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Nonrelativistic conformal groups, indexed by l ¼ N
2 , are analyzed. Under the assumption that the mass

parametrizing the central extension is nonvanishing, the coadjoint orbits are classified and described in

terms of convenient variables. It is shown that the corresponding dynamical system describes, within

Ostrogradski framework, the nonrelativistic particle obeying (N þ 1)-th order equation of motion. As a

special case, the Schrödinger group and the standard Newton equations are obtained for N ¼ 1 (l ¼ 1
2 ).
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I. INTRODUCTION

Historically, the structure that is now called the
Schrödinger group was discovered in the nineteenth
century in the context of classical mechanics [1] and
heat equation [2]. It was rediscovered in the twentieth
century as the maximal symmetry group of free motion
in quantum mechanics [3]. Much attention has been
paid to the structure of the Schrödinger group and its
geometrical status [4].

The Schrödinger group, when supplemented with space
dilatation transformations, becomes l ¼ 1

2 member of the

whole family of nonrelativistic conformal groups [5], in-
dexed by halfinteger l. Various structural, geometric, and
physical aspects of the resulting Lie algebras have been
intensively studied [6]. For l ¼ N

2 , N-odd (also N-even in

the case of dimension two), the nonrelativistic conformal
algebra admits central extension. Then, as it has been
shown in Ref. [7], it becomes the symmetry algebra of
the free nonrelativistic particle obeying (N þ 1)-th order
equation of motion.

In the present paper, we use the orbit method [8] to
construct the most general dynamical systems on which
the nonrelativistic conformal groups act transitively as
symmetries. The main advantage of the orbit method is
that once the transitivity of the action of a given group
G is assumed, it gives the complete classification of all
Hamiltonian sytems for which G acts as the group of
symmetry (canonical) transformations. Therefore, one
can reconstruct the Hamiltonian systems merely from the
assumptions concerning their symmetries. The necessity of
imposing the transitivity condition implies that there exist
systems which are not included into the classification; the
orbit method yields, however, the general framework for
description of all systems exhibiting a given symmetry. As
a simple example let us consider the two-particle Galilei-
invariant system. The Galilei group acts transitively on
center-of-mass variables. The complete set of canonical
variables include also the relative motion variables which
Poisson-commute with those describing the center-of-mass

motion. The structure of the Galilei group implies that the
relative motion variables can enter the game only in a
specific way. For example, the Hamiltonian must be the
sum of the center-of-mass kinetic energy and the internal
one, which in the transitive (i.e. single-particle) case is just
a number. In the two-particle case, the ‘‘internal’’ degrees
of freedom can enter energy only through internal energy
that now becomes their function. Similar considerations
concern the angular momentum: the internal variables
contribute only through the spin term.
In the case of nonrelativistic conformal groups, we find

that the basic variables are coordinates and momenta to-
gether with internal variables obeying SUð2Þ commutation
rules (in the sense of Poisson brackets) and underlying
trivial dynamics; the remaining internal variables obey
SLð2;RÞ [or SOð2; 1Þ] commutation rules and the equation
of motion of conformal quantum mechanics [9] in global
formulation [10].
All symmetry generators split into two parts: the exter-

nal one constructed out of coordinates and momenta (like
orbital angular momentum) and the internal one (like spin).
The symmetry transformations are implemented as canoni-
cal transformations.
The standard free dynamics is obtained by selecting the

trivial orbit for SLð2;RÞ variables.
The results heavily rely on the fact that the conformal

algebras under consideration admit central extensions. For
vanishing ‘‘mass’’ parameters (as well as for conformal
algebras that do not admit central extension), the classifi-
cation of orbits is more complicated and the physical
interpretation in such cases remains slightly obscure.
Except in Sec. III B, we assume that our space is

three-dimensional, d ¼ 3 (i.e., the space-time is four-
dimensional, dþ 1 ¼ 4). However, our results are gener-
ally valid for d � 3. The case d ¼ 2 is considered sepa-
rately in Sec. III B because in two-dimensional space the
central extensions are allowed for both odd and even N.
In the case of d ¼ 0 (one-dimensional space-time), no
rotations, translations, or boosts [and, consequently, other
transformations generated by the elements outside
slð2;RÞ] are allowed, and we are left with the standard
conformal mechanics (see below for details).*k-andrzejewski@uni.lodz.pl
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II. THE SCHRÖDINGER SYMMETRY

