
4d index to 3d index and 2d topological quantum field theory

Francesco Benini,1 Tatsuma Nishioka,1 and Masahito Yamazaki2

1Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
2Princeton Center for Theoretical Science, Princeton University, New Jersey 08544, USA

(Received 25 September 2011; published 10 September 2012)

We compute the 4d superconformal index forN ¼ 1, 2 gauge theories on S1 � Lðp; 1Þ, where Lðp; 1Þ
is a lens space. We find that the 4d N ¼ 1, 2 index on S1 � Lðp; 1Þ reduces to a 3d N ¼ 2, 4 index on

S1 � S2 in the large p limit, and to a 3d partition function on a squashed Lðp; 1Þ when the size of the

temporal S1 shrinks to zero. As an application of our index, we study 4d N ¼ 2 superconformal field

theories arising from the 6d N ¼ ð2; 0Þ A1 theory on a punctured Riemann surface �, and conjecture the

existence of a 2d topological quantum field theory on � whose correlation function coincides with the 4d

N ¼ 2 index on S1 � Lðp; 1Þ.
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I. INTRODUCTION

One of the beauties of supersymmetric gauge theories is
that they are often amenable to exact analysis. Recent
studies have uncovered powerful techniques (mostly based
on localization) to extract exact results for 3d and 4d super-
symmetric gauge theories, including the 4d N � 1 super-
conformal index on S1 � S3 [1,2], the 4d N � 2 partition
function on S4 [3], the 3d N �2 partition function on S3

[4–8] and the 3d N �2 index on S1�S2 [9–11].
Given the richness of the subject, a natural question is

whether there are precise relations among different quan-
tities. One such relation has been noticed by [12–14] (see
also [15]), which shows that a 4d index on S1 � S3 reduces
to a 3d partition function on S3 when the radius of the
temporal S1 goes to zero. We will present yet another
connection between 4d and 3d quantities.

In this paper we study the superconformal index of 4d
N ¼ 1, 2 superconformal field theories (SCFTs) on S1 �
Lðp; 1Þ, and obtain explicit expressions for them.1 This is
the first result of our paper, see Sec. II and, in particular, the
expressions in (9)–(17) and (25)–(29) for the result and
the Appendix for the derivation. Here Lðp; qÞ, where p, q
are coprime integers, is the lens space defined as the
orbifold of S3: fðz1; z2Þ 2 C2jjz1j2 þ jz2j2 ¼ 1g under the
identification

ðz1; z2Þ � ðe2�iq=pz1; e�2�i=pz2Þ; (1)

where SUð2Þ1 acts on ðz1; z2Þ as a doublet (see Sec. II for
our notation). Without loss of generality one can assume
0<p and 0< q � p� 1. As for fermions, we choose the

orbifold action such that the supercharges �QI _� are pre-
served, while QI

� are broken. Note that this action has no
fixed points, and the manifold Lðp; qÞ is still smooth. In
this paper we consider the case q ¼ 1: Lðp; 1Þ is the
orbifold S3=Zp, where Zp acts on the S1 fiber of the

Hopf fibration. Equivalently, the Zp action is embedded

into Uð1Þ1 � SUð2Þ1.
Our S1 � Lðp; 1Þ index in itself will serve as a useful

tool to quantitatively study the strongly coupled IR fixed
points. For example our index could be used for checks of
4dN ¼ 1 Seiberg dualities. Mathematically, such a dual-
ity is expressed as an identity involving an integral of a
generalization of the elliptic gamma function.2

The second result is about the compactification of the 4d
theories. When 4d N ¼ 1, 2 SCFTs are compactified on
S1, they flow in the IR to 3dN ¼ 2, 4 SCFTs. In our setup
we have two circles: one circle (denoted by S1T) is the
temporal S1, and another (denoted by S1H) is the S

1 of the
Hopf fibration. Depending on the choice of S1, we can
study two limits of our index.
In the limit S1H ! 0, i.e. p ! 1, the lens space Lðp; 1Þ

reduces to the two-sphere and we show that the 4d index
reduces to the 3d index on S1T � S2 (Sec. III):

I 4d½S1T � Lðp; 1Þ� !p!1
I3d½S1T � S2�: (2)

In this limit the holonomies of the gauge field along S1H in
the 4d theory are mapped to the monopole charges in the 3d
theory. On the other hand in the limit S1T ! 0 the temporal
circle shrinks to zero and the 4d index reduces to the 3d
partition function on Lðp; 1Þ (Sec. IV):
I 4d½S1T � Lðp; 1Þ� ! Z3d½Lðp; 1Þ� when S1T ! 0: (3)

The third result is about an application of our index
(Sec. V). When the 4d theory arises from the 6d (2, 0)
theory on a punctured Riemann surface �, we conjecture
the existence of a 2d topological quantum field theory
(TQFT) on � whose correlation function coincides with
the 4d index on S1 � Lðp; 1Þ, generalizing a similar claim
of [18,19]. We summarize the relations between the 4d

1The index of N ¼ 4 super-Yang-Mills on S1 � S3=Zp was
studied in [16,17].

2For the generalization of the elliptic gamma function see the
infinite product form in (47) or (49), while for its hyperbolic
version see (52).
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index and the 3d quantities we will obtain in this paper in
Fig. 1.

II. 4D INDEX ON S1�Lðp; 1Þ
In this section we will present our expression for the 4d

N ¼ 1, 2 superconformal indices3 on S1 � Lðp; 1Þ. The
derivation of these results is given in the Appendix.

