
connected by two propagators. In the planar case the
propagators must be adjacent to each other on both vertices
as in Fig. 11 and we will see that these are divergent. In
general the propagators can have arbitrary separation and
we consider these separated cases first as shown in Fig. 9.
Such diagrams are nonplanar.
It is straightforward to see that we can integrate out the

intermediate twistors against delta functions obtained from

FIG. 9. Boundary-boundary terms at N2MHV and N3MHV.
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the vertices by (36) exactly as at tree level and indeed the
resulting expression,

Vða1; b1; . . . ; a4; b4; . . .ÞVða2; b2; . . . ; a3; b3; . . .Þ

 ½a1; b1; �; a2; b2�½a3; b3; �; a4; b4�; (56)

follows from the rules that we gave for generic tree dia-
grams. (We give more details in the calculation for the
divergent planar case below.) However, the geometry
underlying this calculation is instructive. The twistors
that were integrated out to obtain this formula were con-
strained to lie on the lines associated to the vertices. The
propagators also fixed these points so that they lie on the
(unique) line through * that is transversal to the lines
associated to the MHV vertices. Thus the insertion points
of the two propagators at a given MHV vertex end up being
the same points. The MHV vertex has no singularity when
points come together unless they are adjacent in the color
ordering where they have a pole. Here in this generic
nonboundary case they are not adjacent. In the boundary
case one anticipates therefore one degree of divergence as
two ends of the propagators must lie on top of a pole. In the
planar case we will see a double divergence as both ends of
the propagators will be adjacent.

2. Planar NMHV at 1-loop

Two types of diagram contribute to the NMHV ampli-
tude at 1-loop, one divergent and one finite. The finite cases
are as in Fig. 10 (the divergent ones are the same as the
MHV case with an additional vertex connected by a propa-
gator into one of the vertices).

The computation of the internal integrals follows iden-
tically to the tree-level cases above. Using the numbering
scheme for external particles indicated by Fig. 10, we can

trivially integrate over D3j4Z½2�, D3j4Z½4� and D3j4Z½6� to

give

Z
D3j4Z½1�D3j4Z½3�D3j4Z½5� ��2j4ðc1 þ 1; a1; ½1�Þ

 ��1j4ð½1�; �; ½3�; a1 þ 1Þ ��2j4ða1 þ 1; b1; ½3�Þ

 ��1j4ð½3�; �; ½5�; b1 þ 1Þ ��2j4ðb1 þ 1; c1; ½5�Þ

 ��1j4ð½5�; �; ½1�; c1 þ 1ÞVðc1 þ 1; . . . ; a1Þ

 Vða1 þ 1; . . . ; b1ÞVðb1 þ 1; . . . ; c1Þ:

The remaining integrals can be performed against the delta

functions yielding the shifted twistors â, b̂, ĉ for Z½1�, Z½3�,
Z½5� respectively, as before to give

Vðc1 þ 1; . . . ; a1ÞVða1 þ 1; . . . ; b1ÞVðb1 þ 1; . . . ; c1Þ

 ½c1 þ 1; a1; �; â; a1 þ 1�½a1 þ 1; b1; �; b̂; b1 þ 1�

 ½b1 þ 1; c1; �; ĉ; c1 þ 1�;

where

â ¼ La1þ1;b1 \ hb1 þ 1; c1; �i;
b̂ ¼ Lb1þ1;c1 \ hc1 þ 1; a1; �i;
ĉ ¼ Lc1þ1;a1 \ ha1 þ 1; b1; �i:

B. Planar 1-loop MHV

The diagrams for the planar 1-loop MHVamplitudes all
have the same form as given by Fig. 11 (although we do
have boundary terms when there is only one leg on one of
the vertices).
In the generic case, we have enough delta functions to

integrate out the Z½j� as in the tree-level cases above.

However, the geometry of the relations implied by the
delta functions (as in the nonplanar MHV case) forces
the point Z½2� to be coincident with Z½3� and Z½1� to be

coincident with Z½4�. This is because the propagators force
both the pairs ðZ½1�; Z½2�Þ and ðZ½3�; Z½4�Þ to lie on the

common transversal to the two lines through * as indicated
in Fig. 11). Given two lines in general position (i.e., those
corresponding to the two MHV vertices) and a point in PT
not on those lines (here the CSW reference twistor *), there
is a unique transversal connecting the lines and intersecting
this point. Hence, the lines L½1�½2� and L½3�½4� must in fact be

the same, which in turn means that Z½1� ¼ Z½4� and Z½2� ¼
Z½3�. Now, the MHV vertices have simple poles whenever

any two of their arguments coincide, so the geometry
evaluates the two vertices at one of each of their poles.
Using the reduced rules above obtained by naively per-

forming the integrals against the delta functions gives

½a1; b1 þ 1; �; d̂; a1 þ 1�½b1; a1 þ 1; �; ĉ; b1 þ 1�

 Vða1 þ 1; . . . ; b1ÞVðb1 þ 1; . . . ; a1Þ;

where

ĉ ¼ La1;b1þ1 \ hb1; a1 þ 1; �i;
d̂ ¼ Lb1;a1þ1 \ ha1; b1 þ 1; �i:

FIG. 10. Nonplanar 1-loop MHV diagram in twistor space.
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Considered on its own, each R invariant can be seen to
contain a divergence arising from the geometry outlined
above. Indeed, recall that

½b1; a1 þ 1; �; ĉ; b1 þ 1�

¼ �0j4ððb1; a1 þ 1; �; ĉÞ�b1þ1 þ cyclicÞ
ðb1; a1 þ 1; �; ĉÞ � � � ðb1 þ 1; b1; a1 þ 1; �Þ ;

and observe that from its definition, ĉ is coplanar with b1,
a1 þ 1, and � and hence the denominator factor of
ðb1; a1 þ 1; �; ĉÞ ¼ 0. There is a similar 0 in the denomi-

nator of ½a1; b1 þ 1; �; d̂; a1 þ 1�, so we obtain a ‘‘1=0’’
from each R invariant. However, considered together the
fermionic parts of the two R invariants are proportional to
each other and so using the nilpotency of these expressions,
these numerator terms vanish [44].

Clearly, the divergence (or nondivergence) properties of
this planar 1-loop MHV amplitude are dependent upon a
careful treatment of this ‘‘0=0.’’ Presumably careful regu-
larization should only be required for those of these dia-
grams that are actually divergent, and taking care of the
Fermionic structure first before performing the integrals
should lead to finite answers for the generic finite case of
these diagrams. Genuine divergences only arise in the case
when one of the vertices is the four-point vertex [28]. To
make sense of the genuinely divergent cases, regularization
is required and we discuss this further in Sec. VI.

There does not seem to be a correlation between
boundary-boundary terms and divergences as one might
have initially feared (although of course that is not to say
that there are not divergent boundary-boundary diagrams).

