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We study doubly periodic Bogomol’nyi-Prasad-Sommerfield lumps in supersymmetric CPN�1 non-

linear sigma models on a torus T2. Following the philosophy of the Harrington-Shepard construction of

calorons in Yang-Mills theory, we obtain the n-lump solutions on compact spaces by suitably arranging

the n lumps on R2 at equal intervals. We examine the modular invariance of the solutions and find that

there are no modular invariant solutions for n ¼ 1, 2 in this construction.
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I. INTRODUCTION

Instantons in Yang-Mills theories at finite temperature
have been extensively investigated in the past years.
Instantons at finite temperature, commonly called
calorons, were first studied by Harrington and Shepard
[1], who demonstrated the analytic description to the
1-instanton of SUð2Þ gauge theory living in R3 � S1. The
radius of the compact space S1 is naturally interpreted as
the inverse of the temperature T. The Harrington-Shepard
caloron is constructed by locating the infinitely many
BPST instantons [2] along the one direction with the equal
separation T�1. The authors of Ref. [1] start from the BPST
instanton in the ’t Hooft ansatz:

Ac
m ¼ �c

mn@
n log�ðxÞ; �ðxÞ ¼ 1þ �2

ðxm � amÞ2
; (1)

where c ¼ 1, 2, 3 is the index of suð2Þ, �c
mn is the ’t Hooft

symbol and am, � are the position and the size of the
instanton, respectively. It can easily be shown that the
anti–self dual equation is enjoyed if the function �ðxÞ
obeys the Laplace equation. Hence, the 1-instanton in
R3 � S1 is obtained by superposing the BPST instantons
placed periodically along the x4 direction with period 1=T.

By scaling the size of each instanton � ! �=
ffiffiffiffiffiffiffiffiffiffi
2�T

p
, one

can perform the infinite sum in �ðxÞ as

�ð ~x; TÞ ¼ 1þ �2

2�T

X1
k¼�1

1

~x2 þ ðx4 � kT�1Þ

¼ 1þ �2

2r

sinhð2�TrÞ
coshð2�TrÞ � cosð2�Tx4Þ ; (2)

where ~x ¼ ðx1; x2; x3Þ, r ¼
ffiffiffiffiffi
~x2

p
and we have taken am ¼ 0

for simplicity. Therefore, calorons are interpreted as the
periodic instantons on R4 [3]. However, the Harrington-
Shepard construction cannot be applied to the general
solutions including all the moduli parameters. This is
because the ’t Hooft ansatz does not contain all the moduli.
To find the most general solutions, one needs to consider

the Nahm construction [4] of calorons, which provides a
strong scheme to study the structure of solutions or
moduli spaces. A natural generalization of calorons are
doubly periodic instantons on a torus T2. Instantons on a
torus, sometimes called torons, are studied in various
contexts [5,6].
Sometimes, problems in gauge theories are simplified

when one considers nonlinear sigma models that are rec-
ognized as the strong gauge coupling limit of the UV
theories. Actually, explicit constructions of instantons or
calorons are possible in nonlinear sigma models. For ex-
ample, instantons of the sigma models in two dimensions
have very simple structures. These two-dimensional in-
stantons are called lumps. The lumps in the sigma models
are studied in much detail [7,8], where the explicit con-
struction of lumps, moduli space structure, and scattering
process has been investigated. Recently, the constituent
structure of the lumps in the nonlinear sigma models is
studied [9–11]. In Ref. [9], it is discussed that the lumps
with twisted boundary conditions in compact spaces lead
to the constituent structure. This type of structure of the
lumps on R� S1 is quite similar to the calorons in Yang-
Mills theories with nontrivial holonomies, in which there
appear monopole constituents of calorons [12].
The aim of this paper is to establish the systematic

construction of Bogomol’nyi-Prasad-Sommerfield (BPS)
lumps in supersymmetric nonlinear sigma models on a
torus T2 for the arbitrary charge n. The sigma model lumps
with n � 2 on R2 are obtained by multiplying the charge-1
solution by n times. We will show that the same is true
even for the lumps in compact spaces. Following the
Harrington-Shepard philosophy, we will collect the lumps
on R2 aligned in two distinct directions and construct the
explicit solutions on T2. We also demonstrate that the
collections of infinitely many n lumps on R2 with various
boundary conditions result in the solutions on T2 with
twisted periodic conditions. The solutions have appropriate
pole structure and correct topological charge n. We will
also examine the modular invariance of the solutions.
The organization of this paper is as follows. In Sec. II,

we define the model. We consider the supersymmetric
CPN�1 model and the BPS equation for lumps. In
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Sec. III, focusing on the CP1 model, we give the construc-
tive method to fabricate doubly periodic BPS lumps on a
torus starting from the charge-n ones on R2. The modular
invariance of the solutions will be studied. Section IV is
devoted to the conclusion and discussions.

