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We have investigated and verified the existence of stable uncharged Bogomol’nyi-Prasad-Sommerfeld

(BPS) vortices in the framework of an Abelian Maxwell-Higgs model supplemented with CPT-even and

Lorentz-violating (LV) terms belonging to the gauge and Higgs sectors of the standard model extension.

The analysis is performed in two situations: first, by considering the Lorentz violation only in the gauge

sector, and then in both gauge and Higgs sectors. In the first case, it is observed that the model supports

vortices somehow equivalent to the ones appearing in a dielectric medium. The Lorentz violation controls

the radial extension (core of the solution) and the magnetic field amplitude of the Abrikosov-Nielsen-

Olesen vortices, yielding compactlike defects in an alternative and simpler way than that of k-field

models. At the end, we consider the Lorentz-violating terms in the gauge and Higgs sectors. It is shown

that the full model also supports compactlike uncharged BPS vortices in a modified vacuum, but this time

there are two LV parameters controlling the defect structure. Moreover, an interesting novelty is

introduced by the LV-Higgs sector: fractional vortex solutions.
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I. INTRODUCTION

The investigation of stable vortex configurations has
been an issue of permanent interest since the pioneering
proposal of Abrikosov-Nielsen-Olesen (ANO) [1]. In the
early 1990s, vortex configurations were analyzed in the
context of planar theories including the Chern-Simons
term [2], which provided the possibility of having charged
vortices [3]. The Chern-Simons vortex configurations sup-
port Bogomol’nyi-Prasad-Sommerfeld (BPS) solutions
and present important connections with the physics of
anyons and the fractional quantum Hall effect [4]. The
Chern-Simons vortices were studied with nonminimal cou-
pling [5], and they remain a topic of intensive investigation
with recent developments [6,7]. Generalized Chern-
Simons vortex solutions were recently examined in the
presence of a noncanonical kinetic term [8] and k-field
terms (high-order derivative terms) [9]. Generalized vortex
solutions were also attained in the contexts of the Abelian
Maxwell-Higgs (AMH) model [10] and twinlike models
[11]. The k-field theories work with nonlinear functions of
the usual kinetic term to obtain new solutions for nonlinear
systems, with interesting applications in cosmology and
inflation [12], dark matter [13], tachyon matter [14], ghost
condensates [15], and topological defects [16]. Concerning
topological defects, the higher-order kinetic terms engen-
der the formation of k-defects (compactlike solutions),
structures whose core can be much smaller than the one
of the usual solutions [16–18]. When a k-defect presents a
compact support, it is dubbed a compacton [19,20]. In the
present work, we show that the inclusion into the AMH
model of Lorentz-violating (LV) terms—belonging to the
theoretical framework of the standard model extension

(SME)—can yield compactlike vortex solutions and also
fractional quantization of the magnetic flux.
Lorentz symmetry violation has been much investigated

in the past few years, having as a theoretical framework the
standard model extension [21], based on the idea of a
spontaneous Lorentz-symmetry breaking in a theory de-
fined at the Planck scale [22]. The SME incorporates LV
terms, generated as non-null vacuum expectation values of
Lorentz tensors, in all sectors of the standard model. The
investigations in the context of the SME concern mainly the
fermion sector [23–25], extensions involving gravity
[26,27], and the gauge sector [28–33]. The gauge sector
of the SME is composed of a CPT-odd part (the Carroll-
Field-Jackiw term [28]) and a CPT-even part, which is
represented by the tensor ðkFÞ����. The electrodynamics

modified by this term has been investigated since 2002,
with a twofold purpose: to scrutinize the new physical
properties induced by its 19 Lorentz-violating coefficients
and to impose tight upper bounds on the magnitude of these
coefficients. The CPT-even tensor ðkFÞ���� has the same

symmetries as the Riemann tensor and a double null trace,
ðkFÞ��

�� ¼ 0. References [29,30] stipulated the existence

of 10 components sensitive to birefringence and 9 that are
called nonbirefringent. The 10 birefringent components are
severely constrained to the level of 1 part in 1037 by
spectropolarimetry data of cosmological sources [29,30].
The nonbirefringent coefficients are constrained by other
tests involving the study of Cherenkov radiation [31], the
absence of emission of Cherenkov radiation by ultrahigh
energy cosmic rays [32,33], and the subleading birefrin-
gent behavior of the nonbirefringent parameters [34], able
to yield upper bounds of up to 1 part in 1017 on these
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coefficients. The gauge sector of the SME has also
been investigated in the context of arbitrary dimensional
operators [35].

Effects of Lorentz violation on topological defects have
been investigated in distinct scenarios. Some works have
examined the role played by Lorentz-violating terms on
defects defined in the framework of scalar systems [36],
revealing the associated properties and preservation of the
linear stability. In another line, the existence of monopole
solutions in the presence of the Lorentz-violating Carroll-
Field-Jackiw term was first studied in Ref. [37]. Recently,
the existence of monopoles in the framework of a rank-2
antisymmetric Kalb-Ramond tensor field, generated in a
spontaneous symmetry breaking, was analyzed in
Ref. [38], unveiling some similarities between the profiles
of the antisymmetric Kalb-Ramond monopole and the
usual O(3) one. A more complete study of topological
defects in the context of field theories endowed with a
tensor which spontaneously breaks Lorentz symmetry
was accomplished in Ref. [39]. Until this moment, there
is no report of works investigating vortex solutions in the
presence of Lorentz-violating terms, except for a prelimi-
nary contribution [40]. There are some addressing vortex
configurations in noncommutative scenarios which yield
Lorentz symmetry only as a by-product [41].