Consider a 4d N ¼ 1 (N ¼ 2) superconformal field
theory on S1 � S3. Its superconformal algebra is given by
SUð2; 2j1Þ [SUð2; 2j2Þ]. We let the R-symmetry index and

the supercharges be I ¼ 1 (I ¼ 1, 2) and QI
�,

�QI _�, SI�,
�SI

_�, respectively. Here � ¼ � ( _� ¼ �) is the index for the
SUð2Þ1 [SUð2Þ2] spin of the SOð4Þ ’ SUð2Þ1 � SUð2Þ2
rotational symmetry of the three-sphere.

The orbifold theory has a set of degenerate vacua,
labeled by a nontrivial holonomy V along the S1H direction,
since �1ðLðp; 1ÞÞ ¼ Zp. The holonomy V satisfies Vp ¼ 1

and can be mapped to an element of the maximal torus
through conjugation by an element of the gauge group

V ¼ ð!01N0
; 	 	 	 ; !p�11Np�1

Þ; (4)

where ! ¼ e2�i=p and the integers NI satisfy the relationPp�1
I¼0 NI ¼ N withN the rank of the gauge group. Another

useful parametrization is given by m1; . . . ; mN , which is
defined as

ðmiÞ ¼ ð0; 	 	 	 ;0|fflfflfflffl{zfflfflfflffl}
N0

; 	 	 	 ;p� 1; 	 	 	 ;p� 1Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Np�1

; NI ¼ ð#mi ¼ IÞ;

(5)

where i ¼ 1; . . . ; N and I ¼ 0; 	 	 	 ; p� 1. In this notation
the ith holonomy is given by !mi . The holonomy breaks
the gauge group into a product of p subgroups

G ! Yp�1

I¼0

GI; (6)

where the rank ofGI is given byNI. For example, in case of

a UðNÞ gauge group we have UðNÞ ! Qp�1
I¼0 UðNIÞ.

A. N ¼ 2 index

Let us begin with the N ¼ 2 index. We will comment
on the N ¼ 1 index later.
We define the index with respect to the supercharge

Q 
 �Q2þ that survives the orbifold projection. This is
given by [1,2]

I ¼ Trð�1ÞF e� ~��t2ðEþj2Þy2j1v�ðrþRÞzF; (7)

where F is the fermion number, the trace is taken over the
states of the theory on S3, and the quantum numbers of the
R symmetries Uð1ÞR � SUð2ÞR and Uð1Þr are denoted by
ðR; rÞ. The � is the commutator of Q with its conjugate,

� 
 2fQ;Qyg ¼ E� 2j2 � 2Rþ r; (8)

and the index is independent of ~�. Therefore, only the
states obeying � ¼ 0 contribute to the index. The expres-

sion zF is a shorthand for
Q

jz
Fj

j , where Fj are charges with

respect to flavor symmetries (commuting withQ,Qy) and
zj are their chemical potentials. The operators Eþ j2, j1,

Rþ r and Fi appearing in (7) are the maximal set of
operators commuting with Q and Qy.
In the path-integral formulation, our 4d index for an

N ¼ 2 theory on S1 � Lðp; 1Þ can be written as

I pðt; y; v; zÞ ¼
X
m

I0
p;mðt; y; v; zÞ

Z
½da�

� exp

�X1
n¼1

1

n
Îp;mðtn; yn; vn; zn; einaÞ

�
:

(9)

Here, the index consists of a sum of indices labeled by the
set of holonomies m 
 fmig, with 0 � m1 � 	 	 	 � mN �
p� 1. The measure [da] is given by

½da� ¼ 1Q
I jW Ij

YN
i¼1

dai
2�

Y
�2G

�ðmÞ¼0

2 sin
�ðaÞ
2

; (10)

where W I is the Weyl group of GI and the last product is
over the roots of the unbroken gauge group. This is the
Haar measure of the unbroken gauge group

Q
IGI.

The function Îp;m is the single-letter contribution to the

index, and is obtained by summing over all the fields �
contributing to the index:

Î p;mðt; y; v; z; eiaÞ ¼
X
�

Î�
p;mðt; y; v; z; eiaÞ: (11)

For a vector multiplet we find (see the Appendix)

FIG. 1. A schematic summary of the relations obtained in
Secs. II, III, and IV.

3Despite the name, we can define this index for 4d N ¼ 1, 2
theories which are nonconformal in the UV.
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ÎN¼2 vector
p;m ðt; y; v; z; eiaÞ ¼ X

�2Adj

½ðt2v� t4v�1 þ t6 � 1Þ

� Fpðt; y; ⟦�ðmÞ⟧Þ
þ �⟦�ðmÞ⟧;0�ei�ðaÞ; (12)

and for a half-hypermultiplet in a representation R and
with flavor charges F

ÎN¼2 half-hyper
p;m ðt; y;v;z;eiaÞ ¼ X

�2R

ðt2v�1=2zF � t4v1=2z�FÞ

�Fpðt; y;⟦�ðmÞ⟧Þei�ðaÞ;
(13)

where the summations are over the weights of the adjoint
representation and of the representation R of G respec-
tively.4 Here the function Fpðt; y;LÞ is defined by

Fpðt; y;LÞ ¼ 1

1� t6

�
t3LyL

1� t3pyp
þ t3ðp�LÞy�ðp�LÞ

1� t3py�p

�
; (14)

and we use the notation

⟦x⟧ ¼ fan integer y such that 0 � y < p and

y 
 xpðmodpg: (15)

Finally I0
p;mðt; y; v; zÞ in front of the integral is the

contribution from zero-point oscillations of the fields,
which depends on the matter content of the theory. We
have

I0
p;mðt; y; v; zÞ ¼ exp

�
�
X
�2G

1þ�

2p
ðp⟦�ðmÞ⟧� ⟦�ðmÞ⟧2Þ

� �
X

�: half-hyper

X
�2R�

1þ�� 2F��

4p

� ðp⟦�ðmÞ⟧� ⟦�ðmÞ⟧2Þ
�
; (16)

where we introduced the notation

t¼e�
�
2 ; y¼e���1 ; v¼e��� zj¼e���j : (17)

Note that this vanishes when the holonomy is trivial,
m ¼ 0, so that in the first term we only considered
the sum over the roots of G. Moreover, since ⟦� x⟧ ¼
p� ⟦x⟧, we have p⟦x⟧� ⟦x⟧2 ¼ p⟦� x⟧� ⟦� x⟧2.