VI. DISCUSSION AND FURTHER DIRECTIONS

We have seen that it is possible to formulate scattering
amplitudes in twistor space in such a way as to deal with
both their cohomological and invariance properties explic-
itly if we regard amplitudes as being in the ‘‘topological
dual’’ to the wave functions; that is, as tensor products of

�0;2’s with compact support rather than as H1’s where the
wave functions live.
Using this approach we were able to take the twistor

action in the simplest axial gauge, the CSW gauge, and
obtain its Feynman diagrams. At tree level we discovered
that for a large class of diagrams, as in momentum space,
one can perform the internal integrals against delta func-
tions to give an expression as a product of MHV vertices,
one for each vertex in the diagram but evaluated only on its
external particles, and an R invariant for each propagator.
This is not quite possible when a line for the vertex is not
determined by external particles on that vertex, which is
the case when there are fewer than two external legs
attached. However, in contradistinction to momentum
space Feynman rules, this integration against delta func-
tions is still possible for loop diagrams although one then
sees the divergence directly, and we have not yet intro-
duced a suitable regulation. This is a major problem that
we have not begun to address here.
Cohomology, crossing symmetry and anomalies
As has already been mentioned, wave functions on

twistor space are cohomology classes in H1
�@
ðU;OðnÞÞ,

being (0, 1)-forms � that are �@ closed ( �@� ¼ 0) defined

modulo the gauge freedom� ! �þ �@f on a domainU �
CP3j4. Amplitudes are functionals of such wave functions
representing the asymptotic states that are to be scattered.
Crossing symmetry tells us that it should not matter
whether the wave function is incoming or outgoing (i.e.,
positive or negative frequency). The positive/negative fre-
quency condition is the condition on the set U being
PT� ¼ f�Z � �Z � 0g.
In the first instance therefore, the kernel of the amplitude

is in the n-fold product of the dual to such H1’s. Since the
external wave functions are elements of a Hilbert space,
one usually imagines that one can blur this distinction
between the space of wave functions and its dual as the
Hilbert space is dual to itself. However, for twistor theory
in Lorentz signature, this duality is somewhat involved: the
first step in defining the Hilbert space structure on a wave

FIG. 11. Triangular 1-loop NMHV diagram.
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function is complex conjugation. This maps twistor space
to dual twistor space. The Hilbert space structure therefore
requires the use of the ‘‘twistor transform’’ from cohomol-
ogy classes on dual twistor space to map them back to
twistor space to a class with weight�n� 2 onPT� where
it is dual to the original class in H1ðPTþ;Oðn� 2ÞÞ by
integration over PN ¼ fZ � �Z ¼ 0g. Thus, the duality is
highly nontrivial and there is a big difference between
dual descriptions. Unitarity is not manifest on twistor
space.

Rather than using the nonlocal Hilbert space structure,
we have represented the kernel of an amplitude using
the local duality between �0;1ðPT;Oðn� 2ÞÞ and

�0;2
c ðPT;Oð�n� 2ÞÞ where the subscript c denotes com-

pact support. Crossing symmetry is then made manifest
when this compact support lies in PN so that it makes
sense when integrated against external fields of both
positive and negative frequency. This support was made
clear in the definition of the vertices in which the external
twistors were all required to lie on a line that corresponds
to a point of real Minkowski space. Such lines automati-
cally lie in PN.

Thus, our amplitudes took values in the n-fold tensor

product of �0;2
c ðPT;Oð�n� 2ÞÞ

AðZ1; . . . ; ZnÞ 2 �0;2n
c ð
n

a¼1PT
0
a;OÞ:

To obtain a functional of wave functions, we use the
natural duality between (0, 2)- and (0, 1)-forms on PT0
given by

�0;2ðPT0;OÞ 	�0;1ðPT0;OÞ ! C;

ð�;�Þ �
Z
PT0

D3j4Z ^ � ^�:

It is defined modulo �@ of forms with compact support as
these will give 0 by integration by parts. To obtain a
formula for the amplitude as a functional of wave functions
of external particles, we simply pair the amplitude with the
external wave functions to obtain the normal amplitude.
See (35) above for the example of the MHVamplitude and
(A6) where we show that the two-point vertex is exact so
that it vanishes as an amplitude.

The amplitude ought to be �@ closed with compact sup-
port for the integral to only depend on the cohomology
class of �. If so, we would find that the amplitude takes
values in the cohomology groupsH2n

c ð
nPTÞ. However, in
our context, we have gauge fixed and so this is not an
absolute requirement and indeed these groups vanish. The
MHV amplitude itself seems reasonably canonical, and so
one might hope that it at least is �@ closed. We find by direct
computation along the lines of that leading to (25)

�@Vð1; . . . ; nÞ ¼ 2�i
X
a

ð ��3j4ða; aþ 1ÞÞVð1; . . . ; â; . . . ; nÞ:

(57)

This is a clear obstruction to realizing the amplitudes as
cohomology, and indeed this equation expresses the stan-
dard infrared singular behavior of amplitudes under col-
linear limits. One can understand this equation as implying
that, when understood as anH2, the amplitude has a simple
pole on the diagonals. See Ref. [45] for a discussion of how
such objects can be understood in algebraic geometry.
Thus, the failure of the amplitude to be �@ closed would

seem to be an anomaly arising from infrared divergences. It
leads to a failure of gauge invariance, but the machinery of
quantum field theory has in any case required that we fix
our gauge. A different gauge fixing would lead to very
different formulas for the amplitudes. The anomalies are
associated to the same poles in the MHV amplitude that
gives rise to anomalies in (super)conformal invariance as
noted by Ref. [46] and it seems likely that a proper coho-
lomogical treatment will require a similar treatment to that
given there.
Comparison to the momentum twistor formulation
It is instructive to compare the twistor space version of

the MHV formalism to that in momentum twistor space.
Momentum twistors were introduced by Andrew Hodges
[13] and are based on dual conformal invariance. The dual
conformal group is the conformal group acting on region
momentum space, an affine version of momentum space. It
arises from T duality in the AdS/CFT correspondence [47],
but had already been observed in the integrands of certain
loop amplitudes [48] and was seen to extend to all planar
amplitudes in various works [41,49–53]. The transform
from momentum space to momentum twistor space is
essentially a local coordinate transformation that uses the
twistors for the dual conformal group rather than the
standard conformal group and makes manifest that invari-
ance. The MHV formalism was reformulated in momen-
tum twistor space in Ref. [11] (and this was the framework
in which the proof of the all-loop integrand for the planar
MHV formalism was obtained [12] by extending the re-
cursion methods of Refs. [7–9]).
The correspondence between the two different twistor

space MHV formalisms is relatively simple, but with im-
portant differences. This is despite the fact that momentum
twistors and ordinary twistors are related in a highly non-
local way (in split signature by the half-Fourier transform)
reflecting T duality on space-time. In momentum twistor
space, the vertices of the MHV formalism simply corre-
spond to 1, and the propagators are given by the R invar-
iants, now for the dual superconformal group. If we
compare this to the MHV formalism in twistor space
obtained in this paper, in generic diagrams we obtain
precisely the same R invariants for the propagators, except
here they are functions of twistors, whereas in the momen-
tum twistor version they are functions of momentum twist-
ors. However, in twistor space the MHV vertices are not 1,
but are given by the standard twistor MHV formula, i.e., as

the product of delta functions ��2j4 that ensure collinearity.
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However, for the boundary diagrams, although shifted
twistors need to be used in both versions of the formalism,
the geometry of these shifts are different in the two differ-
ent twistor versions of the formalism.