In this work, we investigate for the first time the for-
mation of stable uncharged vortex configurations in the
context of a Lorentz-violating and CPT-even AMH elec-
trodynamics in two situations: (i) with a Lorentz-violating
term only in the gauge sector, and (ii) introducing Lorentz-
violating terms simultaneously in the gauge and Higgs
sectors of the model. In both cases, the Higgs sector is
endowed with a particular and appropriated fourth-order
self-interacting potential. In the first case, one verifies the
existence of BPS solutions, governed by analogue equa-
tions to the AMH model. The Lorentz-violating parameter
appears as a key element for defining an effective electrical
coupling constant and modifying the mass of the boson
fields. The vortex profiles, generated by numerical meth-
ods, reveal that the Lorentz-violating parameter acts as an
element able to control the radial extension of the defect
(vortex core), in a similar way as observed in k-field
theories which engender compactlike structures. Finally,
in order to address a more complete Lorentz-violating
framework supporting vortex solutions, we consider the
AMH model with two CPT-even Lorentz-violating terms
in the Higgs sector as well. We achieve the equations of
motion and evaluate the fourth-order potential (compatible
with the BPS solutions), which entails two vacua. After
showing that the Higgs LV parameter induces energy in-
stability, we find the self-interacting potential (endowed
with only one vacuum) and BPS equations for the stable
uncharged vortices. We finally demonstrate that the asymp-
totic solutions are only compatible with a modified vortex
ansatz that yields fractional magnetic flux quantization.

II. THE THEORETICAL FRAMEWORK

The basic framework of our investigation is a CPT-even
and Lorentz-violating AMH model. The proposal consists
in supplementing the usual Maxwell-Higgs Lagrangian
(that provides the ANO solutions) with the CPT-even
terms belonging to the structure of the standard model
extension, that is,

L1þ3 ¼ � 1

4
F��F

�� � 1

2
���F��F�

� þ jD��j2

þ ðk��Þ��ðD��Þ�ðD��Þ
� 1

2
ðk�FÞ��F��j�j2 �Uðj�jÞ (1)

Here, ��� ¼ ðkFÞ���
� is a traceless tensor containing the

nine nonbirefringent components of the CPT-even gauge
sector [42]; and ðk��Þ�� and ðk�FÞ�� are dimensionless

real symmetric and antisymmetric tensors, respectively,
representing the complete Abelian Lorentz-violating and
CPT-even Higgs sector of the SME [21]. Note that
ðKFÞ���� is the CPT-even tensor that encloses 19 compo-
nents: 10 birefringent and 9 nonbirefringent [29,30]. The
term D�� ¼ @��� ieA�� is the usual covariant deriva-

tive, e is the electromagnetic coupling constant, andUðj�jÞ
is a fourth-order self-interaction scalar potential suitable
for yielding BPS equations.
The equations of motion for the full system are

@�F
�� þ ���@�F

�
� � ���@�F

�
� þ ðk�FÞ��@�ð���Þ

¼ eJ� þ eðk��Þ��J�; (2)

D�D��þ ðk��Þ��D�D��þ 1

2
ðk�FÞ��F���þ @U

@��

¼ 0; (3)

where the current J� is given by

J� ¼ i½�ðD��Þ� ���D���: (4)

In the stationary regime, the Gauss’s law is given by

½ð1þ �00Þ	ij � �ij�@i@jA0 þ 
ija�0i@jBa

� ðk�FÞ0j@jð���Þ ¼ eJ 0; (5)

where

J 0 ¼ 2e½1þ ðk��Þ00�A0j�j2 þ ðk��Þ0iJi: (6)

It reveals that uncharged solutions now require �0i ¼
ðk�FÞ0j ¼ 0, and ðk��Þ0i ¼ 0, conditions that decouple

the electric and magnetic sectors. The Ampère’s law is

ð
jbc � 
jac�ab � �ja
abcÞ@bBc � �0i@j@jA0 þ �0j@j@iA0

þ ðk�FÞ12
ij@j½���� ¼ eJ i; (7)

with
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J i ¼ Ji � ðk��ÞijJj þ ðk��Þ0iJ0: (8)

On the other hand, the Higgs equation is

½	ij � ðk��Þij�DiDj�� ieðk��Þ0jA0Dj�� ieðk��Þ0j
�DjðA0�Þ þ e2½1þ ðk��Þ00�A2

0�

� ðk�FÞ0i�@iA0 � ðk�FÞ12B�� @U

@�� ¼ 0: (9)

In the sequel we will particularize this theoretical model in
two situations of interest for studying vortex solutions.

III. COMPACTLIKE UNCHARGED BPS VORTICES
IN A SIMPLER LORENTZ-VIOLATING

AMH MODEL

We first consider an AMH model in which the Lorentz
violation is only represented by the nonbirefringent
CPT-even gauge term of the SME while the Higgs sector
is supposed unaffected by Lorentz-violating terms,
ðk��Þ�� ¼ 0, ðk�FÞ�� ¼ 0. Hence, the model (1) is re-

duced to the form

L ¼ � 1

4
F��F

�� � 1

2
���F��F�

� þ jD��j2 �Uðj�jÞ:
(10)

For this case, the fourth-order self-interaction scalar
potential, Uðj�jÞ, compatible with BPS solutions is

Uðj�jÞ ¼ e2

2ð1� sÞ ðv
2 � j�j2Þ2; (11)

where s ¼ trð�ijÞ and v plays the role of the vacuum

expectation value of the scalar field.
Considering the corresponding stationary Gauss’s law,

the condition �0i ¼ 0 is the one that decouples the electric
and magnetic sectors (appropriate to achieving uncharged
vortex solutions). With it, Eq. (5) is reduced to

½ð1þ �00Þ	ab � �ab�@a@bA0 ¼ 2e2A0j�j2: (12)

An uncharged vortex has null electric field, being compat-
ible with the temporal gauge, A0 ¼ 0, for which the
Gauss’s law is trivially fulfilled. Further, in such a gauge
the modified stationary Ampere’s law becomes

ð
jbc � 
jac�ab � �ja
abcÞ@bBc ¼ eJi; (13)

where we have used Fij ¼ 
ijkBk, F0i ¼ Ei.