II. CPN�1 SIGMA MODEL AND BPS EQUATIONS

In this section, we start from the N ¼ 1 supersymmet-
ric CPN�1 � SUðNÞ=½SUðN � 1Þ �Uð1Þ� sigma model in
four dimensions. Although supersymmetry is not essential
for the construction of solutions, we embed the model into
the superfield formalism. This is because one can easily
generalize the model to the ones with other target spaces in
the superspace formalism [13]. Another important point is
that the supersymmetric property of solutions is necessary
when one discusses the relations between the sigma
model lumps and other solitonic objects in gauge theories
(see footnote 1). We follow the Wess-Bagger conventions
[14]. The space-time metric is given by �mn ¼
diagð�1;þ1;þ1;þ1Þ. Following the quotient construc-
tion of sigma models [13], the Lagrangian in four-
dimensional N ¼ 1 superspace is given by

L ¼
Z

d4�ð�y
i e

2V�i � cVÞ; ði ¼ 1; � � � ; NÞ; (3)

where the chiral superfields ~� ¼ �i are the fundamental
representation (N) of the global SUðNÞ symmetry, V is the
Uð1Þ vector superfield and c > 0 is the Fayet-Iliopoulos
parameter. The component expansion of the chiral super-
field is given by

�iðy; �Þ ¼ �iðyÞ þ
ffiffiffi
2

p
�c iðyÞ þ �2FiðyÞ; (4)

while the vector superfield in the Wess-Zumino gauge is

V ¼ ���m ��Am þ i�� �� ���i �� �� ��þ 1

2
�2 ��2D: (5)

In the following, we consider the bosonic part of the
Lagrangian (3). The Lagrangian in the component form
is given by

L ¼ �ðDm�iÞðDm�iÞy þDð�i
��i � cÞ þ Fi

�Fi; (6)

where Dm� ¼ @m � þiAm� is the Uð1Þ gauge covariant
derivative. From the D-term condition, we have the con-
straint for the scalar fields,

j�ij2 ¼ c; (7)

while the F-term condition is trivial. Therefore, the
Lagrangian is rewritten as

L ¼ �jDm�ij2; j�ij2 ¼ c: (8)

Since the gauge field does not have the kinetic term, it is
eliminated by the equation of motion,

Am ¼ i
c�1

2
ð ��i@m�i � @m ��i�iÞ: (9)

Next, we consider the BPS equation for lumps which
depends on the two-dimensional directions xa (a ¼ 1, 2).
The lumps are instantons in two-dimensional sigma mod-
els. In the following, we consider two-dimensional models
though we started from four dimensions. The dimensional
reduction from four to two dimensions is straightforward.
The model becomes the two-dimensional N ¼ ð2; 2Þ
CPN�1 model.1 The energy is given by

E¼
Z
d2x

�
1

2
jDa�i� i"abDb�ij2� i"abðDa�iÞðDb�iÞy

�

��
Z
d2xi"abðDa�iÞðDb�iÞy

¼�2�cQ; (10)

where "12 ¼ �1 is the antisymmetric epsilon symbol and
the topological charge Q has been defined as

Q ¼ 1

2�c

Z
d2zðjDz�ij2 � jD �z�ij2Þ

¼ � 1

4�

Z
d2x"abFab: (11)

Here, the complex coordinate in two dimensions is defined
as z ¼ 1ffiffi

2
p ðx1 þ ix2Þ. The gauge field and the covariant

derivative are complexified in the same way. From the
energy bound in Eq. (10), the BPS condition is given by

Da�i � i"abDb�i ¼ 0; (12)

or equivalently,

D �z� ¼ 0; Dz� ¼ 0: (13)

The first and the second conditions correspond to the plus
and minus signs in Eq. (12), respectively. In the following,
we focus on the first condition. The solutions to the BPS
equation (13) preserve a half of N ¼ ð2; 2Þ supersymme-
try. Therefore, the lumps are 1=2 BPS configurations.
In order to satisfy the constraint (7), it is convenient to

consider the following field decomposition:

�i ¼ Wi

ffiffiffi
c

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wy

j Wj

q ; (14)

whereWi is an N-component vector. Then, one easily finds
that the BPS equation becomes

1This N ¼ ð2; 2Þ CPN�1 sigma model is the world-volume
effective theory of a 1=2 BPS vortex in supersymmetric gauge
theory in four dimensions [15]. It was discussed in Ref. [16] that
the 1=2 BPS lumps in the supersymmetric sigma model are
interpreted as the 1=4 BPS instantons in supersymmetric gauge
theories. Clearly, this lumps/instantons correspondence is based
on the supersymmetric setup.
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D �z�i ¼
ffiffiffi
c

p
Pð@�zWiÞðWy �WÞ�1=2 ¼ 0; (15)

where Pij 	 1ij �Wi
1

Wy�WWy
j is the projection operator.