At the level of the action, the twistor action was also
used to obtain the momentum twistor version of the MHV
diagram formalism [14]. However, in this context it was
obtained as a diagrammatic expansion for the correlation
function of a (holomorphic) Wilson loop in twistor space
rather than an amplitude. (This gave the first proof of the
Wilson-loop amplitude correspondence and indeed the first
formulation that extends beyond MHV amplitudes [54]; it
also leads to a definition of a supersymmetric space-time
Wilson loop.) However, it is worth remarking that in this
context the Feynman diagrams for the correlation functions
are the planar duals of those for the amplitudes. That these
can lead to the same formulas is only possible because, for
momentum twistors, the vertices are just given by 1.

Other axial gauges
It is worth noting that the CSW gauge is by no means the

only axial gauge. One only needs to choose a holomorphic
one-dimensional distribution D � T1;0PT and require that
Aj �D ¼ 0. The simplest way to do this is to choose a global
holomorphic vector field V (so that D is the span of V) and
require that �V 5 A ¼ 0. The CSW gauge arises when V
corresponds to a null translation, but we can in principle
adapt V to any problem we choose.

The vertices do not change if we change the gauge, but

the propagator does. For example, if V ¼ TAA0
�A0@=@!A,

as arises from a timelike translation, we obtain for the
propagator

�ð1; 2Þ ¼
Z dsdt

st
��4j4ðZ1 þ sZ2 þ tTðZ1ÞÞ; (58)

where TðZÞ ¼ ðiTAA0
�A0 ; 0; 0Þ. It is conceivable that such a

propagator will give rise to alternative useful formulas.
Feynman i� prescription
A final issue that we have not explicitly spelled out is

how to ensure that we have incorporated the Feynman i�
prescription into the propagator. An automatic way of
doing this is to analytically continue to Euclidean signa-
ture; this is implicit in our form of the propagator. Indeed,
we see in Appendices B, C, and D that in order to obtain the
momentum space propagator correctly, it is necessary to
perform the calculation on the Euclidean real slice.
However, this also implies that in the definition of the
two-point vertex, the ‘‘real’’ contour of Minkowski space
must be understood to include an ‘‘i� shift’’ of the
Lorentzian real slice (i.e., one that is topologically equiva-
lent to the Euclidean slice). This must be understood in a
limiting sense if we also wish to maintain manifest cross-
ing symmetry which requires us to take the limit back onto
the Lorentzian real slice.

A. Open questions

1. Tree amplitudes

It would be helpful to have some further analysis of the
boundary-boundary terms. We have not pushed them fur-
ther here as they do not fit into our generic pattern of
reducing to MHV vertices with just external particles
multiplied by an R invariant for each propagator.
Furthermore, these diagrams do not have a special status
in momentum space (or in momentum twistor space).
There are nevertheless further delta functions within the
two-point vertex that we have not exploited. In the case of
a vertex with no remaining external legs, we will be left
with a four-dimensional integral that is unconstrained by
delta functions. With just one external particle, in Lorentz
signature, there is one remaining integral, whereas in
Euclidean signature there is none.
One unsatisfactory feature of our discussion is our

treatment of the two-point vertex. We know that it
does not contribute from momentum space arguments,
as shown in Sec. , and it is also easily seen to vanish
from the point of view of the twistor action by evaluat-
ing it on off-shell momentum eigenstates—this was the
argument used in Ref. [25]. However, it is not so obvious
why it vanishes within the formalism used in this paper
(see Appendix A for some further formulas and discus-
sion). The puzzle is sharpened by the fact that the two-
point vertex does not vanish when evaluating correlation
functions; in the context of the holomorphic Wilson loop
in twistor space [14], it is the basic ingredient in the
MHV 1-loop amplitude.

2. Loop amplitudes

It is striking that for many loop diagrams, it is possible to
perform all the integrals against the delta functions and that
their evaluation is essentially as easy as at tree level. This
is clearly quite different from the momentum space (or
indeed momentum twistor) framework in which there are
always four remaining integrals at each loop order. This
leads to the possibility that this could become a more
efficient formalism than that in momentum space.
However, we need to have a systematic scheme to cope
with divergences to make it useful. The usual strategy on
momentum space is to regularize divergences using dimen-
sional regularization (cf., Ref. [10]). This would seem to be
awkward to apply in a twistorial context as twistor theory
does not scale so easily to higher dimensions. An easier
approach is to use the mass regulation using the Higgs
branch introduced in the context of the AdS/CFT approach
to scattering theory in terms of string theory on AdS5 
 S5

[55]. In the context of momentum twistors this leads to
local adjustments to the formulas on momentum twistor
space which arise from the same twistor action, and so
could lead to a scheme that is applicable in our context.
Ideally we would regulate the whole theory in this way and
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obtain regularized amplitudes as an output. It remains to be
seen whether such a regulated theory would be as comput-
able as that described above.

Another approach to regulation is to simply focus on
finite terms. It is a standard fact that divergences are
controlled by those at 1-loop [or indeed from the Wilson
loop point of view, from the Uð1Þ theory] and the cusp
anomalous dimension. Thus one can cancel divergences
and focus on the finite remainder. A particularly elegant
strategy here would be to directly calculate the finite
cross-ratio expressions used in the operator product ex-
pansion (OPE) approach of Ref. [56].

An important feature of loop amplitudes is the relation-
ship between the transcendentality degree of functions
(polylogs) of momenta and the loop order (i.e., at
l-loops, the functions and coefficients have transcenden-
tality degree 2l and 2l logs appear); see Refs. [57,58] for
applications. Since there is, at least in a moral sense, a half-
Fourier transform between our relatively accessible ex-
pressions and those on momentum space we should not
be expecting to see polylogs directly. Nevertheless, one
might hope that there should be a direct way of recognizing
the symbols of the polylogs that arise. As a first step, one
should perhaps already be able to see the transcendental
coefficients of the cusp anomalous dimension as one at-
tempts to cancel divergences in multiloop diagrams with
those in powers of the 1-loop amplitude according to the
definition of the finite parts of the log of the amplitude that
arises in the Wilson-loop point of view. Perhaps more
importantly, we should be able to simply use the transform
to momentum space described above (41) to obtain the
polylogs directly from the fully integrated loop twistor
MHV diagrams.

3. The Grassmannian connection

In the Grassmannian construction of Refs. [32,34,59],
tree amplitudes and the leading singularities of loop am-
plitudes at NkMHV are obtained as residues of a contour
integral involving superconformally invariant delta func-
tions of the form used in this paper over the Grassmannian
Gðkþ 2; nÞ of kþ 2 planes in Cn. In Ref. [60] the con-
nection with the MHV formalism in momentum twistor
space was established at NMHV using a recursion argu-
ment. By incorporating this work (and that in Ref. [11] for
momentum twistors) we should be able to obtain a more
systematic formulation of the full amplitude in the
Grassmannian derived from Lagrangian principles. A par-
ticular advantage of the Grassmannian formulation is that
global residue theorems can be used to obtain equivalences
between different formulas for the same amplitude and
allow us to obtain improved formulas. In particular, it
would be a great help in the regularization problem to
obtain twistor (as opposed to momentum twistor) forms
of the ‘‘local’’ versions of the loop amplitude integrands
found in Ref. [61].
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APPENDIX A: THE TWO-POINT
VERTEX IN TWISTOR SPACE

We showed in Sec. that the two-point vertex vanishes,
but we have not been able to see this directly in twistor
space. In this appendix we give a number of twistor space
formulas for the two-point vertex showing in particular that
it is �@ exact so that it plays no role in the Feynman diagram
formalism when inserted onto an external leg. Recall that
the two-point vertex on twistor space is given by the
expression