On the other hand, the stationary equation for the com-
plex scalar field is

r2�� i2eAj@j�� e2A2
j�þ e2

1� s
�ðv2 � j�j2Þ ¼ 0:

(14)

The stationary canonical energy density in temporal
gauge (A0 ¼ 0) takes the form

E ¼ 1

2
½ð1� sÞ	ab þ �ab�BaBb þ jDk�j2

þ e2

2ð1� sÞ ðv
2 � j�j2Þ2: (15)

As it will be clear in the next section, this situation is
compatible with the existence of ANO-like vortices in
the framework of Lorentz-violating field theories.

A. Uncharged vortex configurations

In order to search for stable vortex configurations, we
work in cylindrical coordinates ðr; �; zÞ, and state the usual
ansatz for static rotationally symmetric vortex solutions,
with the fields parametrized as

A� ¼ � aðrÞ � n

er
; � ¼ vgðrÞein�; (16)

where aðrÞ, gðrÞ are regular scalar functions at r ¼ 0 (such
that the fields A� and � are finite), satisfying the following
boundary conditions:

gðr ! 0Þ ! 0; aðr ! 0Þ ! n; (17)

and n is the winding number of the topological solution. In
this ansatz the magnetic field is aligned with the z axis,
B ¼ ð0; 0; BðrÞÞ, and it holds

BðrÞ ¼ � a0

er
: (18)

By considering the ansatz (16), we then rewrite Eqs. (13)
and (14), attaining the following system of differential
equations:

ð1� sÞB0 þ 2ev2 ag
2

r
¼ 0; (19)

g00 þ g0

r
� 1

r2
a2gþ e2v2

1� s
gð1� g2Þ ¼ 0; (20)

where

s ¼ �rr þ ���; (21)

is the parity-even parameter controlling the Lorentz-
violating effects. It is important to note that the introduc-
tion of the ansatz (16) produces equations dependent only
on r, with no reference to the z dimension anymore. In this
sense, Eqs. (19) and (20) effectively describe the physics of
a planar system.
In order to obtain BPS solutions, we should search for a

set of first-order differential equations that describe the
dynamics of the system. These first-order equations are
found by writing the energy of the system as a sum of
squared terms and requiring its minimization. By using the
ansatz (16) and (18) in Eq. (15), the resulting energy
density for the uncharged vortex is
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E ¼ 1

2
ð1� sÞ

�
a0

er
� ev2

1� s
ð1� g2Þ

�
2

þ v2

�
g0 � ag

r

�
2 � v2 a

0

r
� v2 ðag2Þ0

r
: (22)

The squared brackets in (22) yield the wanted BPS equations

g0 ¼ � ag

r
; (23)

� a0

er
¼ B ¼ � ev2

1� s
ð1� g2Þ: (24)

Under BPS equations, the energy density (22) reads

E BPS ¼ �v2 a
0

r
� v2 ðag2Þ0

r
; (25)

whose integration under the boundary conditions,

gðr ! 1Þ ! 1; aðr ! 1Þ ! 0; (26)

leads to topological vortex solutions possessing a finite total
BPS energy,

EBPS ¼ �ð2�v2Þn ¼ ev2j�Bj: (27)

Here, �B is the magnetic flux associated with the vortex

�B ¼
Z

BðrÞd2r ¼ 2�

e
n: (28)

By using the BPS equations, one notices that the energy
density (25) can also be expressed as

E BPS ¼ ð1� sÞB2 þ 2v2

�
ag

r

�
2
; (29)

which is a positive-definite expression for s < 1.
A first observation is that the Lorentz-violating coeffi-

cient does not modify the minimum energy of the system,
given by Eq. (27). Under BPS conditions, the magnetic
field is the relevant term for describing the profile of the
energy density associated with the minimum solution. It is
also interesting to note that the BPS equations (23) and
(24) have the same structure as the BPS equations describ-
ing the AMH vortex. The difference consists in the pres-
ence of the Lorentz-violating parameter, s, in the second
equation given by (24), while the first one remains un-
changed. As observed below, the LV parameter acts as an
element able to control both the radial extension and the
amplitude of the defect. The second BPS equation (24) can

be used to define an effective electric charge, e=
ffiffiffiffiffiffiffiffiffiffiffiffi
1� s

p
,

which holds in the ‘‘vacuum’’ of this Lorentz-violating
field theory. This redefinition reveals that this theory can
be interpreted as an effective electrodynamics in a medium
pervaded by the Lorentz-breaking tensor background.

In this context, an interesting parallel can to be drawn
between the present model and some effective Maxwell-
Higgs Lagrangians in which the Maxwell term is replaced
by Gð�ÞF��F

��, where Gð�Þ is dubbed the ‘‘dielectric

function’’ because it introduces a dielectric constant in the
equations of motion [43], making them similar to the ones
that hold in a continuum medium. Under the vortex ansatz
(16), the models [43] provide the following BPS equation

for the magnetic field: B ¼ � ev2

G ð1� g2Þ, which becomes

equal to Eq. (24) when the replacement G ! ð1� sÞ is
done. It reveals that the Lorentz-violating model here
proposed, whenever subjected to the vortex ansatz (16),
provides vortex solutions in a dielectric medium.
With the purpose of performing the asymptotic and

numerical analysis of the fields in dimensionless form,
we introduce the dimensionless variable t ¼ evr and im-
plement the changes

gðrÞ! �gðtÞ; aðrÞ! �aðtÞ; BðrÞ!ev2 �BðtÞ;
EBPS!v2 �EBPS: (30)

The BPS equations written in a dimensionless form are

�g 0 ¼ � �a �g

t
; (31)