For concreteness, let us specialize to a UðNÞ gauge
theory with vector multiplets and trifundamental hyper-
multiplets. This is the theory we will discuss in Sec. V. We
also set the flavor chemical potential to zero, z ¼ 1. Then
the measure [da] becomes

½da� ¼ 1Q
I NI!

YN
i¼1

dai
2�

Y
i;j

mi¼mj

2 sin
ai � aj

2
; (18)

which coincides with the product of Haar measuresQ
I½dUI� with NI � NI unitary matrices UI, whose eigen-

values are denoted by eiai . We have

Î N¼2 vector
p;m ðt; y; v; eiaÞ ¼ XN

i;j¼1

fpð⟦mi �mj⟧Þeiðai�ajÞ

¼ Xp�1

I;J¼0

fpð⟦I � J⟧ÞTrðUIÞTrðUy
J Þ

(19)

for a vector multiplet, and

ÎN¼2 trifund
p;m ðt; y; v; eiaÞ ¼ XN

i;j;k¼1

gpð⟦mi þmj þmk⟧Þ

� eiðaiþajþakÞ

¼ Xp�1

I;J;K¼0

gpð⟦Iþ J þ K⟧Þ

� TrðUIÞTrðUJÞTrðUKÞ (20)

for a half-hypermultiplet in the trifundamental representa-
tion. Here we defined

fpðLÞ ¼ ðt2v� t4v�1 þ t6 � 1ÞFpðt; y;LÞ þ �L;0;

gpðLÞ ¼ ðt2v�1
2 � t4v

1
2ÞFpðt; y;LÞ: (21)

B. N ¼ 1 index

Let us repeat the discussion for the 4d N ¼ 1 index
given by

I ðt; y; zÞ ¼ Trð�1ÞF t2ðEþj2Þy2j1zF; (22)

where the trace is taken over all the fields satisfying

fQ;Qyg ¼ E� 2j2 � 3

2
~r ¼ 0; (23)

and ~r is the R symmetry of theN ¼ 1 superalgebra. When
we regard the N ¼ 2 SCFT as the N ¼ 1 SCFT, the R
symmetries R, r of the N ¼ 2 supersymmetry recombine
into the N ¼ 1 R symmetry ~r and a flavor symmetry A
commuting with Q. By comparing the definitions of the
indices [compare (7) and (8) with (22) and (23), and see
also [20]] we obtain

~r ¼ 4R� 2r

3
; A ¼ �R� r: (24)

The same derivation as in the Appendix works for the
N ¼ 1 theory, but there are some important differences.
First, we do not have a chemical potential v for the R

4For an adjoint representation, this sum is over the roots of G
as well as vanishing weights.
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symmetry. Second, there is a zero-point contribution

eiB
0
p;mðaÞ to the measure of the theory. We have

B0
p;mðaÞ ¼ � X

�: chiral

X
�2R�

�ðaÞ
2p

ðp⟦�ðmÞ⟧� ⟦�ðmÞ⟧2Þ:

(25)

This correction is absent for a vectorlike theory, including
the N ¼ 2 theories previously discussed. The index is
given by

Ipðt; y; zÞ ¼
X
m

I0
p;mðt; y; zÞ

Z
½da�eiB0

p;mðaÞ

� exp

�X1
n¼1

1

n
Îp;mðtn; yn; zn; einaÞ

�
: (26)

The single-letter index Î for anN ¼ 1 vector multiplet is

ÎN¼1 vector
p;m

¼ X
�2Adj

ððt6 � 1ÞFpðt; y; ⟦�ðmÞ⟧Þ þ �⟦�ðmÞ⟧;0Þei�ðaÞ;

(27)

where we used the same function (14). This is essentially
the half of (12) corresponding to an N ¼ 1 vector multi-
plet. For an N ¼ 1 chiral multiplet with flavor charges F
we have

ÎN¼1 chiral
p;m ¼ X

�2R

ðt3QzFei�ðaÞ � t6�3Qz�Fe�i�ðaÞÞ

� Fpðt; y; ⟦�ðmÞ⟧Þ: (28)

In this expression we have included an anomalousR charge
Q (cf. [21]). In many N ¼ 1 examples, the theory in the
UV is not conformal but flows to a conformal fixed point in
the IR. In these situations, the IR R symmetry is a mixture
of the UV R symmetry ~r and flavor symmetries, and we
need to discuss nontrivial anomalous dimensions. This
effect can be incorporated by shifting the flavor chemical

potential zF by t3ðQ�2=3Þ ¼ t2ð3Q=2�1Þ, where 3Q=2 is the
anomalous dimension and the factor 2 comes from the
definition of the index [see (22)].