We start with the l ¼ 1
2 Galilean conformal algebra

(according to the terminology of Ref. [5]). It consists of

rotations ~J, translations ~P, boosts ~B, and time translations
H that form the Galilean algebra, together with dilatations
D, conformal transformations K, and, finally, space dila-
tations Ds. The nontrivial commutation rules read

½Ji;Jk�¼ i�iklJl; ½Ji;Pk�¼ i�iklPl; ½Ji;Bk�¼ i�iklBl;

½Bi;H�¼ iPi; ½D;H�¼ iH; ½D;K�¼�iK;

½K;H�¼ 2iD; ½D;Pi�¼ i

2
Pi; ½D;Bi�¼�i

2
Bi;

½K;Pi�¼ iBi; ½Ds;Pi�¼ iPi; ½Ds;Bi�¼ iBi:

(1)

Deleting Ds, one obtains twelve-dimensional Schrödinger
algebra, which admits, similarly to the Galilei algebra,
central extension defined by the additional nontrivial com-
mutator

½Bi; Pk� ¼ iM�ik: (2)

The structure of centrally extended Schrödinger algebra is
well known. First, we have suð2Þ [or soð3Þ] algebra
spanned by J0is; furthermore, H, D, and K span the con-
formal algebra which is isomorphic to soð2; 1Þ [or
slð2;RÞ]. To see this, one defines

N0 ¼ 1

2
ðHþ KÞ; N1 ¼ 1

2
ðK �HÞ; N2 ¼ D;

(3)

which yields

½N�;N�� ¼ i����N
�; �; �; � ¼ 0; 1; 2; (4)

where �012 ¼ �012 ¼ 1 and g�� ¼ diagðþ;�;�Þ.
Therefore ~J, H, K, and D span direct sum suð2Þ �
soð2; 1Þ. Finally, ~P, ~B, and M form a nilpotent algebra,
which, at the same time, carries a representation of suð2Þ �
soð2; 1Þ. To express this fact in a compact way, we define
the spinor representation of soð2; 1Þ:

~N 0 ¼ 1

2
�2; ~N1 ¼ i

2
�1; ~N2 ¼ i

2
�3: (5)

Moreover, denoting X1i ¼ Pi, X2i ¼ Bi, one finds the sim-
ple form of the action of suð2Þ � soð2; 1Þ on the space

spanned by ~P, ~B, and M

½Ji; Xak� ¼ i�iklXal; ½N�; Xai� ¼ Xbið ~N�Þba; (6)

where a, b ¼ 1, 2. The commutation rule (2) takes the form

½Xai; Xbj� ¼ �iM�ab�ij: (7)

The matrices ~N� are all purely imaginary and span the
defining representation of slð2;RÞ. In fact, the group
SLð2;RÞ is nothing but the group Spinð2; 1Þþ. The
Schrödinger algebra can be thus integrated to the group
S ¼ ðSUð2Þ � SLð2;RÞÞ2R7, where R7 is the seven-
dimensional nilpotent group (topologically isomorphic
to R7), and the semidirect product is defined by the

Dð1;12Þ �Dð0;0Þ representation of SUð2Þ � SLð2;RÞ.
Let us consider the coadjoint action of the Schrödinger

group S, denoting the dual-basis elements by
~~J,

~~P,
~~B, etc.

The general element of the dual space to the Lie algebra of
S is written as

X ¼ ~j
~~Jþ ~	

~~Pþ ~

~~Bþh ~Hþ d ~Dþ k ~K þm ~M: (8)

Having characterized the global structure of S, we could
consider the full action of S on X. However, for our
purposes, it is sufficient to compute the coadjoint action
of one-parameter subgroups generated by the basic ele-
ments of the Lie algebra. The results are summarized in
Table I below.

Here ðRj! Þk ¼ Rkljl, etc.
In order to find the structure of coadjoint orbits, note that

m is invariant under the coadjoint action of S. In what
follows, we assume that m> 0 (in fact, it is sufficient to
take m � 0). Once this assumption is made, the classifica-
tion of orbits becomes quite simple. Using the results
collected in Table I, we conclude that each orbit contains

the point corresponding to ~	 ¼ 0, ~
 ¼ 0. Moreover, the

stability subgroup of the submanifold ~	 ¼ 0, ~
 ¼ 0 is

TABLE I. Coadjoint action of S.

ei ~a
~P ei ~v

~B e�i�H ei�D eiuK ei ~!
~J

~j0 ~j� ~a� ~	 ~j� ~v� ~
 ~j ~j ~j Rj
!