� �a0

t
¼ �B ¼ � 1

1� s
ð1� �g2Þ: (32)

Notice that Eq. (32), with asymptotic conditions (17),
determines the magnetic field magnitude at the origin,

�Bð0Þ ¼ 1

1� s
: (33)

B. Asymptotic behavior of the BPS vortex

Before computing the numerical solutions of the BPS
equations, we analyze the asymptotic behavior of the
vortex solutions. First, we study the behavior when t ! 0
and solve the BPS equations (31) and (32) by using a
power-series method, achieving

�gðtÞ ¼ Gtjnj � G2

4ð1� sÞ t
jnjþ2 þ � � � ; (34)

�aðtÞ¼n� t2

2ð1�sÞþ
G2t2jnjþ2

2ð1�sÞðjnjþ1Þþ��� : (35)

The specific value of G cannot be determined by the
behavior of the fields around the origin, but it can be fixed
by requiring an adequate asymptotic behavior at infinity.
A similar situation appears in Ref. [3].
For t ! þ1, it holds that �g ¼ 1� 	g and �a ¼ 	a, with

	g and 	a being small correction terms. After substituting
such forms in (31) and (32), we obtain the following set of
linearized differential equations for 	g and 	a:

ð	gÞ0 ¼ �	a

t
;

ð	aÞ0
t

¼ � 2ð	gÞ
1� s

; (36)

whose solutions satisfying the appropriate behavior at in-
finity are
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	g ¼ ðsÞ�1K0ðstÞ � ðmsrÞ�1=2 expð�msrÞ; (37)

	a ¼ tK1ðstÞ � ðmsrÞ1=2 expð�msrÞ; (38)

where t ¼ evr, with s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ð1� sÞp

. Here, ms is the
mass of the bosonic fields, given by

mH ¼ mA ¼ ms ¼ ev

ffiffiffiffiffiffiffiffiffiffiffiffi
2

1� s

s
: (39)

In particular, these asymptotic solutions clearly show how
the Lorentz-violating parameter controls the distance over
which the bosons propagate: the mass increases with s.
The heavier the bosons are, the shorter the range of the
interaction mediated, and vice versa. Note that the effec-
tive charge (and boson mass) increases while s varies from
0 to 1. Thus, the Lorentz-violating medium affects the
distance over which the bosons propagate (i.e., the pene-
tration length). In the limit s ! 1, the effective charge and
the boson mass diverge, defining an extremely short-
ranged theory. In this limit, the vortex core length tends
to zero. Obviously, there is a correspondence between the
interaction range and the spatial extension of the defect, to
be confirmed by analyzing the vortex profiles. Therefore,
the asymptotic analysis of the BPS equations show that
their solutions satisfy the vortex boundary conditions in
(17) and (26).

C. Numerical solutions for a BPS vortex

Now, we investigate the profiles of the Lorentz-violating
BPS solutions using numerical procedures to solve the
differential equations (31) and (32). In particular, we com-
ment on the main aspects in which they differ from the
usual Maxwell-Higgs vortex solutions.

In Figs. 1–4, we present some profiles (for the winding
number n ¼ 1) for the Higgs field, gauge field, magnetic
field, and energy density of the uncharged BPS vortex. This
set of graphs reveals the role played by the Lorentz-
violating coefficient, s, on the BPS vortex solutions. In
all of them, the value s ¼ 0 reproduces the profile of the
vortex solution of the Maxwell-Higgs model [1], which is
depicted by a solid black line. (Also, all of the legends are
given in Fig. 1.)

Figures 1 and 2 depict the numerical results obtained for
the Higgs field and vector potential, showing that the
profiles are drawn around the ones corresponding to the
Maxwell-Higgs model. These profiles become wider for
s < 0, saturating more smoothly as s becomes more nega-
tive. Otherwise, for an increasing parameter in the range
0< s < 1, the profiles continuously shrink, reaching the
smallest thickness for s ! 1.

Figure 3 depicts the magnetic field behavior. The profiles
are lumps centered at the origin whose amplitudes are pro-
portional to ð1� sÞ�1; hence, for s ! 1 higher amplitudes
and narrower profiles are obtained. For s < 0 and increasing
values of jsj the magnetic field profile becomes wider and
wider, while its intensity continuously diminishes.

Figure 4 shows the energy density profiles which are
very similar to the magnetic field ones, but are more
localized and possess greater amplitudes. This is an ex-
pected result: once the extension of the defect is reduced,
its amplitude should increase in order to keep the total
energy constant.
Both profiles belonging to the magnetic field and the

energy density are useful to estimate the extension of the
defect in the radial dimension. We thus note that the defect
shrinks (becoming a compactlike structure) while the pa-
rameter increases inside the range 0< s < 1. It indicates
that Lorentz violation works as a factor able to reduce the
extension of the defect profiles. Such a reduction occurs
simultaneously to the diminishment of the interaction

FIG. 1 (color online). Scalar field �gðtÞ. The solid black line,
s ¼ 0, is the BPS solution for the Maxwell-Higgs model.

FIG. 2 (color online). Vector potential �aðtÞ.
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range, revealing the consistency of this description. In the
limit s ! 1, the theory provides a nearly null core vortex
(compatible with a nearly null range).