The total zero-point contribution I0
p;me

iB0
p;mðaÞ from vec-

tor and chiral multiplets is

I0
p;me

iB0
p;mðaÞ ¼ exp

�
3�

4p

X
�2G

ðp⟦�ðmÞ⟧�⟦�ðmÞ⟧2Þ

� X
�: chiral

X
�2R�

�ð3�3Q�2F��Þþ2i�ðaÞ
4p

�ðp⟦�ðmÞ⟧�⟦�ðmÞ⟧2Þ
�
; (29)

where the contribution of vanishing weights of the adjoint
representation drops out and � 2 G now represents the
sum over roots of the gauge group.

C. Refined index

We can construct a refined 4d orbifold index which
depends on holonomies for the flavor symmetries, besides
the chemical potentials. To construct it, both inN ¼ 1 and
N ¼ 2 cases, we first define the flavor chemical potentials
in an alternative equivalent way (therefore setting z ¼ 1 in
the previous expressions): we introduce external vector fields

for all flavor symmetries. Let ~G ¼ G�H be the extended
symmetry group, of whichG is gauged andH is external.We
do not integrate over the external vector fields in (9) and (29),
nor introduce a single-letter contribution for them as opposed
to (12) and (27). However in the half-hyper- (13) and the
chiral multiplets (28) single-letter index, as well in the zero-
point energies (16) and (29), we sum over weights of the

representation R under the full symmetry group ~G.
We can introduce holonomies eia� of the external vector

fields along the temporal direction S1T : up to conjugation,
they are parametrized by parameters fa�g in the maximal
torus of H. After complexification of the cotangent bundle
of the maximal torus, we can identify eia� ¼ z� with the
flavor chemical potentials.
For p>1 we can also introduce flavor holonomies

e2�im�=p, mutually commuting with the temporal holono-
mies, along S1H inside Lðp; 1Þ. The integer parameters fm�g,
with 0 � m� < p, provide a refined version of the index:

I pðt; y; v; a�;m�Þ: (30)

Note that the flavor holonomies break the flavor group as
H ! Q

IHI, and enter both in the single-letter indices and in
the zero-point energy. On the other hand as we do not
integrate over temporal flavor holonomies, we do not sum
over flavor holonomies.
The refined index is useful if we want to compute the

index of a theory obtained by gauging together two theo-
ries T 1 and T 2 along a common flavor symmetry factor
H0 (see Sec. V):

Ipðt; y; v;a;m; c; sÞ
¼ X

r

I0;vectorH0
p;r

Z
½db� exp

�X
n

1

n
ÎvectorH0
p;r ðtn; yn; vn; einbÞ

�

� IT 1
p ðt; y; v;a;m; b; rÞIT 2

p ðt; y; v; b; r; c; sÞ: (31)

Here a, b, c are flavor chemical potentials, m, r, s are
flavor holonomies, ðb; rÞ refer to the common flavor sym-
metry H0, and the inserted functions are the zero-point
energy and single-letter contribution of the gauge fields
along H0.
In the following sections we discuss the reduction of

the 4d orbifold index to the 3d partition function and the
3d index. Correspondingly, there are refinements of the 3d
index and 3d partition functions. The former is the gen-
eralized superconformal index of [22].
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III. RELATION TO THE 3D INDEX ON S1 � S2

In this section we show explicitly that the p ! 1
limit of the 4d N ¼ 1 index on S1 � Lðp; 1Þ ¼ S1 �
S3=Zp gives the 3d N ¼ 2 index on S1 � S2. A paral-

lel analysis shows that in the same limit the 4d N ¼ 2
index on S1 � Lðp; 1Þ reduces to the 3d N ¼ 4 index
on S1 � S2. This result can be regarded as yet another
derivation of the 3d index, including the nontrivial
monopole charges. This approach does not require
more intricate information such as the choice of clever
localization terms and supersymmetry transformation
on curved backgrounds. Notice that the present method
can be applied to 3d theories coming from dimensional
reduction from the 4d parents, and cannot be used for
theories with Chern-Simons terms.

Let us take the limit p ! 1. The circle S1H shrinks to
zero size in this limit and thus the chemical potential y
along the direction goes to 1. The expression in the
parentheses appearing in both (27) and (28) gets finite
contributions in the limit from either ⟦�ðmÞ⟧� 0 or
⟦�ðmÞ⟧� p:

ÎN¼1vector
p;m ! X

�2G

ð�t3j�ðmÞj þ ��ðmÞ;0Þei�ðaÞ;

ÎN¼1chiral
p;m ! X

�2R

t3QzFei�ðaÞ � t6�3Qz�Fe�i�ðaÞ

1� t6
t3j�ðmÞj:

(32)

Note that the roots with �ðmÞ ¼ 0 do not contribute to the
vector single-letter index. In this limit, the total zero-point

contribution I0
p;me

iB0
p;mðaÞ becomes

exp

�
3�

4

X
�2G

j�ðmÞj

� X
�chiral

X
�2R�

�ð3� 3Q� 2F��Þ þ 2i�ðaÞ
4

j�ðmÞj
�

¼ t3�0zq0eib0ðaÞ; (33)

with

�0 ¼ � 1

2

X
�2G

j�ðmÞj � 1

2

X
�

X
�2R�

ðQ� 1Þj�ðmÞj;

q0;i ¼ � 1

2

X
�

Fið�Þ X
�2R�

j�ðmÞj;

b0ðaÞ ¼ � 1

2

X
�

X
�2R�

�ðaÞj�ðmÞj: (34)

In summary, the p ! 1 limit of the 4d index gives
rise to

I ¼ X
m

t3�0zq0
Z
½da�eib0ðaÞ exp

�X1
n¼1

1

n
Îp;mð	nÞ

�
; (35)

where Î is given by the sum of (32). This result coincides
with the formula for the 3d index given in [11],5,6 pro-
vided that we identify x ¼ t3. Here x appears in the
definition of the 3d index

I ¼ Tr½ð�1ÞF xðEþjÞzF�; (39)

and the trace is taken over operators satisfying

fQ;Qyg ¼ E� j� ~r ¼ 0: (40)

Comparing (22), (23), (39), and (40), we see that

t2ðEþj2Þ ¼ t6j2þ3~r should be identified with xEþj ¼ x2jþ~r.
This explains the parameter identification x ¼ t3.