Therefore, solutions to the BPS equation are given by
holomorphic functions Wi ¼ WiðzÞ [17]. Using the gauge
symmetry, we fix the gauge as

Wi ¼
�
1
wî

�
; ðî ¼ 2; � � � ; NÞ: (16)

The topological charge for the BPS lump is, therefore,
given by

Q ¼ 1

2�c

Z
d2z

c

Wy �W @ �zW
yP@zW

¼ 1

2�

Z
d2z

1

ð1þ jwîj2Þ2
½ð1þ jwîj2Þj@wîj2

� wî
�@ �wî �wĵ@wĵ�: (17)

Since we have the relation @ �@ logðWy �WÞ ¼
1

Wy�W �@Wy
i Pij@Wj, the topological charge is rewritten as

Q ¼ 1

2�

Z
d2z@ �@ logðWy �WÞ

¼ 1

4�

Z
d2z½@ �@ logðWy �WÞ þ �@@ logðWy �WÞ�

¼ i

4�

I
½ �@ logðWy �WÞd�z� @ logðWy �WÞdz�: (18)

Therefore, the topological charge is determined by the
residue of the function U 	 @ logðWy �WÞ,

Q ¼ 1

2
ðReszðUÞ þ Res�zð �UÞÞ: (19)

Since the energy (10) is invariant under the conformal
transformation in the two-dimensional plane R2, the field
is defined on the conformally compactified S2. The lumps
are, therefore, harmonic maps from S2 to CPN�1 that are
classified by integers, namely, the topological charges.

III. BPS LUMPS

In this section, we give the constructive procedure to
formulate the BPS lumps on a torus T2 with appropriate
base point conditions. Before going to the totally compac-
tified space T2, we establish the relations between the lump
solutions in R2 and R� S1. In the following, we consider
the N ¼ 2 case, namely, the CP1 model. In this case, only
the nontrivial component in Wi is w2 	 uðzÞ, and the
topological charge is given by

Q ¼ 1

2�

Z
d2z

j@uj2
ð1þ juj2Þ2 : (20)

A. Lumps on R2

Let us start from the 1-lump solution on R2 denoted as

uð1Þ. The solution to the BPS equation (15) should be a
holomorphic function, and it is required to be settled down
to the vacuum asymptotically. When we take the base point

(vacuum) condition uð1Þð1Þ ¼ 0, the 1-lump solution is
given by [17]

uð1ÞðzÞ ¼ �

z� �z1
; � 2 R; �z1 2 C: (21)

The residue of the function U associated with the solution
(21) is evaluated at the pole z ¼ �z1, giving the expected
result Q ¼ 1. When one considers a different base point

condition, for example uð1Þð1Þ ¼ 1, the 1-lump solution is
given by

uð1ÞðzÞ ¼ z� ẑ1
z� �z1

; ẑ1 ¼ �z1; ẑ1; �z1 2 C:

(22)

For this solution, the topological charge density q is

q ¼ 1

2�

�2

ðjz� z1j2 þ �2Þ2 ; (23)

where we have defined the parameters z1 	 ẑ1��z1
2 , � 	

jẑ1��z1j
2 , interpreted as the position and the size of the

lump. The profile of the energy density is found in Fig 1.
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FIG. 1 (color online). Charge density for the solution (22) with ẑ1 ¼ 4, �z1 ¼ 2 (left), for the solution (28) with � ¼ 2, � ¼ 0:4,
	 ¼ 0:1, (middle). Charge density for the solution (31), n ¼ 2 case (right). � ¼ 2, �1 ¼ 0:4, �2 ¼ 1:4, 	1 ¼ 0:1, 	2 ¼ 1:1.

SIGMA MODEL BPS LUMPS ON A TORUS PHYSICAL REVIEW D 86, 065017 (2012)

065017-3



Similarly, for the base point condition uð1Þð1Þ ¼ 1, we

have the 1-lump solution uð1ÞðzÞ ¼ �ðz� ẑ1Þ.
Generalizations to the multilump solutions are

straightforward. The n-lump solutions uðnÞ are obtained
by multiplying the 1-lump solutions n times. The result
is meromorphic rational functions with degree n. For ex-

ample, in the case of the base point condition uðnÞð1Þ ¼ 1,
the solutions are given by

uðnÞðzÞ ¼ Yn
k¼1

z� ẑk
z� �zk

; ẑk � �zjðfor any j; kÞ: (24)

One can easily find that the residue of the functionU for
the solution (24) is n, which gives the desired resultQ ¼ n.