IV. UNCHARGED COMPACTLIKE BPS VORTICES
WITH FRACTIONAL MAGNETIC FLUX IN A

LORENTZ-VIOLATING AMH MODEL

In this section, we investigate uncharged vortices in a
broader LVenvironment, keeping non-null Lorentz-violating
terms in both the gauge and Higgs sectors of the Lagrangian
(1). In order to restrain our study to uncharged vortices
(A0¼0Þ, we should require

�0i ¼ 0; ðk��Þ0i ¼ 0; ðk�FÞ0j ¼ 0; (40)

for which Lagrangian (1) is reduced to

L1þ3 ¼ � 1

4
FijF

ij � 1

2
�ijFi�Fj

� þ jDi�j2

þ ðk��ÞijðDi�Þ�ðDj�Þ
� 1

2
ðk�FÞijFijj�j2 �Uðj�jÞ: (41)

Under the temporal gauge, the Gauss’s law is trivially
solved, and Eqs. (7) and (9) are reduced to the form

ð
jbc � 
jac�ab � �ja
abcÞ@bBc þ ðk�FÞij@j½����
¼ eJi � eðk��ÞijJj; (42)

½	ij�ðk��Þij�DiDj��ðk�FÞijFij�� @U

@�� ¼0: (43)

In order to search for stable vortex configurations, we
work in cylindrical coordinates ðr; �; zÞ, implementing a
modified vortex ansatz

� ¼ v

�1=2
gðrÞein�; A� ¼ �aðrÞ � n=�

er
; (44)

whose form yields regular behavior for the system at r ¼ 0,
whenever the following boundary conditions are satisfied:

að0Þ ¼ n

�
; gð0Þ ¼ 0: (45)

In Eq. (44), in the absence of LV effects, v is the vacuum
expectation value of the Higgs field and n the winding
number of the topological solutions. The parameters � and
� include the contributions of the Lorentz violation to the
vacuum expectation of the Higgs field and the behavior of
the field a at the origin, respectively. As it will be shown
later, the asymptotic analysis at origin of the BPS equations
(49) and (51) reveals that the vortex solutions stemming
from this Lorentz-violating model can only be reconciled
with the modified ansatz (44). Nevertheless, the magnetic
field keeps being defined as Eq. (18).
By substituting the ansatz (44) in the Ampère’s law (42),

one achieves the condition

ðk��Þr� ¼ 0; (46)

and the differential equation,

ð1� sÞB0 þ v2

�
ðk�FÞr�ðg2Þ0 þ 2e

v2

�

ag2

r
½1� ðk��Þ���

¼ 0; (47)

where s ¼ �rr þ ���.
The Higgs equation of motion (43) now is

½1� ðk��Þrr�
�
g00 þ g0

r

�
� ½1� ðk��Þ���a

2

r2
g

þ ðk�FÞr�Bgþ �

2v2

@U

@g
¼ 0: (48)

This equation can only be written as a first-order differen-
tial equation if we assume a generalized self-duality con-
dition, that is,

FIG. 3 (color online). Magnetic field �BðtÞ.

FIG. 4 (color online). Energy density �EðtÞ.
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g0 ¼ ��
ag

r
; (49)

with the parameter � conveniently defined as

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðk��Þ��
1� ðk��Þrr

vuut : (50)

The BPS equation (49) also allows us to integrate the
Ampère’s law (47), yielding another first-order equation
involving a0:

� a0

er
¼ B ¼ � ev2

1� s
ð1� g2Þ; (51)

which is the second BPS equation. It is exactly the same
one obtained in the previous section [see Eq. (24)]. Then,
by using the BPS equations in (48) it is possible to compute
the BPS fourth-order self-interacting potential,

UðgÞ ¼ e2v4

2ð1� sÞ ð1� g2Þ2; (52)

that, written in terms of the Higgs field, gives

Uðj�jÞ ¼ �2e2

2ð1� sÞ
�
v2

�
� j�j2

�
2
; (53)

with

� ¼ �� ðk�FÞr�
e

; (54)

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1� ðk��Þ���½1� ðk��Þrr�

q
: (55)

It reveals that this theory may support two different vacua,

j�j ¼ vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� ðk�FÞr�

e

q ; (56)

induced by the coefficient ðk�FÞr�. We point out that for

each vacuum in (56) there exists topological defect solu-
tions of definite vorticity, once the (þ ) vacuum supports
defects having only a positive winding number (n > 0)
whereas the (� ) vacuum is related to vortices with a
negative winding number (n < 0). It is known that the
Maxwell-Higgs solutions present the following correspon-
dence: the ones represented with aðrÞ and gðrÞ for n > 0
are mapped in solutions with n < 0 by doing aðrÞ ! �aðrÞ
and gðrÞ ! gðrÞ. This correspondence is broken in a theory
endowed with the vacuum (56), which could be associated
with the breaking of the discrete symmetry connecting the
solutions with n > 0 and n < 0. The physical soundness of
this hypothesis is still to be verified after analysis concern-
ing energy stability.

Now, adopting the conditions (40) and setting the tem-
poral gauge (A0 ¼ 0), we evaluate the energy density for
this stationary and uncharged system as

E ¼ 1

2
ð1� �jjÞB2 þ jDj�j2 � ðk��ÞijðDi�Þ�ðDj�Þ

þ ðk�FÞ12Bj�j2 þUðj�jÞ: (57)

After replacing the ansatz (44) and implementing the BPS
procedure, it is rewritten as

E ¼ 1

2
ð1� sÞ

�
B� ev2

1� s
ð1� g2Þ

�
2

þ v2

�
½1� ðk��Þrr�

�
g0 ��

ag

r

�
2

� Bev2 � e
v2

�
�Bg2 � 2

v2

�
�
ag

r
g0: (58)

Requiring energy minimization, the squared brackets must
vanish, yielding the BPS equations (51) and (49),
respectively.
Imposing the BPS conditions in Eq. (58), one achieves

the BPS energy density which is simplified to the form

E BPS ¼ �v2 a
0

r
� �

v2

�

ðag2Þ0
r

; (59)

whose integration, considering the following asymptotic
conditions,

að1Þ ¼ 0; gð1Þ ¼ 1; (60)

leads to the total BPS energy

EBPS ¼ v2

�
jnj: (61)