IV. RELATION TO THE 3D PARTITION
FUNCTION ON Lðp; 1Þ

In this section we consider the 4d N ¼ 1,2 index
on S1T � Lðp; 1Þ and show that in the limit S1T ! 0 it
reproduces the 3d partition function of the dimension-
ally reduced 3d N ¼ 2,4 theory on Lðp; 1Þ.7 This is
to be expected since when the circle shrinks the non-
trivial modes along the circle become infinitely mas-
sive and decouple from the spectrum, leaving only the
constant modes along S1T . Indeed, the Lagrangians of
the 4d and 3d theories are the same up to terms
irrelevant for the localization [14], and at the level
of the one-loop determinant the S1T ! 0 limit is real-
ized as [see (A7)]

5With respect to the expression in [11], we have Sð0ÞCS ¼ 0
because our 3d theories arise from the dimensional reduction
of 4d theories and do not have a Chern-Simons term in the
Lagrangian.

6We could make use of the identity

Y
�2G;�ðmÞ¼0

2i sin
�ðaÞ
2

¼ exp

�X1
n¼1

1

n
gðeinaÞ

�

with gðeiaÞ ¼ � X
�2G;�ðmÞ¼0

ei�ðaÞ (36)

to rewrite the Haar measure ½da� in terms of the flat measureg½da�:
g½da� ¼ 1Q

I nI!

YN
i¼1

dai
2�

; (37)

reabsorbing the extra factor into the vector multiplet single-letter
index. In this case we have

Î vector;flat
p;m ¼ �X

�2G

xj�ðmÞjei�ðaÞ; (38)

which is the expression found in [11].
7The same problem for p ¼ 1 was analyzed in [12–14]. See

also [23,24] for the 3d partition function for a pure gauge theory
without matters on lens spaces and more generally on Seifert
manifolds. Our 3d partition function on a lens space includes the
coupling with matter.
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Y
E

Y1
n¼�1

�
2�in

�
þ E

�
! Y

E

E; (41)

where we regularized the divergent constantQ
n�0ð2�in� Þ. The right-hand side is precisely the one-

loop determinant of the 3d theory.

A. 3d partition function on Lðp; 1Þ
Let us first present the 3d partition function on the lens

space for general 3d N ¼ 2 theories, in the absence of
Chern-Simons terms. This in itself is a useful result regard-
less of the reduction from the 4d index. The answer can be
obtained by generalizing the localization procedure of
[4,7,8]. The reduction from the 4d index provides another
derivation of this result.

The partition function takes the following form:

Z3d½Lðp; 1Þ� ¼
X
m

Z
½da�3dZvector

1-loop½a;m�Zchiral
1-loop½a;m�;

(42)

where ½da�3d is a Vandermonde measure of the residual
gauge symmetry

½da�3d ¼ 1Q
I NI!

YN
i¼1

dai
Y

�2G�ðmÞ¼0

�ðaÞ; (43)

and Zvector
1-loop and Z

chiral
1-loop are the one-loop determinants of the

gauge and matter sectors. For a vector multiplet,

Zvector
1-loop½a;m�

¼ Y
�>0

sinh½�p ð�ðaÞ þ i�ðmÞÞ� sinh½�p ð�ðaÞ � i�ðmÞÞ�
ð�ðaÞÞ2��ðmÞ;0

;

(44)

whose denominator cancels the Vandermonde measure
(43).

For a chiral multiplet with an anomalous R chargeQ, the
one-loop determinant becomes

Zchiral
1-loop½a;m� ¼ Y

�2R

Y1
l¼0

�
lþ 2�Qþ i�ðaÞ
lþQ� i�ðaÞ

�
N�ðlÞ

; (45)

where N�ðlÞ is defined to be the number of half-integers

m1 2 f� l
2 ;� l

2 þ 1; . . . ; l2 � 1; l2g satisfying

2m1 ¼ �ðmÞ ðmodpÞ: (46)

The one-loop determinant (45) becomes trivial for the
N ¼ 2 chiral multiplet (which has Q ¼ 1) inside the
N ¼ 4 vector multiplet.

B. From the 4d index to the 3d partition function

Consider the reduction from the 4dN ¼ 1 index to the
3d N ¼ 2 partition function.
Let us start with the chiral multiplet. The orbifold

index given in (A20) can be written, with the use of
(A14) and (A9), as

IN¼1chiral
p;m

¼ Y
�2R

Y0
n1;n2�0

1� t3ðn1þn2Þþ6�3Qyn1�n2z�Fe�i	�ðaÞ

1� t3ðn1þn2Þþ3Qyn1�n2zFei	�ðaÞ
; (47)

where we rescaled a by a factor 	 for later purpose, and
prime means that the product is over the non-negative
integers n1, n2 satisfying the orbifold condition n1 � n2 ¼
�ðmÞp ðmodpÞ in (A17).8 The formula above provides a
generalization of the elliptic gamma function. Let us define
an integer l and a half-integer m1 as

l ¼ n1 þ n2; m1 ¼ ðn1 � n2Þ=2; (48)

then the orbifold condition (A17) agrees with that of the 3d
partition function (46) and we can rewrite