~	
0 ~	 ~	þm ~v ~	 e

�
2 ~	 ~	þ u ~
 R	

!

~
 0 ~
 �m~a ~
 ~
 þ � ~	 e��
2 ~
 ~
 R


!

h0 h hþ m ~v2

2 þ ~v ~	 h e�h hþ 2udþ u2k h

d0 d� 1
2
~a ~	 dþ 1

2
~v ~
 dþ �h d dþ uk d

k0 k� ~a ~
þ 1
2m~a2 k kþ 2�dþ �2h e��k k k

m0 m m m m m m
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SUð2Þ � SLð2;RÞ � R, where the last factor is the sub-
group generated by M and can be neglected. The orbits of
SUð2Þ � SLð2;RÞ are the products of orbits of both factors.
For SUð2Þ, any coadjoint orbit is a 2-sphere (or a point)
which can be parametrized by vector ~s of fixed length,
~s2 ¼ s2. To describe the orbits of SLð2;RÞ [which is
equivalent, as far as coadjoint action is concerned, to
SOð2; 1Þ], we define, in analogy with Eq. (3),

0¼1

2
ðhþkÞ; 1¼1

2
ð�hþkÞ; 2¼d: (9)

Then, by standard arguments, the full list of orbits reads:

Hþ
� ¼ f�: g��

�� ¼ �2; 0 > 0g;
H�

� ¼ f�: g��
�� ¼ �2; 0 < 0g;

Hþ
0 ¼ f�: g��

�� ¼ 0; 0 > 0g;
H�

0 ¼ f�: g��
�� ¼ 0; 0 < 0g;

H � ¼ f�: g��
�� ¼ ��2g;

H 0 ¼ f0g:

(10)

Consequently, any coadjoint orbit of S (with nonvanishing
m) contains the point

~s
~~Jþð0 � 1Þ ~H þ 2 ~Dþ ð0 þ 1Þ ~K þm ~M; (11)

where ~s 2 S2 and � is a point on one of the manifolds,
H , listed above. We see that any orbit is characterized by
the values of m, ~s2, g��

��, and, for g��
�� � 0, the

sign of 0. Let us note that the above invariants correspond
to the Casimir operators of Schrödinger algebra

C1¼M; C2¼ðM ~J� ~B� ~PÞ2;

C3¼
�
MH� ~P2

2

��
MK� ~B2

2

�
þ
�
MK� ~B2

2

��
MH� ~P2

2

�
þ

�2

�
MD� ~B ~P

4
� ~P ~B

4

�
2
: (12)

The whole coadjoint orbit of S can be obtained by applying
gð ~aÞ and gð ~vÞ to all points (11) with ~s and � varying over
their orbits. Calling ~a ¼ � ~x and ~v ¼ ~p=m, one finds the
following parametrization of coadjoint orbits

~j¼ ~x� ~pþ ~s; ~	¼ ~p; ~
¼m~x;

h¼ ~p2

2m
þ0�1; d¼ 1

2
~x ~pþ2; k¼m

2
~x2þ0þ1:

(13)

We see that the phase-space variables are ~x, ~p, ~s, and �.
The Poisson brackets implied by Kirillov symplectic struc-
ture read

fxi;pkg ¼ �ik; fsi; skg ¼ �iklsl; f�;�g ¼ ����
�;

(14)

while the corresponding equations of motion take the form

_~x ¼ ~p

m
; _~p ¼ 0; _~s ¼ 0;

_0 ¼ 2; _1 ¼ 2; _2 ¼ �1 þ 0:
(15)

We can summarize our findings. The ten-dimensional or-
bits are parametrized by ~x, ~p, ~s, and � subject to the
constraints ~s2 ¼ const andg��

�� ¼ const and equipped

with the symplectic structure defined by Eq. (14) and
dynamics given by Eq. (15).
One can say that, besides the standard canonical varia-

bles ~x and ~p, there are two kinds of ‘‘internal’’ degrees of
freedom—ordinary spin variables ~s and SOð2; 1Þ and
‘‘pseudospin’’ degrees of freedom �. Note that, contrary
to the true spin variables, � variables have nontrivial
dynamics.
Let us consider the dynamics of internal variables in

some detail. It is uniquely dictated by the symmetry group
structure. The Lie algebra under consideration contains
the direct sum suð2Þ � slð2;RÞ and the Hamiltonian be-
longs to the slð2;RÞ part. Therefore, it commutes with
angular momentum. The generators which do not belong
to suð2Þ � slð2;RÞ form a linear representation under
the adjoint action of the latter, which implies that the
‘‘external’’ part of the angular momentum Poisson com-
mutes with H, so the ‘‘internal’’ must also commute,
yielding trivial dynamics for spin variables. On the other
hand, the pseudospin variables related to slð2;RÞ obey, as it
was noted above, the nontrivial dynamical equations. This
is due to the fact that the Hamiltonian itself belongs to
slð2;RÞ subalgebra and obeys nontrivial commutation
rules with the remaining slð2;RÞ generators. The dynamics
of ‘‘internal’’ and ‘‘external’’ contributions to slð2;RÞ
generators decouple. This again follows from the property
that the generators outside the suð2Þ � slð2;RÞ subalgebra
form a linear representation under the adjoint action of the
latter. As it will be discussed in the last section, the
dynamics of slð2;RÞ pseudospin variables is described by
conformal mechanics.
Making the trivial choice H 0 ¼ f0g of the SLð2;RÞ

orbit, one finds the standard realization of the
Schrödinger group as the symmetry of free dynamics.
From the basic functions (13), one can construct the

generators (in the sense of canonical formalism) of group
transformations. Due to the fact that the Hamiltonian is an
element of the Lie algebra of the symmetry group, the
symmetry generators depend, in general, explicitly on
time. They read

jk ¼ jkðtÞ; pk ¼ pkðtÞ;
xk ¼ xkðtÞ � t

m
pkðtÞ; h ¼ hðtÞ;

k ¼ kðtÞ � 2tdðtÞ þ t2hðtÞ; d ¼ dðtÞ � thðtÞ:
(16)
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III. N-GALILEAN CONFORMAL SYMMETRY

Higher-dimensional nonrelativistic conformal algebras
are constructed according to the following unique scheme.
One takes the direct sum suð2Þ � slð2;RÞ � R, where the
last term corresponds to the spatial dilatation Ds. This is
supplemented by 3ðN þ 1Þ Abelian algebra (here l ¼
N=2), which carries the Dð1;N2Þ representation of SUð2Þ �
SLð2;RÞ; moreover, all new generators correspond to the

eigenvalue 1 of Ds. Call ~Ci ¼ ðCa
i ; a ¼ 1; 2; 3Þ, i ¼

0; 1; . . . ; N, the new generators. The relevant commutation

rules involving ~Ci read

½Ds; C
a
j � ¼ iCa

j ; ½Ja; Cb
j � ¼ i�abdC

d
j ;

½H;Ca
j � ¼ �ijCa

j�1; ½D;Ca
j � ¼ i

�
N

2
� j

�
Ca
j ;

½K;Ca
j � ¼ iðN � jÞCa

jþ1: (17)

As previously, we delete the space dilatation operator Ds

and consider the question of the existence of the central

extension of the Abelian algebra spanned by ~C’s. To solve
it, one can consider the relevant Jacobi identities or analyze
the transformation properties under SUð2Þ � SLð2;RÞ.
The second order SUð2Þ invariant tensor, i.e., Kronecker

delta �ab in arbitrary dimension (and tensor �ab for dimen-
sion two), is symmetric (antisymmetric, respectively), so
the existence of central extension is equivalent to the
existence of the antisymmetric (symmetric) SLð2;RÞ in-
variant tensor. Taking into account thatN þ 1-dimensional
irreducible representations of SLð2;RÞ may be obtained
from the symmetrized tensor product of N basic represen-
tation, one easily concludes that an invariant antisymmetric
(symmetric) tensor exists only for N odd (for N even in the
case dimension two) (see Ref. [11]).