So, we must notice that the total BPS energy is not affected
by the difference between the two vacua (56), associated,
in principle, with the spontaneous breaking of some dis-
crete symmetry.
It is very interesting to note that magnetic flux is now a

multiple of the fractional ratio 2�=e�, that is,

�B ¼
Z

BðrÞd2r ¼ 2�

e�
n; (62)

indicating that this model provides fractional vortex solu-
tions, which have been recently reported in condensed
matter literature [44]. Note that the relation between the
total energy and magnetic flux,Hmin ¼ ev2j�Bj, continues
to be valid.
By using the BPS equations, the energy density (59) can

be written as

E BPS ¼ e2v4�

ð1� sÞ�
�
�

�
� g2

�
ð1� g2Þ þ 2v2 ��

�

�
ag

r

�
2
;

(63)

which is not a positive-definite expression. The energy
density (57) shows explicitly that the parameter ðk�FÞr�
is responsible for this energy instability. Hence, one must
require ðk�FÞr� ¼ 0 for assuring energy stability. Under

such condition we have � ¼ �, and Eq. (63) provides a
positive-definite BPS energy density,
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E BPS ¼ ð1� sÞB2 þ 2v2�

�
ag

r

�
2
; (64)

whenever s < 1 and ðk��Þrr, ðk�FÞ�� < 1. Similarly, with

ðk�FÞr� ¼ 0, the truly BPS self-interacting potential

becomes

U ¼ e2�2

2ð1� sÞ
�
v2

�
� j�j2

�
2
; (65)

providing a unique modified vacuum,

j�j ¼ vffiffiffiffi
�

p ; (66)

that supports solutions with two vorticities, as is usual. So,
we highlight that the consistent uncharged vortex solutions
of this model are the ones ruled by Eqs. (49) and (51), with
self-interacting potential (65), and the modified vacuum
expectation value (66). Note that the LV Higgs coefficients
modify the usual self-duality condition (23) and the vac-
uum of the Maxwell-Higgs model.

One should still discuss the reason that requires the
modified vortex ansatz (44). First, note that if we had
supposed the usual ansatz (16), one would have achieved
the same BPS equations given by (49) and (51). On the
other hand, performing the series expansion at r ¼ 0 of the
regular functions gðrÞ, aðrÞ fulfilling the BPS equations,
we obtain

gðrÞ ¼ Grjnj ��GðevÞ2
4ð1� sÞ r

jnjþ2 þ � � � ; (67)

aðrÞ ¼ n

�
� ðevrÞ2

2ð1� sÞ þ
ðGevÞ2r2jnjþ2

2ð1� sÞðjnj þ 1Þ þ � � � ; (68)

whereG is a constant. It is easy to notice that the expansion
(68) is incompatible with the usual ansatz (16), stating an
inconsistency. In order to avoid it we have adopted the new
ansatz (44), keeping the field A� finite at r ¼ 0.

We now present the asymptotic behavior at r ¼ 1. By
setting

gðrÞ ¼ 1þ 	g; aðrÞ ¼ 	a; (69)

and after solving the linearized BPS equations for 	g and
	a, we obtain

	g ¼ �G1

ev

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1� sÞ

2

s
K0

�
rev

ffiffiffiffiffiffiffiffiffiffiffiffi
2�

1� s

s �
; (70)

	a ¼ G1rK1

�
rev

ffiffiffiffiffiffiffiffiffiffiffiffi
2�

1� s

s �
; (71)

from which we observe that the mass of the gauge and
Higgs fields is

mA ¼ mH ¼ ev

ffiffiffiffiffiffiffiffiffiffiffiffi
2�

1� s

s
: (72)

In this case, notice that there are two LV parameters
modifying the mass. For a fixed �, it holds the behavior
described after Eq. (39) for compactlike defects. For a
fixed s, we observe that the mass increases with �, in
opposition to its dependence with s.
In order to facilitate the numerical analysis of the vortex

profiles, we first introduce the dimensionless variable, t ¼
ev�1=2r, and the following field redefinitions:

gðrÞ ! �gðtÞ; aðrÞ ! �aðtÞ
�

; (73)

with the new variable, the BPS equations (49) and (51) are
rewritten as

�g 0 ¼ � �a �g

t
; � �a0

t
¼ �B ¼ � 1� �g2

ð1� sÞ ; (74)

assuming the same form as Eqs. (31) and (32). This shows
that under the conditions that provide uncharged vortex
configurations, the broader model of Lagrangian (1) also
supports compactlike solutions with controllable size as
well.
However, note that the field rescaling (73) into the full

Lagrangian (1) does not yield the model of Lagrangian (10)
at all. It is important to note that a simple field rescaling in
the Lagrangian (10) does not lead to the fractional vortices
engendered by Lagrangian (1). In this sense, note that the
rescaling �a ! �a=�whenever applied into Eq. (35) leads to

�aðtÞ ¼ n

�
� t2

2ð1� sÞ�þ G2t2jnjþ2

2ð1� sÞðjnj þ 1Þ�þ . . . :

(75)

This equation is consistent with the ansatz (44), indicating
fractional magnetic flux. Nevertheless, it does not repre-
sent the original magnetic field for the uncharged vortex
stemming from Lagrangian (10). Indeed, while this series
leads to Bð0Þ ¼ ½ð1� sÞ���1, the correct result is the one
of Eq. (33). This means that the physical equivalence
between the models belonging to the Lagrangians (1) and
(10) could be established by performing adequate coordi-
nates and field transformations, as discussed below using
polar coordinates and by means of a general coordinate
system in the Appendix.
Once the BPS equations are equal, and the asymptotic

conditions are qualitatively similar, one asserts that the
vortex profiles stemming from Eqs. (49) and (51) present
the same behavior of the ones depicted in Figs. 1–4. In this
way, a numerical evaluation of the new corresponding
profiles becomes unnecessary.
There exist some maps connecting the models of