IN¼1chiral
p;m

¼ Y
�2R

Y0
l�0m12f�l

2;�l
2þ1;...;l2g

1� t3lþ6�3Qy2m1z�Fe�i	�ðaÞ

1� t3lþ3Qy2m1zFei	�ðaÞ
:

(49)

Now we set t ¼ e�	=3, y ¼ z ¼ 1 and take 	 ! 0 limit
[13].9 The index then reduces exactly to the 3d partition
function of the chiral multiplet (45).
In the same way we can write the 4d index of the vector

multiplet (A19) as

IN¼1vector
p;m ¼ Y

�2G

�
1

ð1� ei	�ðaÞÞ��ðmÞ;0

�Y0
l;m1

1� t3ly2m1e�i	�ðaÞ

1� t3lþ6y2m1ei	�ðaÞ

�
: (50)

8This is the infinite product in (A8), and includes the zero-
point contribution.

9The 	 here is different from � in (17) by a factor 3=2, and is
the same as the � in [13].
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As before, setting y ¼ 1 and taking the 	 ! 0 limit we obtain (up to overall constants independent of the holonomies)

Y
�2G

�
1

ð�ðaÞÞ��ðmÞ;0

Y1
l¼0

�
lþ i�ðaÞ

lþ 2þ i�ðaÞ
�
N�ðlÞ� ¼ Y

�2G

�
1

ð�ðaÞÞ��ðmÞ;0

Y1
l¼0

ðlþ i�ðaÞÞN�ðlÞ�N�ðl�2Þ
�

¼ Y
�2G

�
1

ð�ðaÞÞ��ðmÞ;0

Y
l�0�l��ðmÞ2pZ

ðlþ i�ðaÞÞ Y
l�0l��ðmÞ2pZ

ðlþ i�ðaÞÞ�

¼ Y
�>0

sinh½�p ð�ðaÞ þ i�ðmÞÞ� sinh½�p ð�ðaÞ � i�ðmÞÞ�
ð�ðaÞÞ2��ðmÞ;0

; (51)

where we defined N�ðlÞ ¼ 0 when l < 0. This result coincides with the 3d partition function of the vector multiplet (44).
The measure term in the 4d index (18) becomes that of the 3d partition function (43) after rescaling a by a factor of 	, and
this verifies our claim of the relation between the 4d index and the 3d partition function on the lens spaces.

Finally, let us take a more general limit t ¼ e�	=3, y ¼ e�	
, z ¼ e�	� with 	 ! 0 while keeping 
, � finite. The one-
loop determinants then become

Z
vector;

1-loop ½a;m� ¼ Y

�2G

Y0
l;m1

lþ 2m1
þ i�ðaÞ
lþ 2þ 2m1
� i�ðaÞ ¼

Y
�2G

Y0
n1;n2�0

n1ð1þ
Þ þ n2ð1�
Þ þ i�ðaÞ
n1ð1þ
Þ þ n2ð1�
Þ þ 2� i�ðaÞ ;

Zchiral;

1-loop ½a;m� ¼ Y

�2R

Y0
l;m1

lþ 2�Q� �Fþ 2m1
þ i�ðaÞ
lþQþ �Fþ 2m1
� i�ðaÞ ¼ Y

�2R

Y0
n1;n2�0

n1ð1þ
Þ þ n2ð1�
Þ þ 2�Q� �Fþ i�ðaÞ
n1ð1þ
Þ þ n2ð1�
Þ þQþ �F� i�ðaÞ ;

(52)

where we used (48). Notice that these provide generalizations of the hyperbolic hypergeometric gamma function.
Moreover we see that � � 0 has the effect of changing the anomalous R charge Q. The remaining question is the effect
of the parameter 
: when � ¼ 0, 
 � 0, the answer coincides with the 3d partition function on a squashed lens space

(generalizing the result of [25]) with the squashing parameter b ¼
ffiffiffiffiffiffiffiffi
1þ

1�


q
.

V. RELATION TO 2D TQFT

Let us apply our formalism to the class of 4d N ¼ 2 SCFTs discovered by Gaiotto [26] (see also [27–29]): these are
obtained by compactifying the 6d (2,0) AN�1 theory on punctured Riemann surfaces �. In this paper we specialize to the
case N ¼ 2.

To obtain a Lagrangian description, we fix a pants decomposition of the surface. This is specified by a graph, whose set
of internal edges (trivalent vertices) we denote by G (V ). An internal edge l 2 G corresponds to an SUð2Þ gauge group,
and a trivalent vertex ðl; m; nÞ 2 V corresponds to a trifundamental hypermultiplet. Since the total gauge group is

SUð2ÞjGj, the holonomy is determined by a set of integers mI
l .