B. Lumps on R� S1

Next, we consider the lumps on R� S1 by compactify-
ing one space-time direction. Without loss of generality,
one can consider the imaginary direction in the complex
plane C as the compact direction. We expect that solutions
on R� S1 are interpreted as periodically aligned lumps on
R2. Following the Harrington-Shepard philosophy, we
multiply the infinite number of the 1-lump solutions (21)
located at the equal interval � 2 R along the imaginary
direction. Namely, we consider the following solution

uð1Þðz; �Þ ¼ Y1
k¼�1

�

z� z0 � i�k

¼ �

z� z0

Y1
k¼1

�2=�2

ðz� z0Þ2=�2 þ k2
; (25)

where we have multiplied by the 1-lump solutions so that

the solution uð1Þðz; �Þ has poles at z ¼ z0 þ i�k. Since the
infinite product of the 1-lump solution diverges, we employ
the 
-function regularization to find the finite solution:

Y1
k¼1

�2

�2
¼ ð�=�Þ�1=2: (26)

After the regularization, we find that the solution on
R� S1 is obtained as

uð1Þðz; �Þ ¼ 1

2

1

sinh���1ðz� z0Þ
: (27)

For this solution, the poles of the function U are at z ¼ z0,
and it is easy to find that the topological charge for
this solution is Q ¼ 1. Since the solution (27) satisfies

the antiperiodic boundary condition uð1Þðzþ i�; �Þ ¼
�uð1Þðz; �Þ, the solution is allowed only when the twisted
boundary condition is imposed. This solution has been
discussed in Refs. [9,10] in the context of the constituent
structure of sigma model lumps on the compact space. In
Refs. [9,10], the authors introduced nontrivial holonomy

parameters in the solution (27) and studied its partonic, or
constituent, nature.
Next, we consider the 1-lump solution (22) by choosing

the base point condition uð1Þð1Þ ¼ 1. Again, we arrange
the solution along �zk ¼ 2	þ i�k, � 2 R, �, 	 2 C, k 2
Z. We further demand that the zeros of the solution appear
at ẑk ¼ 2�þ i�k. By choosing these zero points, the size
of the 1-lump solution (22) does not diverge at k ! 1 and
is fixed to be j�� 	j. The position of the lump in one
period is �� 	. Then, we obtain the solution as follows:

uð1Þðz; �Þ ¼ Y1
k¼�1

�
z� 2�� i�k

z� 2	� i�k

�

¼ z� 2�

z� 2	

Y1
k¼1

k2

��2ðz� 2	Þ2 þ k2

� ��2ðz� 2�Þ2 þ k2

k2

¼ sinh���1ðz� 2�Þ
sinh���1ðz� 2	Þ : (28)

Thanks to the good base point condition, we do not need
any regularization. Moreover, the solution preserves the
periodic boundary condition,

uð1Þðzþ i�;�Þ ¼ uð1Þðz; �Þ: (29)

This solution was found in Ref. [18] in the same way we
have just shown above. The energy profile for this solution
is given in Fig 1. Since the poles of the function U are at
z ¼ 2	 inside the one period, the residue is evaluated as
Resz¼2	@ logW

yW ¼ 1 at the pole. Therefore, the topo-
logical charge is given by Q ¼ 1. One can easily find that
the decompactification limit � ! 1 of the solution gives
the correct result:

lim
�!1

uð1Þðz; �Þ ¼ z� 2�

z� 2	
: (30)

The n-lump generalization is straightforward. This is
obtained from the solution (24) on R2. The result is

uðnÞðz; �Þ ¼ Yn
k¼1

sinh���1ðz� 2�kÞ
sinh���1ðz� 2	kÞ

: (31)

The charge density profile for this solution is found in Fig 1
for the n ¼ 2 case.

C. Lumps on T2

In this subsection, we construct the multilump solutions
on a torus T2 by extending the superposition procedure
established in the previous subsection. By suitably arrang-
ing the solutions onR� S1, we will find the lump solutions
with topological chargesQ ¼ n � 1. It is known that there
is no harmonic map from the genus g Riemann surface to
CP1 � S2 when the degree n of the map is less than
g [19–21]. Therefore, we expect that there is no Q ¼ 1
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periodic solution on a torus. Actually, as we will see, the
n ¼ 1 lump constructed below does not show the doubly
periodic property. When n � 2, the solutions can be dou-
bly periodic and are rewritten as elliptic functions. Even
more, for the cases n � 3, the solutions show the modular
invariance.