VðZ1; Z2Þ ¼
Z
M
ðCP1Þ2

D4j4ZAD
4j4ZB

volðGLð2;CÞÞ
d�1d�2

ð�1 � �2Þ2

 ��3j4ðZ1; Zð�1ÞÞ ��3j4ðZ2; Zð�2ÞÞ: (A1)

This can be reduced in a number of ways. Firstly note that
the fermionic part of the integral can be performed directly
algebraically against the fermionic delta functions to yield
a factor of ð�1 � �2Þ4 leaving an object with no fermionic
dependence

VðZ1; Z2Þ ¼
Z
M
ðCP1Þ2

D4ZAD
4ZB

volðGLð2;CÞÞ d�1d�2ð�1 � �2Þ2


 ��3
0;�4ðZ1; Zð�1ÞÞ ��3

0;�4ðZ2; Zð�2ÞÞ: (A2)

Here we define

�� 3
p;�p�4ðZ1; Z2Þ ¼

Z
sp�1ds ��4ðZ1 þ sZ2Þ;

where the subscripts denote the homogeneity in the first
and second entry respectively. The vol (GL(2)) can be
taken out by fixing �1 ¼ 0, �2 ¼ 1 and reducing the ZA

and ZB integrals to projective integrals. Removing the
appropriate Jacobian factor we obtain

VðZ1; Z2Þ ¼
Z
M
ðCP1Þ2

D3ZAD
3ZB


 ��3
0;�4ðZ1; ZAÞ ��3

0;�4ðZ2; ZBÞ; (A3)
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where the CP1 factors in the contour are now understood
as arising from integrating ZA and ZB over the CP1 corre-
sponding to x 2 M and then integrating over the real slice
M. This is an integral of a 12-form over an eight-
dimensional contour so that we are left with a 4-form in
Z1 and Z2 [a (0, 2)-form in each factor].

It is possible to reduce this further, but it is at this point
possible to express this as an exact form using a bosonic
version of (25). Define

��2
0;0;�4ðZ1; Z2; Z3Þ ¼

Z c33D
2c

c1c2
��4ðc1Z1 þ c2Z2 þ c3Z3Þ;

D2c ¼ c1dc2dc3 þ cyclic: (A4)

Then as in (25) we have

�@ ��2
0;0;�4ðZ1; Z2; Z3Þ ¼ 2�ið ��3

0;�4ðZ1; Z3Þ þ ��3
0;�4ðZ2; Z3ÞÞ:

(A5)

[There is no ��3ðZ1; Z2Þ term as there is no pole in c3
in (A4).] Thus we can write

VðZ1; Z2Þ ¼ �@

�
1

2�i

Z
M
ðCP1Þ2

D3ZAD
3ZB

��2
0;0;�4


 ðZ1; ZB; ZAÞ ��3
0;�4ðZ2; ZBÞ

�
; (A6)

as D3ZA ^ D3ZB ¼ 0 on the support of the ��3ðZA; ZBÞ
term. Thus VðZ1; Z2Þ is an exact form.

We now present another pair of formulas for the two-
point vertex. Breaking manifest conformal invariance we
can write

VðZ1; Z2Þ ¼
Z
M
d4x½�1�2�2 ��2ð!A

1 � xAA
0
�1A0 Þ


 ��2ð!A
2 � xAA

0
�2A0 Þ: (A7)

We can maintain conformal invariance if we are prepared
to use a Euclidean real slice for M, and this representation
could well be useful for Euclidean signature correlation
function calculations (although less appropriate to the S
matrix computations of this paper). In this case one of the
CP1 bundles over M can be taken to be the whole of the
twistor space parametrized by ZB and we can then integrate
out the ZA delta function in (A3) to obtain

VðZ1; Z2Þ ¼
Z
L1

D3ZB
��3
0;�4ðZ2; ZBÞ: (A8)

The remaining integral is that over the real CP1 in twistor
space that contains Z1. For a Euclidean signature real slice

we must have ZB ¼ Ẑ1 þ tZ1 for the bosonic part where

Ẑ1 is the Euclidean conjugate. We can now integrate over
the complex t plane to obtain

VðZ1;Z2Þ¼ ðZ1;Ẑ1;dẐ1;dẐ1Þ
Z
t2dsdt ��4ðZ2þsZ1þ tẐ1Þ:

(A9)

This is the bosonic collinear delta function

VðZ1;Z2Þ¼ðZ1;Ẑ1;dẐ1;dẐ1Þ ��2
0;�1;�3ðZ2;Z1; Ẑ1Þ; (A10)

where the subscripts denote the weights in its arguments.
Although our statement of �@ exactness for the two-point

vertex ensures that it does not contribute to the Feynman
diagram formalism when inserted onto an external particle
leg in any diagram (using integration by parts and the fact
that it is paired with an on-shell external wave function), it
is not so obvious that its contribution vanishes when it is
inserted on an internal (i.e., propagator) leg. This is
because an integration by parts argument moves the �@
operator onto a propagator (which is not �@ closed) rather
than a cohomology class. Explicitly calculating the con-
tribution in this case yields an integrand which is exactly
the same as that arising in the computation of the so-called
‘‘Kermit’’ diagrams in the momentum twistor version of
the MHV formalism [11]. This contribution plays a crucial
(nonvanishing) role in the momentum twistor framework
(essentially computing the 1-loop MHV contribution) and
certainly does not vanish as an integrand. However, our
formalism is a term-by-term transcription of the momen-
tum space MHV formalism to twistor space, and the two-
point contribution does not contribute on momentum
space. Furthermore, as we have mentioned, using the
Euclidean space formalism of Refs. [22,25] we can evalu-
ate the two-point vertex on off-shell momentum eigen-
states and see directly that it vanishes.
This tension between the picture on twistor space

presented here (where the two-point contribution must
vanish) and the momentum twistor formalism (where it
must not) is clearly a subtle issue that requires further
attention. As we have mentioned, the two calculations
are identical at the level of the integrand they produce;
the crucial difference manifests itself in the choice of
real contour.

APPENDIX B: TWISTOR SPACE AND
EUCLIDEAN SPACE-TIME SIGNATURE

The main exposition of this paper has focused on aspects
of the twistor space MHV formalism which are indepen-
dent of the choice of space-time signature. However, cer-
tain choices of signature give rise to formalisms in which
calculations may be performed more explicitly than before.
This appendix reviews the particulars of twistor space over
Euclidean space-time, Appendix C provides details for
the derivation of the momentum space MHV formalisms
from the twistor action, and Appendix D demonstrates how
the twistor propagator can be calculated directly from
space-time representatives. We denote four-dimensional
Euclidean space as E, and its chiral superspace extension
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as E4j8. Twistor space is related to space-time as a CP1

bundle over E4j8:

Hence, for every ðx; �Þ 2 E4j8, there is a line Lðx;�Þ ffi
CP1 � PT. The incidence relationship between E4j8 and
PT is

!A ¼ xAA
0
�A0 ; �i ¼ �iA

0
�A0 : (B1)

In Euclidean signature, xAA
0
corresponds to a real point

x 2 E provided xAA
0 ¼ x̂AA

0
, where �̂ is the quaternionic

conjugation which acts on spinors as [39]

�A ¼ ða; bÞ � �̂A ¼ ð �b;� ��Þ;
�A0 ¼ ðc; dÞ � �̂A0 ¼ ð� �d; �cÞ:

This leads to the reality structure (i.e., complex conjuga-
tion) on twistor space given by

ZI � ẐI ¼ ð!̂A; �̂A0 ;� ��2; ��1;� ��4; ��3Þ: (B2)

Real points in E4j8 correspond to lines that are invariant
under this conjugation. This means that we have the pro-

jection �: PT ! E4j8 where Z is mapped to the point

corresponding to the line through Z and Ẑ. This can be
written explicitly as [25]

ZI � ðxAA0
; �iA

0 Þ ¼
�
!A�̂A0 � !̂A�A0

½��̂� ;
�i�̂A0 � �̂i�A0

½��̂�
�
:

(B3)

The choice of complex structure on twistor space is that
arising from the complex coordinates Z. The fermionic
coordinates �i only ever need to be considered holomorph-
ically, so we will just focus on the definition of the �@
operator in bosonic directions PTb. To write the �@ operator
on PT explicitly, we define bases for �0;1ðPT0

bÞ and

T0;1PT0
b denoted respectively by

fe0; eAg f �@0; �@Ag; (B4)

where [19]

e0¼½�̂d�̂�
½��̂�2 ; eA¼ �̂A0dxAA

0

½��̂� ¼!A½�̂d�̂�
½��̂�2 � d!̂A

½��̂� ; (B5)

�@0¼½��̂��A0
@

@�̂A0
; �@A¼�A0

@AA0 ¼�½��̂� @

@!̂A
; (B6)

and set

�@ ¼ dẐ� @

@Ẑ�
¼ e0 �@0 þ eA �@A

¼ �A0�̂B0
d�̂B0

½��̂�
@

@�̂A0
þ �B0

�̂A0dxAA
0

½��̂� @AB0 ; (B7)

so we can set �@: �p;qðPT0
bÞ ! �p;qþ1ðPT0

bÞ. We have
�@2 ¼ 0 as required for an integrable complex structure.

An additional structure is provided by the @̂ operator,
which represents a holomorphic derivative in an antiholo-
morphic direction:

@̂ ¼ dẐ� @

@Z� : (B8)

It is not hard to see that this is also integrable (i.e., @̂2 ¼ 0)

and obeys �@ @̂ ¼ �@̂ �@ .
Bosonic twistor space PTb has the weighted holomor-

phic volume form given as

� ¼ ½�d�� ^ �A0�B0�ABdx
AA0 ^ dxBB

0
;

a section of �3;0ðPT0
b;Oð4ÞÞ. Supertwistor space PT is a

Calabi-Yau supermanifold, with the globally defined hol-
omorphic volume form of weight 0 on the full supertwistor
space used throughout this paper [1]:

D 3j4Z ¼ � ^ �ijkld�
i ^ d�j ^ d�k ^ d�l ¼ � ^ d4�:

(B9)

APPENDIX C: TRANSFORMATION
TO MOMENTUM SPACE

This appendix provides the details of the proof of the
Fourier transform of the twistor propagator used to derive
the momentum space MHV formalism from that in twistor
space given in Sec. III C. We wish to show that we have the
Fourier representation of the propagator as

q��ðx; �; �; x0�0; �0Þ
¼

Z
d4pd4
eiðx�x0Þ�pþ
�ð���0Þjpj
̂i ~�ðp;
;�;�0Þ; (C1)

where q�� is the pullback of the twistor space propagator
of (30) to the primed spinor bundle, and

~�ðpÞ ¼
��1ðh
̂jpj��Þ ^ ��1ðh
̂jpj�0�Þ

p2
; (C2)

and 
̂A is related to the original constant spinor 
A primary
part of Z� by Euclidean complex conjugation.
The pulled-back twistor propagator can be written as

q��ðx; �; �; x0; �0; �0Þ
¼

Z
C2

ds

s

dt

t
��2ðs
� ix � �� itx0 � �0Þ


 ��2ð�þ t�0Þ ��0j4ð�j�� � t�0j�0�Þ: (C3)
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We will abbreviate by writing ��2j4ð�þ t�0Þ :¼
��2ð�þ t�0Þ ��0j4ð�� t�0Þ with � ¼ �j�� etc., and use
the support of the delta functions to yield

q�� ¼
Z dsdt

st
��2ðs
� iðx� x0Þ � ð�ÞÞ ��2j4ð�þ t�0Þ:

Since this does not depend on xþ x0, we just Fourier
transform in y ¼ x� x0 to obtain

~�ðp; �;�; �0; �0Þ ¼
Z

d4yeip�y
dsdt

st
��2ðs
� iy � �Þ


 ��2j4ð�þ t�0Þ: (C4)

We now evaluate this over a real slice of Euclidean sig-
nature in the complex space-time. This will ensure that we
obtain the correct Feynman propagator on continuation
back to Minkowski signature. Recalling that ��2ðs
� iy �
�Þ is four real delta functions multiplied by a (0, 2)-form,
we see that, in Euclidean signature, the delta function for y
has the unique solution

yAA
0 ¼ is
A�̂A0 � i �s
̂A�A0

½�̂�� :

(We have taken 
 to be normalized.) In performing the y
integral we must also take care of the Jacobian factor that
will arise and further unpack the (0, 2)-form part of the
definition of ��2ðs
� iy � �Þ. This (0, 2)-form will contain
a d�s and D�̂ multiplied by a further Jacobian factor which
gives

~�ðp;�;�;�0;�0Þ¼
Z
eip�ð

is
�̂�i �s
̂�
½�̂�� Þdsdt

st

sd�sD�̂

½�̂��2
��2j4ð�þ t�0Þ:

(C5)

Because of the cancellation of the s in the numerator with
that in the denominator, the s integral can now be per-
formed introducing a two-dimensional delta function in the
coefficient of s in the exponential. This delta function can
be combined with the form D�̂ as one of our weighted
Dolbeault ��1 forms, at the expense of another Jacobian
factor, to yield

~�ðp; �;�; �0; �0Þ ¼
Z dt

t

��1
0ðpj
̂i; �Þ
jh
jpj��j2

��2j4ð�þ t�0Þ:
(C6)

On the support of the delta function jh
jpj��j2 ¼ p2½�̂��.
We can also use the delta functions to substitute in pj
̂i for
� and �0 in � ¼ �j�� and the delta function for the
�þ t�0 etc., to find

~�ðp; �;�; �0; �0Þ ¼
��1
0ðpj
̂i; �Þ ��1

0ðpj
̂i; �0Þ
p2


 �0j4ðð�� �0Þpj
̂iÞ: (C7)

We can finally insert a Fourier representation of the fermi-
onic delta function to obtain

~�ðp; �;�; �0; �0Þ

¼
Z

d4

��1
0ðpj
̂i; �Þ ��1

0ðpj
̂i; �0Þ
p2

ei
�ðð���0Þpj
̂iÞ: (C8)

This gives (C2) and we can now Fourier transform back to
the spin bundle to obtain the formula (C1) as desired.
We remark here that it was necessary to perform this

calculation on the Euclidean real slice to get the answer in
the correct form; see Sec. VI for further discussion.