A. N-odd

In this case the relevant central extension reads [7]

½Ca
j ; C

b
k� ¼ i�ab�N;jþkð�1Þk�jþ1

2 k!j!M; (18)

for j, k ¼ 0; 1; . . . ; N and a, b ¼ 1, 2, 3. In order to classify
the coadjoint orbits we put, in analogy to Eq. (8),

X ¼ ~j
~~Jþ ~ci

~~Ci þ h ~H þ d ~Dþ k ~K þm ~M: (19)

Again, m is invariant under the coadjoint action; we as-
sume that m> 0.
Consider the coadjoint action of expðixakCa

kÞ. It reads

m0 ¼ m;

j0b ¼ jb � �bad
XN
j¼0

xaj c
d
j �

m

2

XN
j¼0

ð�1Þj�Nþ1
2 �bcax

a
j x

c
N�jj!ðN � jÞ!;

c0bj ¼ cbj þ ð�1Þj�N�1
2 mj!ðN � jÞ!xbN�j;

h0 ¼ hþ XN�1

j¼0

ðjþ 1Þxbjþ1c
b
j þ

m

2

XN
j¼1

ð�1Þj�Nþ1
2 j!ðN � jþ 1Þ!xaj xaN�jþ1;

d0 ¼ d� XN
j¼0

�
N

2
� j

�
xbj c

b
j þ

m

2

XN
j¼0

�
N

2
� j

�
ð�1Þj�Nþ1

2 j!ðN � jÞ!xaj xaN�j;

k0 ¼ k� XN
j¼1

ðN � jþ 1Þxbj�1c
b
j þ

m

2

XN�1

j¼0

ð�1Þj�N�1
2 ðjþ 1Þ!ðN � jÞ!xaj xaN�j�1:

(20)

We see that, as in the case of the Schrödinger group, any orbit contains the points

~s
~~Jþð0 � 1Þ ~H þ 2 ~Dþ ð0 þ 1Þ ~K þm ~M; (21)

where, again, ~s 2 S2 and � belong to one of the orbits (10). The whole orbit is produced by acting with expðixakCa
kÞ on the

above points. As a result we arrive at the following parametrization

jb ¼ sb �m

2

XN
j¼0

ð�1Þj�Nþ1
2 �bcax

a
j x

c
N�jj!ðN � jÞ!; cbj ¼ ð�1Þj�N�1

2 mj!ðN � jÞ!xbN�j;

h ¼ 0 � 1 þm

2

XN
j¼1

ð�1Þj�Nþ1
2 j!ðN � jþ 1Þ!xaj xaN�jþ1; d ¼ 2 þm

2

XN
j¼0

�
N

2
� j

�
ð�1Þj�Nþ1

2 j!ðN � jÞ!xaj xaN�j;

k ¼ 0 þ 1 þm

2

XN�1

j¼0

ð�1Þj�N�1
2 ðjþ 1Þ!ðN � jÞ!xaj xaN�j�1: (22)
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The invariants ~s2 and g��
��, which characterize the

orbits, correspond to the Casimir operators

C1 ¼ M;

C2 ¼
�
M ~J � 1

2

XN
j¼0

ð�1Þj�Nþ1
2

j!ðN � jÞ!
~Cj � ~CN�j

�
2
;

C3 ¼ ðMH � AÞðMK � BÞ þ ðMK � BÞðMH� AÞ
� 2ðMD� CÞ2; (23)

where

A ¼ 1

2

XN
j¼1

ð�1Þj�Nþ1
2

ðj� 1Þ!ðN � jÞ!
~Cj�1

~CN�j;

B ¼ � 1

2

XN�1

j¼0

ð�1Þj�Nþ1
2

j!ðN � j� 1Þ!
~Cjþ1

~CN�j;

C ¼ 1

2

XN
j¼0

ð�1Þj�Nþ1
2

j!ðN � jÞ!
�
j� N

2

�
~Cj

~CN�j:

(24)

The basic dynamical variables are �, sa and xj. The
Poisson bracket resulting from Kirillov symplectic struc-
ture reads

fcaj ; cbkg ¼ �ab�N;jþkð�1Þk�jþ1
2 k!j!m; (25)

and implies

fxak ; xbN�kg ¼
�abð�1Þk�Nþ1

2

mk!ðN � kÞ! ; k ¼ 0; 1; . . . ; N: (26)

It is easy to define Darboux coordinates for ‘‘external’’
variables. They read

xak ¼
ð�1Þk�Nþ1

2

k!
qak; xaN�k ¼

1

mðN � kÞ!p
a
k; (27)

for k ¼ 0; . . . ; N�1
2 , yielding the standard form of Poisson

brackets

fqak; pb
l g ¼ �ab�kl: (28)