Let us begin with the solution (28) on R� S1, a lump
aligned in the imaginary direction. In order to find solu-
tions on T2, we locate the solution (28) along the real
direction at the interval �. Assuming that �=� > 0, the
array of R� S1 lumps with interval � is given by

uð1Þðz; �; �Þ ¼ Y1
k¼�1

sinh���1ðz� 2�� �kÞ
sinh���1ðz� 2	� �kÞ

¼ sinh���1ðz� 2�Þ
sinh���1ðz� 2	Þ

Y1
k¼1

ð1� e�2���1�ke2��
�1ðz�2�ÞÞð1� e2��

�1�ke�2���1ðz�2�ÞÞ
ð1� e�2���1�ke2��

�1ðz�2	ÞÞð1� e2��
�1�ke�2���1ðz�2	ÞÞ : (32)

We can rewrite this infinite product as the pseudoperiodic �
functions by using the formula2

�1ðv; �Þ ¼ q0q
1
4
z� z�1

i

Y1
k¼1

ð1� q2kz2Þð1� q2kz�2Þ;

(33)

q0¼
Y1
k¼1

ð1�q2kÞ; q¼ei��; z¼ei�v; Im�>0: (34)

Then the 1-lump solution on T2 is given in the simple
closed form:

uð1Þðz; �; �Þ ¼ �1ði��1ðz� 2�Þ; ij��1�jÞ
�1ði��1ðz� 2	Þ; ij��1�jÞ ; (35)

where � ¼ ij��1�j and Im� ¼ j��1�j> 0. The expres-
sion is valid even for the case ��1� < 0. Again, we do not
need any regularization for the multiplication of the solu-
tion (28). Using the property of the theta function,

�1ði��1z� 1; i��1�Þ ¼ ��1ði��1z; i��1�Þ; (36)

�1ði��1zþ i��1�; i��1�Þ
¼ �e2��

�1ze��
�1��1ði��1z; i��1�Þ; (37)

the periodicity of the solution (35) is found to be

uð1Þðzþ i�; �; �Þ ¼ uð1Þðz; �; �Þ; (38)

uð1Þðzþ �;�; �Þ ¼ e�4���1ð��	Þuð1Þðz; �; �Þ: (39)

Therefore, in general, the solution (35) is not periodic in
the � direction. Only the twisted boundary condition is
allowed in that direction when the parameters satisfy
Reð�� 	Þ ¼ 0. For the solution (35), we find

@ logWyW ¼ �i��1 �1ði��1ðz� 2�ÞÞ
�1ð�i��1ðz� 2	ÞÞ

� �01ð�i��1ðz� 2�ÞÞ�1ð�i��1ðz� 2	ÞÞ � �1ð�i��1ðz� 2�ÞÞ�01ð�i��1ðz� 2	ÞÞ
j�1ði��1ðz� 2	ÞÞj2 þ j�1ði��1ðz� 2�ÞÞj2 ;

where the theta functions have a common modulus � ¼
j��1�j. Since the function �1ðv; �Þ has a zero at v ¼ 0 and
no poles in the defined region (the fundamental lattice

�
ffiffi
2

p
2 � 
 x 


ffiffi
2

p
2 �, �

ffiffi
2

p
2 � 
 y 


ffiffi
2

p
2 �), the pole of the

functionU is at z ¼ 2	. The residue at the pole is evaluated

as Resz¼2	@ logW
yW ¼ 1, which implies Q ¼ 1.

Now, let us consider the decompactification limits of the
solution in the real and imaginary directions. Using the
expansion of the � function,

�1ðv; �Þ ¼ 2q
1
4q0 sin�v

Y1
n¼1

ð1� 2q2n cos2�vþ q4nÞ;

(40)

and the fact, q ¼ e����1� ! 0 in the limit � ! 1, we find

lim
�!1u

ð1Þðz; �; �Þ ¼ sini���1ðz� 2�Þ
sini���1ðz� 2	Þ

¼ sinh���1ðz� 2�Þ
sinh���1ðz� 2	Þ ¼ uð1Þðz; �Þ:

(41)

2Here, Imz > 0 is required for jqj ¼ e��Im� < 1, which is a
necessary condition for the definition of � functions.
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This is just the array of the 1-lump solution on R2 along the imaginary direction. Next, using the Jacobi identity relation of
the � functions, the decompactification limit along the real direction is calculated as

lim
�!1

uð1Þðz; �; �Þ ¼ lim
�!1

e��
�1��1ðz�2�Þ2

e��
�1��1ðz�2	Þ2 u

ð1Þð�i��1�z; i��1�Þ

¼ lim
�!1

e��
�1��1ðz�2�Þ2

e��
�1��1ðz�2	Þ2

2~q
1
4 ~q0 sin��

�1ðz� 2�ÞQ1
n¼1ð1� 2~q2n cos2���1ðz� 2�Þ þ ~q4nÞ

2~q
1
4 ~q0 sin��

�1ðz� 2	ÞQ1
n¼1ð1� 2~q2n cos2���1ðz� 2	Þ þ ~q4nÞ

¼ sinh�ði�Þ�1ðz� 2�Þ
sinh�ði�Þ�1ðz� 2	Þ ; (42)

where we have defined ~q ¼ e2�ið�1=�Þ ¼ e�2���1�. The
result is the 1-lump solution aligned along the real direc-
tion with interval � as expected.