1. Off- and on-shell momentum
eigenstate representatives

To prove the correspondence between the twistor and
momentum space MHV formalisms, we inserted momen-
tum eigenstates for the wave functions Ai appearing into
the twistorial expression for the MHV vertex, (33).
Although it was clear that the representatives we use
evaluate on space-time to give momentum eigenstates,
we give here an alternative derivation by using first off-
shell momentum eigenstates to give A in the Woodhouse
(or harmonic) gauge in terms of the Abelian space-time
superconnection:

A ¼ �AA0dxAA
0 þ �iA0d�iA

0
: (C9)

In this gauge, the multiplet ofN ¼ 4 SYM takes the form

AAA0 ¼ eip�x�AA0 ; �iA ¼ eip�x�A
i; �ij ¼ eip�x

2

i
j;

~�i
A0 ¼ eip�x

3!
pA0�ijkl
j
k
l; GA0B0 ¼ eip�x

4!
pA0pB0
4;

(C10)

where the polarization and off-shell momentum spinors
are defined in relation to the constant CSW reference
spinor 
̂A:

pA0 ¼ 
̂ApAA0 ; 
̂ApA0
�AA0 ¼ 1; 
̂A�A ¼ 1: (C11)

The superconnection components are given in terms of the
multiplet by the expressions

�AA0 ¼ AAA0 ��iA�
i
A0 þ @AB0�ij�

j
A0�iB

0

þ �ijlk
2

@AB0 ~�l
C0�iA0�jB

0
�kC

0

þ �ijlk
6

ð@AA0 ~�l
B0 þ @AB0 ~�l

A0 Þ�iD0
�jB

0
�kD0

� �iklj
3

@AB0GC0D0�iA0�jB
0
�kC

0
�lD

0
; (C12)

�iA0 ¼ �ij�
j
A0 þ �ijlk ~�

l
B0�kA0�jB

0 þ �jilkGB0C0�j
A0�kB

0
�lC

0
:

(C13)

To transform to the CSW gauge, one searches for a

function � such that 
̂A�A0
@AA0 5 ðA� d�Þ ¼ 0. A calcu-

lation reveals that
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� ¼ �i
eip�x

½p��
�
h
̂j�j��

þ ð
 � �Þ
�
1þ i

ð
 � ~�Þ
2

� ð
 � ~�Þ2
3!

� i
ð
 � ~�Þ3

4!

��
;

(C14)

where ~�i ¼ �iA
0
pA0 . Recalling that e0 �@0ð½p���1Þ ¼

��1ð½p��Þ, it is easy to see that the off-shell multiplet in
CSW gauge takes the form

AP ¼ ��1ð½p��Þeip�x
�
h
̂j�j��þð
 ��Þ

�
1þ i

ð
 � ~�Þ
2

�ð
 � ~�Þ2
3!

� i
ð
 � ~�Þ3

4!

��
þAAA0dxAA

0 þAiA0d�iA
0
:

(C15)

In this fully off-shell form, AP does not live on twistor
space but rather the primed spinor bundle. On shell, the

terms AAA0dxAA
0 þAid�

i vanish, and what remains
descends to twistor space as

A P ¼
Z
C

ds

s
eisðp�xþ
��Þ ��2ðs�A0 � pA0 Þ; (C16)

in exact agreement with what was stated in (41). This
completes the proof.

APPENDIX D: DERIVATION OF THE CSW
PROPAGATOR FROM SPACE-TIME

In this appendix, we provide a derivation of the twistor
space propagator from space-time representatives in
Euclidean signature. This compliments the results of
Appendix C, where the momentum space propagator was
recovered by starting with the CSW gauge in twistor space
and the twistor propagator. Now, we begin with the CSW
gauge on momentum space and space-time representatives
of the propagator.

We can reduce this task to one on the bosonic twistor
space PT0

b by performing the fermionic integrals in the

kinetic portion of the action (29) to obtain [1]

Z
PT0

b

� ^ tr

�
g ^ �@aþ �i ^ �@	i þ �ijkl

4
�ij ^ �@�kl

�
:

(D1)

From this, we see that the propagator, �, must be a sum of
terms (with fermionic coefficients), each of which is a
kernel for �@ on PT0

b taking values in the proper homoge-

neity configurations. More formally, we have

� ¼ ð�2Þ4�0;�4 þ �1ð�2Þ3��1;�3 þ ð�1Þ2ð�2Þ2��2;�2;

(D2)

where each bosonic propagator obeys

�i;j 2 H0;2ððPT0
b 
 PT0

bÞ n �;Oði; jÞÞ;
�@�i;j ¼ ð �@1 þ �@2Þ�i;j ¼ ���;

for � � PT0
b 
 PT0

b the diagonal in the Cartesian product

and ��� the antiholomorphic Dirac current.
To find an expression for the propagator on bosonic

twistor space, one begins with a space-time representative;
for the term taking values in Oð�2;�2Þ, this is just
ðx1 � x2Þ�2, and the other homogeneity configurations are
appropriate derivatives of this. We then use Woodhouse’s
theorems [39] to construct twistor space representatives in
the Woodhouse gauge. These objects are, by definition,
�@-closed (0, 2)-forms away from � which are in the
Woodhouse gauge [i.e., their restriction to CP1 fibers on
either factor of the product PT0

b 
 PT0
b are holomorphic

(0, 1)-forms]. We then use the freedom of adding a �@-exact
(0, 2)-form to these Woodhouse gauge representatives to
transform them into objects that obey the CSW gauge on
momentum space. Writing N� ¼ ð
̂A; 0Þ, the CSW gauge
condition is


̂ A�A0
@AA0 5 �i;j ¼ N� @

@Ẑ�
5 �i;j ¼ 0: (D3)

At the level of space-time representatives, we begin with
the photon propagator of QED in the Feynman gauge:

�AB�A0B0

ðx1 � x2Þ2 :

To obtain a space-time representative of the propagator for
each of the three required homogeneity configurations, this
expression must be modified properly. For instance, in the
Oð0;�4Þ configuration, we are dealing with an ASD po-
tential a and a SD field g, so we contract in a derivative
with respect to x1 and symmetrize over free primed indices.
Such considerations give us the following space-time rep-
resentatives:

��2;�2ðx1; x2Þ ¼ 1

ðx1 � x2Þ2
; (D4)

��1;�3ðx1; x2Þ ¼ ðx1 � x2ÞAB0

ðx1 � x2Þ4
; (D5)

�0;�4ðx1; x2Þ ¼ 2
ðx1 � x2ÞBðC0�A0ÞB0

ðx1 � x2Þ4
: (D6)

In (D5), the index A is associated with PTb1, while B0 is
associated with PTb2; in (D6) the indices B, B0 are asso-
ciated with PTb1 and A0, C0 with PTb2. By construction
from the photon propagator, it is clear that all three of these
objects are zero-rest-mass fields on E
 E, away from the
diagonal.
Hence, we can use theorems of Woodhouse [39] to

construct (0, 2)-forms on PT0
b 
 PT0

b which are �@ closed

away from the diagonal and are in the Woodhouse gauge
[39]; this is an explicit application of the Penrose transform
with the choice of Woodhouse gauge. Using
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ðx1 � x2Þ2 ¼ ð1; 1̂; 2; 2̂Þ
½�1�̂�½�2�̂2� ;