Lagrangians (1) and (10). For example, in polar coordi-
nates such mapping is easily observed: it involves a simul-
taneous rescaling of the radial coordinate and the gauge
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field. By writing the energy density (57) with ðk�FÞ12 ¼ 0

in polar coordinates, we have

E ¼ 2�
Z

drr

�
1

2
ð1� sÞB2 þ v2

�
ðg0Þ2

þ v2�
ðagÞ2
r2

þ v4e2

2ð1� sÞ ð1� g2Þ2
�
: (76)

Performing the rescaling,

r ¼ �r

�1=2
; aðrÞ ! að�rÞ

�
; gðrÞ ! gð �rÞ; (77)

we obtain

E ¼ 2�

�

Z
d�r �r

�
1

2
ð1� sÞ

�
a0

e�r

�
2 þ v2

�
ðg0Þ2 þ ðagÞ2

�r2

�

þ v4e2

2ð1� sÞ ð1� g2Þ2
�
: (78)

The term in brackets is the energy density (15), expressed
in polar coordinates, for the vortices of the simpler model
studied in Sec. III. In Cartesian coordinates this mapping
would be more involved, including a rotation followed by a
coordinate rescaling in order to transform the Higgs sector
of the Lagrangian (1) into the one of (10). Obviously, such
transformations would also affect the gauge sector by add-
ing LV Higgs contributions to the already existent LV
gauge parameters. At this point, it would still be necessary
to perform a gauge field rescaling in order to transform
completely (1) into (10). This set of transformations is
easily performed in polar coordinates, as shown in (77).

V. CONCLUSIONS

In this work, we have investigated the existence of stable
uncharged BPS vortex configurations in the framework of
an Abelian Maxwell-Higgs model supplemented with
CPT-even and Lorentz-violating terms belonging to the
gauge and Higgs sectors of the standard model extension.
Our study has accounted two situations: the first one con-
sidered LV terms only in the gauge sector, while the second
case regarded the full model. In both cases we have re-
strained the investigation to uncharged topological solu-
tions. In the first case, we have found the equations of
motion and implemented the usual ansatz for static and
rotationally symmetric vortex solutions. By applying the
Bogomol’nyi method to the energy density, the first-order
BPS equations were achieved, exhibiting a similar struc-
ture to the ones of the Abelian Maxwell-Higgs model
which supports the ANO vortices. A numerical procedure
was used to unveil the profiles of the BPS vortex solutions.
Although the governing equations present the same struc-
ture, the LIV parameter, s, appears as a key element that
allows us to control the thickness (radial extent) of the
defect while spanning the available range ðs < 1Þ: the
larger is the value of the LIV parameter, s; the narrower

is the profile of the vortex, and vice versa. The intensity of
the magnetic field increases with s, tending to a maximal
value when s ! 1, a limit in which the length of the defect
and the interaction range tends to zero. Our results offer the
possibility of controlling the extension of the defect with-
out modifying the kinetic sector or the Higgs potential of
the model. In this theoretical framework, Lorentz violation
(for 0< s < 1) plays a role similar to some nonlinear
kinetic terms usual in k-field theories, which yield com-
pactlike defects [8,9,16–18]. Despite the profile shrinking
observed here, analogous to the one verified in k-field
compactlike defects (see Ref. [17]), one should point out
some advantages of the Lorentz-violating compactlike so-
lutions: the BPS character, the preservation of the usual
kinetic sector of the Maxwell-Higgs theory, and the direct
correspondence between the defect thickness and the
range of the interaction. Moreover, this result opens a
new window: the chance of employing models with
Lorentz violation as an effective theory to address some
situations wherein k-field models have been applied (see
Refs. [12–16]), with special attention to topological
defects. More specifically, the possibility of controlling
the interaction range and the size of the defect may allow
interesting applications to the investigation of vortex
configurations in some condensed matter frameworks,
where the penetration length depends on the properties of
system.
One should remark that the vortex solutions provided by

Eqs. (23) and (24) do not exhibit space anisotropy, although
the LV parity-even coefficients usually yield anisotropic
stationary solutions (see Ref. [45]). This indicates that the
vortex ansatz selects only the parity-even solutions not en-
dowed with space anisotropy. We still remember that the
vortex configurations obtained in this Lorentz-violating
model are somehow equivalent to the ones yielded by the
effective Maxwell-Higgs electrodynamics of Ref. [43],
which describes vortex configurations in a continuum me-
dium. Note that in this situation it does not make sense to
consider vacuum upper bounds on the Lorentz-violating
coefficients, once the role of the Lorentz-violating coefficient
is to state the presence of the dielectric medium. This inter-
pretation turns sensible the profile analysis performed in this
work for the range �1< s < 1, which obviously involves
magnitudes much higher than the upper bounds usually
stated, for example, in an electrodynamics in the vacuum.
Last, we have addressed the case where the Lorentz

violation is present in the Higgs and gauge sectors simul-
taneously. The equations of motion were determined, being
possibly compatible with BPS equations defined in the
context of a theory with two different vacua, each one
supporting a definite vorticity solution. The energy density
was carried out, revealing that only one of the Higgs LV
coefficients yields solutions with energy stability, so that
we have adopted ðk�FÞr� ¼ 0. The remaining theory pro-