Generalization to the multilump solutions is straightfor-
ward. The n-lump solution on T2 is given by

uðnÞðz; �; �Þ ¼ Yn
k¼1

�1ði��1ðz� 2�kÞ; ij��1�jÞ
�1ði��1ðz� 2	kÞ; ij��1�jÞ : (43)

Its periodicity is

uðnÞðzþ i�; �; �Þ ¼ uðnÞðz; �; �Þ; (44)

uðnÞðzþ �;�; �Þ ¼ e�4���1
P

n
k¼1

ð�k�	kÞuðnÞðz; �; �Þ: (45)

Therefore, when the following condition,

Xn
k¼1

�k ¼
Xn
k¼1

	k; �k � 	k; (46)

is satisfied, the solution becomes periodic. This is
possible only for the n � 2 cases, thus confirming the
mathematical result on harmonic maps. Note that when
one relaxes the condition (46) and the parameters satisfy
Re

P
n
k¼1ð�k � 	kÞ ¼ 0, the exponential factor in (45) be-

comes a phase factor and the solution satisfies the twisted
boundary condition.

When the periodicity condition (46) is satisfied, we
expect that the solutions can be rewritten as elliptic func-
tions. For example, when we choose 	1 ¼ 	2 	 	 and

�1 ¼ 	� i�
4 , �2 ¼ 	þ i�

4 for n ¼ 2 case, the solution

(43) is rewritten as

uð2Þðz; �; �Þ ¼ �4�2

�
�04
�001

�
2f}ð2ðz� 2	ÞÞ � e1g;

e1 ¼
�
�

2�

�
2 1

3
ðð�02Þ2 þ ð�03Þ2Þ; �0l 	 �lð0; �Þ;

ðl ¼ 1; 2; 3Þ; � ¼ j��1�j;

(47)

where } is the Weierstrass } function, the degree-2 elliptic
function. The moduli space of this 2-lump solution on T2

was studied in Ref. [22].
The profile of the energy density for the n ¼ 3 solution

is found in Fig 2. There are ‘‘interference fringes’’
among the three peaks since the lumps are trapped on the

finite-size lattice and the notion of the ‘‘well separated’’ is
essentially lost in fully compact spaces.
Next, we study the modular invariance of the multilump

solutions on a torus. Let us consider a torus endowed with
a generic modulus �. A torus T2

� with modulus � 2 C is
defined by the equivalence class z� z� �ðmþ n�Þ, � 2
R, m, n 2 Z. The torus is invariant under the PSLð2;ZÞ
modular transformation,

� ! �0 ¼ a�þ b

c�þ d
; ad� bc ¼ 1; a; b; c; d 2 Z:

(48)

Following the same procedure as before, the n-lump solu-
tion in the torus T2

� is found to be

uðnÞðz; �Þ ¼ Yn
k¼1

�1ð��1ðz� 2�kÞ; �Þ
�1ð��1ðz� 2	kÞ; �Þ

: (49)

The modular transformation (48) is generated by the fol-
lowing fundamental transformations,

2

0

2x

2

1

0

1

2

y

0

20

40

FIG. 2 (color online). Energy density for the solution (43) in

the one fundamental lattice �
ffiffi
2

p
2 � 
 x 


ffiffi
2

p
2 �, �

ffiffi
2

p
2 � 
 y 
ffiffi

2
p
2 �. � ¼ 3, � ¼ 5. �1 ¼ �0:253, �2 ¼ �1:19, �3 ¼ �0:680,

	1 ¼ �0:918, 	2 ¼ 0:629, 	3 ¼ �0:680. The parameters
�i, 	i are a numerical solution to the modular invariance
constraints (54).
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� ! �þ 1; � ! � 1

�
with z ! �z: (50)

Under the first transformation in the above, the � function
changes as

�1ðv; �þ 1Þ ¼ e�i=4�1ðv; �Þ: (51)

The solution (49) is therefore invariant under the trans-

formation (51), cancelling the phase factor e
�i
4 . Next, using

the relation,

�1ðv;�1=�Þ ¼ ei�v
2�e�3�i=4�1=2�1ð�v; �Þ; (52)

the solution (49) transforms as

uðnÞðz; �Þ ! uðnÞðz;�1=�Þ

¼ exp

�
4�i���2

��Xn
i¼1

�i �
Xn
i¼1

	n

�
z

�
�Xn
i¼1

�2
i �

Xn
i¼1

	2
i

���
uðnÞð�z; �Þ: (53)