[where ð1; 1̂; 2; 2̂Þ ¼ �����Z
�
1 Ẑ

�
1 Z

�
2 Ẑ

�
2 ] along with the

Woodhouse theorems, one finds

�W
�2;�2ðZ1; Z2Þ ¼ @̂1@̂2

�
1

ð1; 1̂; 2; 2̂Þ
�

¼ 2
ðdẐ1; 1̂; 2; 2̂Þ ^ ð1; 1̂; dẐ2; 2̂Þ

½ð1; 1̂; 2; 2̂Þ�3

� ðdẐ1; 1̂; dẐ2; 2̂Þ
½ð1; 1̂; 2; 2̂Þ�2 ; (D7)

�W
�1;�3ðZ1; Z2Þ ¼ @̂2

�
i½�1�̂1�ðx1 � x2ÞAB0�̂B0

2 �̂1D0dxAD
0

1

½ð1; 1̂; 2; 2̂Þ�2
�

¼ @̂2

��ið2̂; 1; 1̂; dẐ1Þ
½ð1; 1̂; 2; 2̂Þ�2

�

¼ �2i
ð2̂; 1; 1̂; dẐ1Þ ^ ð1; 1̂; dẐ2; 2̂Þ

½ð1; 1̂; 2; 2̂Þ�3 ; (D8)

�W
0;�4ðZ1; Z2Þ

¼ 2@̂2

�½�1�̂1�ðx1 � x2ÞBðC0�A0ÞB0�B0
1 �̂

C0
2 �̂A0

2 �̂1D0dxBD
0

1

½ð1; 1̂; 2; 2̂Þ�2½�2�̂2�
�

¼ �2@̂2

�½�̂2�1�ð2̂; 1; 1̂; dẐ1Þ
½ð1; 1̂; 2; 2̂Þ�2½�2�̂2�

�

¼ 2
½�̂2�1�ð2̂; 1; 1̂; dẐ1Þ
½ð1; 1̂; 2; 2̂Þ�2½�2�̂2�

^
�½�̂2d�̂2�
½�2�̂2� � 2

ð1; 1̂; dẐ2; 2̂Þ
ð1; 1̂; 2; 2̂Þ

�
;

(D9)

where @̂i is the operator defined in (B8) on PTbi.
We must now add a �@-exact form to our Woodhouse

gauge propagators in order to transform them to the CSW
gauge on momentum space defined byN�. (This breaks the
Woodhouse gauge, but preserves �@ closure away from the
diagonal � � PT0

b 
 PT0
b.) It is easiest to perform this

transformation in the homogeneity configuration
Oð�2;�2Þ; we do this rather explicitly below. In order
to obtain ��1;�3 and �0;�4, one repeats the entire process

starting from �W
�1;�3 and �W

0;�4 respectively. We employ

the following notation to denote contraction over twistor
indices:

N� @

@Z�
1

¼ N � @1; N� @

@Ẑ�
2

¼ N � @̂2; etc:

The gauge condition for the propagator reads

N � @̂i 5 ð�W
�2;�2 þ �@fÞ ¼ 0; i ¼ 1; 2;

where f is now a (0, 1)-form on PT0
b1 
 PT0

b2, which we

write as

f ¼ f1 � dẐ1 þ f2 � dẐ2:

Using (D7), the CSW equation in this homogeneity con-
figuration reads

N � @̂i 5
�
@̂1@̂2

�
1

ð1; 1̂; 2; 2̂Þ
�
þ ð �@1 þ �@2Þf

�
¼ 0: (D10)

Expanding out this notation leaves us with a set of four
differential equations for the components of f:

N � @1
�
@2�

�
1

ð1; 1̂; 2; 2̂Þ
��

þ N � @̂1ðf2�Þ � @̂2�ðf1 � NÞ ¼ 0;

N � @2
�
@1�

�
1

ð1; 1̂; 2; 2̂Þ
��

þ @̂1�ðf2 � NÞ � N � @̂2ðf1�Þ ¼ 0;

(D11)

N � @̂1 5 �@1ðf1 �dẐ1Þ¼0; N � @̂2 5 �@2ðf2 �dẐ2Þ¼0: (D12)

Our methodology will be to first solve (D11) and (D12)
away from the support of any delta functions by contract-
ing twistors into the free index of the first set of equations.
For instance, by contracting N� into (D11), we obtain the
equation

2
ð1; 1̂; N; 2̂ÞðN; 1̂; 2; 2̂Þ

½ð1; 1̂; 2; 2̂Þ�3 þ N � @̂1ðf2 � NÞ

� N � @̂2ðf1 � NÞ ¼ 0;

from which we deduce

f1 � N ¼ � ð2; 2̂; N; 1̂ÞðN; 2̂; 1; 1̂Þ
2½ð1; 1̂; 2; 2̂Þ�2ð2; N; 1; 1̂Þ ;

f2 � N ¼ ð1; 1̂; N; 2̂ÞðN; 1̂; 2; 2̂Þ
2½ð1; 1̂; 2; 2̂Þ�2ð1; N; 2; 2̂Þ ;

which are unique solutions up to terms annihilated by N �
@̂2 and N � @̂1 respectively. Repeating this procedure of

solving scalar equations by contracting with Z�
1;2 and Ẑ�

1;2

gives candidate solutions:

f1� ¼ � ðN; 2̂; 1; 1̂Þð2; 2̂; �; 1̂Þ
2½ð1; 1̂; 2; 2̂Þ�2ð2; N; 1; 1̂Þ

� ð2; N; 2̂; 1ÞðN; 1; 1̂; �Þ
2ð1; 1̂; 2; 2̂Þ½ð2; N; 1; 1̂Þ�2 ; (D13)

f2� ¼ ðN; 1̂; 2; 2̂Þð1; 1̂; �; 2̂Þ
2½ð1; 1̂; 2; 2̂Þ�2ð1; N; 2; 2̂Þ

þ ð1; N; 1̂; 2̂ÞðN; 2; 2̂; �Þ
2ð1; 1̂; 2; 2̂Þ½ð1; N; 2; 2̂Þ�2 : (D14)

However, we must still check that (D13) and (D14)
satisfy the other two CSW equations in (D12). By the
symmetry between PT0

b1 and PT0
b2 (which is obvious

from the equations and our candidate solutions), we only

MAXIMALLY HELICITY-VIOLATING DIAGRAMS IN . . . PHYSICAL REVIEW D 86, 065019 (2012)

065019-27



need to check this for one of the equations, so consider the

second of these, which is equivalent to N�@̂2½�f2�� ¼ 0.

Directly computing the left-hand side of this equation gives
(after placing everything over a common denominator of

4½ð1; 1̂; 2; 2̂Þ�2½ð1; N; 2; 2̂Þ�2 and applying the Schouten
identity twice) a numerator of

ð1; 1̂; N; 2̂Þ½ðN; 2; 1; 2̂ÞðN; 2; 1̂; �Þ � ðN; 2; 1̂; 2̂ÞðN; 2; 1; �Þ
� ðN; 2; 1; 1̂ÞðN; 2; 2̂; �Þ�;

which is itself equal to 0 by the Schouten identity. Thus,
(D13) and (D14) do indeed satisfy the full set of CSW
transformation equations away from any delta function
support.

To obtain a preliminary expression for the propagator
(i.e., without any delta function contributions), we must
compute �W

�2;�2 þ �@f using (D7), (D13), and (D14).