The 4d orbifold index of this theory can be computed to be [recall (19) and (20)]

I p ¼ X
mI

l

I0
p;m

Z Y
l2G

Y
I

½dUI
l � exp

�X1
n¼1

1

n

�X
l2G

fpð	nÞTrAdjðUn
l Þ þ

X
ðl;m;nÞ2V

gpð	nÞTrtrifundðUn
l ; U

n
m;U

n
nÞ
��

; (53)

where fp and gp are defined in (21). Let us define

C�i;�j;�k

 exp

�X
n

1

n
gpð	nÞTrtrifundðn�l; n�m; n�nÞ

�
; 
�k;�l 
 exp

�X1
n¼1

fpð	nÞTrAdjðn�iÞ
�
�ð�Þ�1; (54)

where�ð�Þ is the square root of themeasure given in (10).As
in [18], this trivially satisfies the axioms of TQFT, except for
the associativity. We have checked the associativity by series
expansion. The associativity holds not for a fixed holonomy,
but after summing over the holonomies. We conjecture that
the associativity holds in general; this can be regarded as a
nontrivial test of the S duality of 4d N ¼ 2 SCFTs. It is
desirable to give an analytic proof of the associativity. If this

is the case, we have a 2d TQFTwhose correlation function on
the Riemann surface coincides with the orbifold index for the
4d N ¼ 2 theory characterized by the same Riemann sur-
face. When the lens space is a three-sphere, the 2d theory is
proposed to be the q-deformed Yang-Mills theory [19]. To
identify the 2d counterpart of the orbifold index, it would be
important to understand its relation to the Alday-Gaiotto-
Tachikawa correspondence [30] between 4d N ¼ 2
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partition functions on asymptotically locally Euclidean
spaces and 2d Para-Liouville/Toda theories [31–35] (see
also [36–38]). In a similar way, one could consider the 6d
N ¼ ð2; 0Þ A1 theory compactified on a Riemann surface
with N ¼ 1 twist, giving rise to 4d N ¼ 1 theories [39].
We expect their superconformal index and orbifold index to
describe some 2d topological theory on the Riemann surface.

In the limit p ! 1 the 4d theory reduces to a 3d theory
(which by mirror symmetry is dual to a conventional quiver
theory [40]), the 4d index reduces to the 3d index (Sec. III)
and it is expected that the 2d TQFT lifts to a 3d TQFT,
perhaps along the lines of [41]. See Fig. 2 for the schematic
relations. Similarly, in the limit S1T ! 0 (	 ! 0 in the
notation of Sec. IV), we expect to recover a Chern-
Simons theory with a noncompact gauge group [42–47].
It would be interesting to study these points further.
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APPENDIX: DERIVATION OF THE 4D
INDEX ON S1 � Lðp; 1Þ

In this Appendix we derive our orbifold index in the
path-integral formulation (cf. [48]). Let us deal with the

case of the 4d N ¼ 2 SCFT first, and comment on the
N ¼ 1 case later.
The index (7) is written as

I ¼ Trð�1ÞF e��ðEþj2þ2�1j1��ðrþRÞþ�FÞ; (A1)

where we used the notation (17), andH will denote the set
of all fields contributing to the index. The expression (A1)
is equivalent to the path integral over all the fields� inH ,

I ¼
Z
H

D�e�S½��; (A2)

where we impose a periodic boundary condition along S1

for fermions, and the chemical potentials modify the co-
variant derivative with respect to the Euclidean time, acting
on the field � in a representation R�, to be

D0 ¼ @0 � i�ðaÞ � j2 � 2�1j1 þ�ðrþ RÞ � �F;

(A3)

where � 2 R� stands for the weight of the representation.
Since the index does not depend on gauge couplings, one
can perform a path integral exactly in the free field limit.
The one-loop contribution from a field � is

Z� ¼ Y
�2R�

Detð�1ÞFþ1ð�D2
0 þ ��Þ; (A4)

where �� is an operator whose eigenvalues are denoted by
E2
�. For example, we have �� ¼ ��S3 þ 1 for a scalar,

where the term 1 comes from the conformal coupling of the
scalar field.
Let us expand the determinant in terms of the eigenval-

ues of @0:

Detð�D2
0þE2

�Þ¼
Y1

n¼�1

�
2�in

�
þE�;þ

��
�2�in

�
þE�;�

�
;

(A5)

where

E�;� ¼ E� � ð�i�ðaÞ � j2 � 2�1j1 þ�ðrþ RÞ � �FÞ:
(A6)

Consequently,

Z�¼Z�;þZ�;�; Z�;�¼Y
E�

Y1
n¼�1

�
2�in

�
þE�;þ

�
: (A7)

Since E�;þ and E�;� share the same energy but opposite

charges, we recognize the two terms as the contributions
from a particle and its antiparticle. We therefore have

I ¼ X
m

Z
½da�Y

H

Zð�1ÞFþ1

�;� ; (A8)

where the measure ½da� comes from the gauge fixing
(see [17], Sec. 2.2), and we summed over the holonomies
m ¼ fmig. The product is over all states contributing to
the index.

FIG. 2. The dimensional reduction from the 4d N ¼ 2 index
to the 3d N ¼ 4 index, as discussed in this paper, should
correspond to a dimensional oxidation from the 2d TQFT to a
one higher dimensional theory.
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We can rewrite (A8) with the help of the formulaY1
n¼�1

ð2�inþ xÞ ¼ 2 sinh
x

2
¼ e

x
2ð1� e�xÞ

¼ e
x
2 exp

�
� X1

m¼1

1

m
e�mx

�
; (A9)

which results in (neglecting overall constants)

I ¼ X
m

Z
½da�e

��
P
H

ð�1ÞF E�;�
2

� exp

�X1
n¼1

1

n
Îðtn; yn; vn; zn; ein�aÞ

�
; (A10)

where we defined the single-letter index Î by

Îðt; y; v; z; ei�aÞ ¼ X
H

ð�1ÞF e��E�;� : (A11)

The exponential factor e��
P

H
ð�1ÞF E�;�

2 is the zero-point
(Casimir) contribution to the energy and chemical poten-
tials. The Casimir part is easily obtained by differentiating
the single-letter index with respect to �:

X
H

ð�1ÞFE ¼ �Finite�!0

�
@Î
@�

�
; (A12)

where we remove the divergent part in the � ! 0 limit
[10,11]. We also neglect the holonomy-independent part of
the zero-point contribution, since this is merely an overall
shift of the index and does not affect the sum over the
holonomies.