Therefore, the solution is modular invariant if the follow-
ing conditions are satisfied:

Xn
i¼1

�i ¼
Xn
i¼1

	i;
Xn
i¼1

�2
i ¼

Xn
i¼1

	2
i ;

�i � 	j for all i; j:

(54)

Again, n ¼ 1 is the special case. It is easy to find that the
condition (54) cannot be satisfied for the n ¼ 1 case. When
n ¼ 2, we find that the first two conditions in (54) imply
�1 ¼ 	2, �2 ¼ 	1, which contradicts the third condition.
Therefore, the modular invariance is generically lost. On
the other hand, there are infinitely many solutions to the
conditions (54) for n � 3. It is apparent that the modular
invariance conditions (54) contain the periodicity condi-
tion (46). Hence, the modular invariance is sufficient for
the periodicity of the solutions.

Once the n-lump solutions satisfy the modular invari-
ance conditions (54), the solutions are generically rewritten
as elliptic functions. To show this fact, let us consider
the following relations between the � function and the
Weierstrass � function:

�ð2!1zÞ ¼ 2!1e
2�1!1z

2
�1ðz; �Þ=�001 ; � ¼ !3=!1;

�1 ¼ 
ð!1Þ ¼ �2

!1

�
1

12
� 2

X1
k¼1

kq2k

1� q2k

�
; q ¼ e�i�;

(55)

where 2!1, 2!3 are two distinct periods of doubly
periodic functions. Then the n-lump solution (43) can be
rewritten as

uðnÞðz; �Þ ¼ eAðzÞ
Yn
k¼1

�ð2!1�
�1ðz� 2�kÞÞ

�ð2!1�
�1ðz� 2	kÞÞ

; (56)

where the exponential factor is evaluated as

AðzÞ ¼ 8�1!1�
�2

��Xn
k¼1

�k �
Xn
k¼1

	k

�
z

þ
�Xn
k¼1

�2
k �

Xn
k¼1

	2
k

��
: (57)

Applying the modular invariance conditions (54), this
exponential factor vanishes and the solutions are totally
expressed by the elliptic functions. The expression (56)
is nothing but the solution discussed in Ref. [23]. The
contributions of these solutions to the partition function
of the nonlinear sigma models on a torus are discussed in
Ref. [24]. The Nahm transformation and moduli spaces of
CPN�1 models on a torus were discussed in Ref. [25].
However, our solution (43) is more generic and construc-
tive, allowing the clear decompactification limits and the
modular invariance.
So far we have focused on the base point condition

uðnÞð1Þ ¼ 1 onR2. When we switch to the other base point

conditions, for example uð1Þð1Þ ¼ 0 on R2, the solution on
T2 becomes

uð1Þðz; �; �Þ ¼ i�ð�Þ��1
1 ði��1z; �Þ; (58)

where we have again employed the 
-function regulariza-
tion. The function � is the Dedekind � function defined by

�ð�Þ ¼ q1=12
Y1
k¼1

ð1� q2kÞ; q ¼ ei��: (59)

The periodicity of this solution is found to be

uð1Þðzþ i�; �; �Þ ¼ �uð1Þðz; �; �Þ; (60)

TABLE I. Solutions associated with each base point condition. The � functions have common
modulus �.

Base point cond. Solution Regularization Modular inv.

uðnÞð1Þ ¼ 1 Q
n
k¼1ði�ð�ÞÞ�1�1ð��1ðz� 2�kÞÞ needed lost

uðnÞð1Þ ¼ 1
Q

n
k¼1 �1ð��1ðz� 2�kÞÞ=�1ð��1ðz� 2	kÞÞ no exist

uðnÞð1Þ ¼ 0
Q

n
k¼1 i�ð�Þ=�1ð��1ðz� 2	kÞÞ needed lost
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uð1Þðzþ �;�; �Þ ¼ �e�2���1ze����1
uð1Þðz; �; �Þ: (61)

This solution does not show any modular invariance even
for the n � 3 case. One can also find that the solution (58)
cannot be periodic even when the multilump generalization
of the solution (58) is considered. The properties of the
solutions for different base point conditions are summa-
rized in Table I.

Let us comment on the generalization of our construc-
tion to the CPN�1 models for N � 3 cases. One can easily
find that this is straightforward. The vector Wi has N � 1
independent components wî. Each component are holo-
morphic functions and we can construct solutions on T2 by
the same way shown in the N ¼ 2 case. The topological
charges are determined by the highest degree of the hol-
omorphic functions wîðzÞ.