vides stable uncharged vortices (with both vorticities) in a
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unique vacuum. It has implied BPS equations consisting of
a modified duality relation and compatible with a new
rotationally symmetric vortex ansatz. After an appropri-
ated coordinate and field rescaling, such equations recover
the BPS equations of the first case (with Lorentz violation
only in the gauge sector), leading to vortex solutions with
similar profiles but different magnetic flux. In this case,
however, the defect profiles are controlled by two LV
parameters, � and s, that play opposite roles on the spatial
extension and the range of the interaction. For a fixed �,
we recover the same phenomenology described for the first
case. For a fixed s, the size of the vortex should diminish
with an increasing �. Hence, we notice that � and s act as
competing parameters, providing a larger control on the
solution. The crucial difference between the first and the
second model is entailed with the new vortex ansatz re-
quired to imply consistent solutions at origin. Such differ-
ence engenders an interesting novelty: vortices with
fractional magnetic flux, which is a feature of interest in
condensed matter systems, as, for example, in recent mod-
els for superconductivity [44] where the vortex solutions
have a fractional structure. Finally, we highlight that the
fractional BPS solutions are explicitly defined in the con-
text of a modified vacuum theory, in accordance with
Eq. (66). The point is that in the presence of the LV-
Higgs parameters, the self-interacting fourth-order poten-
tial must be given as in Eq. (65) for ensuring the existence
of BPS solutions. In the Appendix, we discuss the equiva-
lence between the models of Lagrangians (1) and (10).
Such an equivalence leads to the conclusion that the sim-
pler model of Lagrangian (10) should also possess frac-
tional solutions, in principle uncovered, and only revealed
by suitable coordinate transformations.

New developments in this Lorentz-violating environment
are now under way, mainly in connection with the search for
charged vortex configurations, in the absence of the Chern-
Simons term, when the Higgs sector is supplemented with a
richer self-interacting potential [46]. Finally, an interesting
investigation would be to verify the existence of topological
defects in the non-Abelian sector of the SME.
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APPENDIX

In this Appendix we comment on the existence of a
coordinate transformation stating the equivalence of the
models of Lagrangians (1) and (10) at first order in the
Lorentz-violating parameters. This coordinate transforma-
tion can be generally written as

x� ¼ ðM�1Þ��x
0�; @� ¼ M�

�@
0
�;

A� ¼ M�
�A

0
�; D�� ¼ M�

�D0
��: (A1)

We can show that this transformation yields

L � ¼ jD��j2 þ ðk��Þ��ðD��Þ�ðD��Þ
¼ ½g�� þ ðk��Þ���ðD��Þ�ðD��Þ
¼ g0��ðD0

��Þ�ðD0
��Þ; (A2)

where g0�� is a new metric tensor related to g�� via the
equation

½g�� þ ðk��Þ���M�
�M

�
� ¼ g0��: (A3)

At the first order, M�
� can be written as

M�
� ¼ 	�

� þm�
�; (A4)

which, when replaced in Eq. (A3), leads to

g�� þm�� þm�� þ ðk��Þ�� ¼ g0��: (A5)

At this point, we can organize the possible maps into two
possibilities.

1. First case

A preliminary case is addressed when one requires

m�� ¼ m�� ¼ � 1

2
ðk��Þ��; (A6)

so that Eq. (A4) reads as

M�
� ¼ 	�

� � 1

2
ðk��Þ��; (A7)

and the metric remains unaffected, g�� ¼ g0��. Within
this context, one explicitly evaluates

L F ¼ � 1

4
F��F

�� � 1

2
���F��F�

�

¼ � 1

4
F0
��F

0�� � 1

2
�0�	F0

��F
0
	
�; (A8)

where we have defined

�0�	 ¼ ��	 � ðk��Þ�	: (A9)

Therefore, under the coordinate transformation (A7),
and at first order in the LV parameters, the full Lagrangian,

L ¼ � 1

4
F��F

�� � 1

2
���F��F�

� þ jD��j2

þ ðk��Þ��ðD��Þ�ðD��Þ �Uðj�jÞ; (A10)

becomes equivalent to

L ¼ � 1

4
F0
��F

0�� � 1

2
�0��F0

��F
0
�
� þ jD0

��j2 �Uðj�jÞ;
(A11)
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revealing that the Lorentz-violating terms were moved
from the scalar to the gauge sector.

2. Second case

Another possibility consists in taking

m�� ¼ �m��; (A12)

so that M�
� is an orthogonal matrix at first order. The

metric relation (A5) is now

g0�� ¼ g�� þ ðk��Þ��; (A13)

representing a nondiagonal matrix. At first order,

M�
�M

�
� ¼ 	�

�	
�
� þ 	�

�m
�
� þm�

�	
�
�;

g��M�
�M

�
� ¼ g��;

ðk��Þ��M�
�M

�
� ¼ ðk��Þ��: (A14)

Using the first-order relations (A13), after some algebra
we can explicitly show that

L F ¼ � 1

4
F��F

�� � 1

2
���F��F�

�

¼ � 1

4
F0
��F

0�� � 1

2
�0��F0

��F
0
�
�; (A15)

with the redefinition (A9). Therefore, at first order in LIV
parameters, under the coordinate transformation (A1), the
full Lagrangian (A10) becomes

L0 ¼ � 1

4
F0
��F

0�� � 1

2
�0��F0

��F
0�
�

þ g0��ðD0
��Þ�ðD0

��Þ �Uðj�jÞ; (A16)

with the observation that the metric g0�� is nondiagonal. It
can be achieved as a set of transformations (at first order)
turning g0�� diagonal, and stating the equivalence of the
models of Lagrangians (A10) and (A16).
We have thus stated the equivalence between the models

(A10) and (A11) at first order in the Lorentz-violating
parameters. Notwithstanding, a more involved transforma-
tion may be found assuring the full equivalence at any
order. This fact is related to physical observability of the
LV parameters in the scalar and gauge sectors of the model.
For a more complete discussion about this point, see
Sec. II, part C, of Ref. [27]. The physical equivalence of
the models of Lagrangians (1) and (10) [with ðk�FÞ�� ¼ 0]

leads to the conclusion that the fractional vortex configu-
rations are explicit solutions of the model of Lagrangian
(1) and hidden solutions of the Lagrangian (10).
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