The remaining task is to explicitly evaluate the one-loop

determinant, or equivalently Î . This can be carried out by
using the expressions for�� and E�. Alternatively, we can
count the operators contributing to the index (see Table I).

For a half-hypermultiplet ðq; c Þ with a weight �, the
nontrivial contributions come from @n1þþ@

n2�þq and
@n1þþ@

n2�þ �cþ, where n1, n2 are non-negative integers. We
therefore have

ÎN¼2half-hyper ¼ X
�2R

ðt2v�1
2zFei�ðaÞ � t4v

1
2z�Fe�i�ðaÞÞ

� ~Fpðt; y;�ðmÞÞ; (A13)

where we defined

~F pðt; y;�ðmÞÞ ¼ X0

n1;n2�0

ðt3ðn1þn2Þyn1�n2Þ; (A14)

and the prime in the sum means that we sum over non-
negative integers n1, n2 satisfying the orbifold projection
condition (A17), to be given shortly.10 Since the dependence

of ~Fp on �ðmÞ is through (A17), it clearly only depends on

�ðmÞ modp. Since R is a pseudoreal representation, we
have

P
�2R ¼ P

��2R and we can write

ÎN¼2half-hyper ¼ X
�2R

ðt2v�1
2zF � t4v

1
2z�FÞ

� ~Fpðt; y;�ðmÞÞei�ðaÞ: (A15)

The computation for a vector multiplet is similar, except that
the fields �1� in Table I require special attention since they
have nonzero 2j1 charge and come with the constraint of the
equation of motion. The answer is given by11

ÎN¼2vector ¼ X
�2Adj

½ðt2v� t4v�1 þ t6 � 1Þ

� ~Fpðt; y;�ðmÞÞ þ �⟦�ðmÞ⟧;0�ei�ðaÞ; (A16)

where we used
P

�2Adj ¼
P

��2Adj and the function ⟦x⟧ is

defined in (15).
The projection condition is given by

n1 � n2 ¼ �ðmÞ ðmodpÞ: (A17)

To see this, recall that the effect of the holonomy can be
locally removed by a gauge transformation; however, this
modifies the global boundary condition, and we have a
twisted boundary condition. The integers n1 and n2 are the
spins under the phase rotation of z1, and z2 in (1) and (A17)
ensures the single-valuedness of the wave function.12 Note
that the conditions are the same for bosons and fermions.

TABLE I. The operators contributing to the single-letter 4d

N ¼ 2 index Î . In Euclidean signature, the vector multiplet
is given by ð�; ��;�I

�; ��I _�; F��; ~F _� _�Þ while the half-

hypermultiplet by ðq; �q; c �; �c _�Þ. We also included a constraint
from the equation of motion for �1.

Operators E j1 j2 R r Contribution to Î

� 1 0 0 0 �1 t2v
�1� 3

2 � 1
2 0 1

2 � 1
2 �t3y, �t3y�1

��2þ 3
2 0 1

2
1
2

1
2 �t4v�1

~Fþþ 2 0 1 0 0 t6

@�þ�1þ þ @þþ�1� ¼ 0 5
2 0 1

2
1
2 � 1

2 t6

q 1 0 0 1
2 0 t2v�1=2zF

�cþ 3
2 0 1

2 0 � 1
2 �t4v1=2z�F

@�þ 1 � 1
2

1
2 0 0 t3y, t3y�1

10To compute Îorbifold we can first compute Î for the unorbi-
folded theory and then impose the orbifold projection after-
wards. This is because the supercharge Q used in the
definition of the index commutes with the orbifold action.

11Before taking the orbifold, we have a function

t2v� t4v� t3ðyþ y�1Þ þ 2t6

ð1� t3yÞð1� t3y�1Þ ¼ t2v� t4vþ t6 � 1

ð1� t3yÞð1� t3y�1Þ þ 1:

The expression inside the square bracket in (A16) is the orbifold
of this expression.
12The spins ðn1; n2Þ are related to the spins ðm1;

l
2Þ of Uð1Þ1 �

Uð1Þ2 2 SUð2Þ1 � SUð2Þ2 by a linear combination [see (48)].
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We can use (A17) to evaluate the sum in (A14).
Let us write n1 � n2 ¼ Lþ kp, with L ¼ ⟦�ðmÞ⟧ so
that 0 � L < p, and k 2 Z. We divide the sum into

k � 0 and k < 0, i.e. (a) k 2 Z�0 and (b) ~k 

�k� 1 2 Z�0. Summing over n2; k in (a) and n1; ~k in
(b) we obtain

~F pðt; y;�ðmÞÞ ¼ Fpðt; y; ⟦�ðmÞ⟧Þ; (A18)

where Fp is the function given in (14).

It is straightforward to repeat the analysis for N ¼ 1
theories. For an N ¼ 1 vector multiplet

ÎN¼1vector ¼ X
�2Adj

½ðt6�1Þ ~Fpðt;y;�ðmÞÞþ�⟦�ðmÞ⟧;0�ei�ðaÞ;

(A19)

and for a chiral multiplet with flavor charge F and anoma-
lous R charge Q,

ÎN¼1chiral ¼ X
�2R

ðt3QzFei�ðaÞ � t6�3Qz�Fe�i�ðaÞÞ

� ~Fpðt; y;�ðmÞÞ: (A20)
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