Finally, let us see the topological charge of the BPS
lumps on a torus. Without loss of generality, one can
consider a rectangle torus defined by z� zþ ði�þ �Þ.
The topological charge of lumps is given by the first
Chern number

Q ¼ � 1

4�

Z
d2x"abFab: (62)

We demand that theUð1Þ gauge field and, hence, the scalar
field are periodic up to the gauge transformation:

A1ðx1; x2 ¼ �Þ ¼ A1ðx1; x2 ¼ 0Þ � @1�
ð2Þðx1Þ;

A2ðx1 ¼ �; x2Þ ¼ A2ðx1 ¼ 0; x2Þ � @2�
ð1Þðx2Þ:

(63)

Note that the gauge parameters �ðmÞðxnÞ depend only on
xnðn � mÞ. Then, the topological charge is given by

Q ¼ 1

2�
½�ð1Þð�Þ � �ð1Þð0Þ þ �ð2Þð0Þ � �ð2Þð�Þ�: (64)

This is the gauge transformation parameter along the
closed path depicted in Fig 3. On the other hand,
once one goes around the closed path, the scalar field

acquires the phase �ð1Þð�Þ � �ð1Þð0Þ þ �ð2Þð0Þ � �ð2Þð�Þ.
The single-valuedness requires that this phase factor

must be an integer multiple of 2�. Therefore, the topologi-
cal charge on T2 must be integer,

Q ¼ n; n 2 Z: (65)

Configurations with nonzero topological number Q are

caused by the large gauge transformation �ðmÞðxnÞ that is
defined modulo 2�.

IV. CONCLUSION AND DISCUSSION

In this paper, we have studied the topological BPS lumps
in supersymmetric CPN�1 nonlinear sigma models on a
torus T2. Following the philosophy of Harrington-Shepard,
we have established the constructive procedure to give
the BPS lump solutions for arbitrary topological number
Q ¼ n by collecting the ‘‘fundamental lumps’’ aligned
periodically. The charge-n BPS lump solutions on T2 are
obtained by arranging the charge-n lumps on R2 at equal
intervals along two distinct directions. The function form
of the solutions depends on the choice of the base point
condition of the fundamental lumps on R2. Choosing the
base point condition uð1Þ ¼ 0 or uð1Þ ¼ 1 requires the
regularization of the infinite products of rational maps. We
have employed the 
-function regularization and found the
explicit solutions that exhibit suitable pole structures.
On the other hand, for the base point condition

uð1Þ ¼ 1, we do not need any regularization scheme.
For the n ¼ 1 case, we have found that there is no solution
that satisfies the periodic boundary condition and the so-
lution is not modular invariant anymore. This is consistent
with the statement that there is no degree 1 elliptic func-
tions on a torus. However, if the twisted boundary con-
ditions are allowed, the solution turns out to be acceptable
provided that the parameters of the solutions are chosen
appropriately. For n ¼ 2, there are no parameters �i, 	i

that satisfy the modular invariance conditions. In the cases
of n � 3, however, we find that there are infinitely many
parameters that satisfy the modular invariance conditions.
Although the lumps on a torus were discussed in several

contexts in the past [19], our construction is quite simple
and constructive, and the solutions have the definite de-
compactification limit by construction. Since our construc-
tion of the solutions is so simple, we can obtain solutions
on T2, even for sigma models with other target spaces, in
the same way. Moreover, utilizing our construction, we
expect that we can find solutions with nontrivial holonomy
parameters on compact spaces. Such solutions on R� S1

have been investigated in Ref. [9]. When a solution has
nontrivial holonomy along the compact spaces, one ex-
pects that it has fractional topological charges. This fact
can be seen also in the gauge theory instantons in four
dimensions. It was discussed that gauge theories in a box
(hypertorus) admit instantons with a fractional Pontryagin
number when the twisted boundary conditions are imposed
[5,26]. These instantons have constituents in their inner
parts. For example, the constituents of doubly periodicFIG. 3. The closed path on the torus.
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instantons in SUð2Þ Yang-Mills theories are discussed in
Ref. [27], and instantons with fractional charges are
studied in Ref. [28].

Finally, let us comment on the applications of our con-
struction in the other contexts. The two-dimensional super-
symmetric sigma models are considered as the effective
action of a vortex in supersymmetric gauge theories.
Therefore, the lumps on the compact spaces are interpreted
as four-dimensional gauge theory instantons inside the
vortex wrapping the compact spaces. We will explore
this possibility in the future works. Time evolutions of

the solutions on T2 would be also interesting topics.
Although the generalization of our construction to
CPN�1 with N � 3 is straightforward, its dynamics would
be different compared with theN ¼ 2 case as in the case of
R2 [17]. The other time-dependent solutions, for example
the Q-lumps [29] on the torus, can be constructed in the
same way. Lumps with fractional topological charges and
their constituents in gauged sigma models [30] and the
other context [31] have been studied. It would be interest-
ing to investigate these kinds of fractional lumps in the
sigma models on a torus with twisted boundary conditions.
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