However, a substantial amount of algebra and applications
of the Schouten identity reveal that this quantity vanishes,
which indicates that only delta function contributions re-
main. When these are accounted for, the mixed bidegree
terms (i.e., those which couple to physical fields) in our
transformed quantity are

~��2;�2 ¼ ðN; 1̂; 2; 2̂Þ
2½ð1; 1̂; 2; 2̂Þ�2

�@1

�
1

ð1; N̂; 2; 2̂Þ
�
^ ð1; 1̂; dẐ2; 2̂Þ

þ ð1; N; 1̂; 2̂Þ
2ð1; 1̂; 2; 2̂Þ

�@1

�
1

½ð1; N̂; 2; 2̂Þ�2
�
^ ðN; 2; 2̂; dẐ2Þ

þ ðN; 2̂; 1; 1̂Þ
2½ð1; 1̂; 2; 2̂Þ�2 ð2; 2̂; dẐ1; 1̂Þ ^ �@2

�
1

ð2; N̂; 1; 1̂Þ
�

þ ð2; N; 2̂; 1̂Þ
2ð1; 1̂; 2; 2̂Þ ðN; 1; 1̂; dẐ1Þ ^ �@2

�
1

½ð2; N̂; 1; 1̂Þ�2
�
:

(D15)

Note that when it appears as a delta function contribution,
the twistor N must be conjugated; this is because

�@ 1

�
1

ð1; N̂; 2; 2̂Þ
�
¼ �ðð1; N̂; 2; 2̂ÞÞð �@11̂; N; 2̂; 2Þ;

and to reach the CSW gauge (D3), the form portion of the
delta function must be skewed with N.

Though we may be tempted to say that ~��2;�2 is the

propagator in the CSW gauge, it is possible that the in-
clusion of these delta-function-supported terms could spoil
the CSW gauge condition. Indeed,

N � @̂1 5 ~��2;�2 ¼ ðN; 2̂; 1; 1̂Þð2; 2̂; N; 1̂Þ
2½ð1; 1̂; 2; 2̂Þ�2

�@2

�
1

ð2; N̂; 1; 1̂Þ
�
;

N � @̂2 5 ~��2;�2 ¼ �ðN; 1̂; 2; 2̂Þð1; 1̂; N; 2̂Þ
2½ð1; 1̂; 2; 2̂Þ�2

�@1

�
1

ð1; N̂; 2; 2̂Þ
�
;

indicating that we must modify our solutions (D13) and
(D14) in order to account for these delta function
contributions.
The proper modification is easily seen to be

f1 �dẐ1 ! f1 �dẐ1� ðN; 1̂;2; 2̂Þð1; 1̂;N; 2̂Þ
2ð1; 1̂;2; 2̂Þð2;N;1; 1̂Þ

�@1

�
1

ð1; N̂;2; 2̂Þ
�
;

(D16)

f2 � dẐ2 ! f2 � dẐ2 þ �ðN; 2̂; 1; 1̂Þ�ð2; 2̂; N; 1̂Þ
2�ð1; 1̂; 2; 2̂Þ�ð1; N; 2; 2̂Þ


 �@2

�
1

�ð2; N̂; 1; 1̂Þ
�
: (D17)

A calculation involving yet more applications of the
Schouten identity reveals that the physical portion of the
propagator (i.e., the mixed terms) takes the remarkably
simple form

��2;�2 ¼ ðN; 1̂; 2; 2̂Þð1; 1̂; N; 2̂Þ
ð1; 1̂; 2; 2̂Þ


 �@1

�
1

ð1; N̂; 2; 2̂Þ
�
^ �@2

�
1

ð1; 1̂; 2; N̂Þ
�
; (D18)

which is obviously in CSW gauge since the form compo-
nent is skewed with N.
We can perform the same process for propagators taking

values in Oð�1;�3Þ and Oð0;�4Þ, using (D8) and (D9).

FIG. 12. Twistor support of the 1-loop MHV amplitude.
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In these cases, the CSW transformation equations (D12)
are unchanged, while (D11) become respectively

i@2�

� ð2; 1; 1̂; NÞ
½ð1; 1̂; 2; 2̂Þ�2

�
þ N � @̂1ðf2�Þ � @̂2�ðf1 � NÞ ¼ 0;

�iN � @2
� ð2; 1; 1̂; �Þ
½ð1; 1̂; 2; 2̂Þ�2

�
� @̂1�ðf2 � NÞ þ N � @̂2ðf1�Þ ¼ 0;

(D19)

2@2�

� ½�̂2�1�ð2̂; 1; 1̂; NÞ
½ð1; 1̂; 2; 2̂Þ�2½�2�̂2�

�
þ N � @̂1ðf2�Þ

� @̂2�ðf1 � NÞ ¼ 0;

� 2N � @2
� ½�̂2�1�ð2̂; 1; 1̂; �Þ
½ð1; 1̂; 2; 2̂Þ�2½�2�̂2�

�
� @̂1�ðf2 � NÞ þ N � @̂2ðf1�Þ ¼ 0: (D20)

The lengthy process of solving these sets of equations
again produces remarkably simple results which have
only delta function support:

��1;�3 ¼ i
½ð1; 1̂; N; 2̂Þ�2
ð1; 1̂; 2; 2̂Þ

�@1

�
1

ð1; N̂; 2; 2̂Þ
�
^ �@2

�
1

ð1; 1̂; 2; N̂Þ
�
;

(D21)

�0;�4 ¼ 2
½�̂2�1�½ð1; 1̂; N; 2̂Þ�2
ð1; 1̂; 2; 2̂Þ½�2�̂2�

�@1

�
1

ð1; N̂; 2; 2̂Þ
�

^ �@2

�
1

ð1; 1̂; 2; N̂Þ
�
: (D22)

The formulas (D18), (D21), and (D22), define the bo-
sonic components of the propagator, which in turn leads to
the fully supersymmetric expression

� ¼ ð�2Þ4�0;�4 þ �1ð�2Þ3��1;�3 þ ð�1Þ2ð�2Þ2��2;�2:

At the level ofN ¼ 4 SYM, we note that the homogeneity
factors appearing in each bosonic portion are accounted for

by fermions, and � ¼ �N̂, so each term in the propagator
contains a factor:

�@ 1

�
1

ð1; �; 2; 2̂Þ
�
^ �@2

�
1

ð1; 1̂; 2; �Þ
�
;

which is supported only on the set ð1; �; 2; 2̂Þ ¼
ð1; 1̂; 2; �Þ ¼ 0, as each form in this wedge product repre-
sents a delta function. The first factor demands that Z1 lie

in the plane defined by � and the line X2 � Z½I
2 Ẑ

J�
2 ; call this

plane h�; 2; 2̂i � PT. Identical reasoning tells us that the

other factor restricts Z2 to lying in the plane h�; 1; 1̂i � PT.
Now, it is obvious that the planes h�; 2; 2̂i and h�; 1; 1̂imust
intersect in PT along a line X� which contains the point �.
However, given the support of these two factors, this
geometric picture is only possible provided Z1 and Z2

also lie along X�. In other words, the support of the
propagator dictates that Z1, Z2, and N all be collinear in
twistor space (see Fig. 12).
Hence, modulo some irrelevant numerical factors, our

methodology tells us that the twistor space propagator for
N ¼ 4 SYM is

� ¼ ��2j4ðZ1; �; Z2Þ; (D23)

as claimed in the text. Although our derivation here began
in Euclidean signature, the result for the full propagator is
signature independent and superconformally invariant up
to choice of *.
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