In terms of new variables the remaining one read

h ¼ 0 � 1 þ 1

2m
~pðN�1Þ=2 ~pðN�1Þ=2 þ

XN�1
2

k¼1

~qk ~pk�1;

d ¼ 2 þ XN�1
2

k¼0

�
N

2
� k

�
~qk ~pk;

k ¼ 0 þ 1 þm

2

�
N þ 1

2

�
2
~qðN�1Þ=2 ~qðN�1Þ=2

� XN�3
2

k¼0

ðN � kÞðkþ 1Þ ~qk ~pkþ1;

~j ¼ ~sþ XN�1
2

k¼0

~qk � ~pk:

(29)

The above findings can be compared with those of Ref. [7].
In particular, the Hamiltonian h is the sum of two terms

depending on ‘‘internal’’ (slð2;RÞ) and ‘‘external’’ varia-
bles. The external part coincides with the Ostrogradski

Hamiltonian [12] corresponding to the Lagrangian L ¼
m
2 ðd

ðNþ1Þ=2 ~q
dtðNþ1Þ=2 Þ2. This can be easily seen by writing out the

canonical equations of motion

_~qk ¼ ~qkþ1; k ¼ 0; . . . ;
N � 3

2
; _~qN�1

2
¼ 1

m
~pN�1

2

_~pk ¼ � ~pk�1; k ¼ 1; . . . ;
N � 1

2
; _~p0 ¼ 0; (30)

which, for the basic variable ~q ¼ ~q0, imply ~qðNþ1Þ ¼ 0.

B. N-even

As we have mentioned, in the case of dimension 2, also
for even N there exists the central extension of the Abelian

algebra spanned by ~C’s. The relevant commutators read:

½Ca
j ; C

b
k� ¼ �i�ab�N;jþkð�1Þj�k

2 k!j!m; (31)

where a, b ¼ 1, 2, j; k ¼ 0; 1; . . . ; N. Let us take an arbi-
trary element X of dual space to the Lie algebra

X ¼ j~J þ ~ci
~~Ci þ h ~H þ d ~Dþ k ~K þm ~M: (32)

As previously,m is invariant under the coadjoint action; we
can assume that m> 0. Consider the coadjoint action of
expðixakCa

kÞ. It reads

m0 ¼m;

j0 ¼ j��ba
XN
j¼0

xbj c
a
j þ

m

2

XN
j¼0

ð�1Þ2j�N
2

��ad�bdxbj x
a
N�jj!ðN�jÞ!;

c0bj ¼cbj �ð�1ÞN�2j
2 mj!ðN�jÞ!�abxaN�j;

h0 ¼hþ XN�1

j¼0

ðjþ1Þxbjþ1c
b
j

þm

2

XN
j¼1

ð�1Þ2j�N
2 j!ðN�jþ1Þ!�abxbj xaN�jþ1;

d0 ¼d�XN
j¼0

�
N

2
�j

�
xbj c

b
j

�m

2

XN
j¼0

�
�N

2
þj

�
ð�1Þ2j�N

2 j!ðN�jÞ!�abxbj xaN�j;

k0 ¼k� XN�1

j¼0

ðN�jÞxbj cbjþ1

�m

2

XN�1

j¼0

ð�1Þ2j�N
2 ðjþ1Þ!ðN�jÞ!�baxbj xaN�j�1:

(33)
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We see that, similarly to the case of N-odd, any orbit
contains the points

s~J þ ð0 � 1Þ ~H þ 2 ~Dþ ð0 þ 1Þ ~K þm ~M; (34)

where s 2 R and � belong to one of the orbits (10).
Moreover, the whole orbit is produced by acting with
expðixakCa

kÞ on the above points. Consequently, we have

the following parametrization:

j ¼ sþm

2

XN
j¼0

ð�1Þ2j�N
2 �ad�bdxbj x

a
N�jj!ðN � jÞ!;

cbj ¼ ð�1ÞN�2j
2 mj!ðN � jÞ!�baxaN�j;

h ¼ 0 � 1 þm

2

XN
j¼1

ð�1Þ2j�N
2

� j!ðN � jþ 1Þ!�abxbj xaN�jþ1;

d ¼ 2 �m

2

XN
j¼0

�
�N

2
þ j

�
ð�1Þ2j�N

2 j!ðN � jÞ!�abxbj xaN�j;

k ¼ 0 þ 1 �m

2

XN�1

j¼0

ð�1Þ2j�N
2

� ðjþ 1Þ!ðN � jÞ!�abxbj xaN�j�1: (35)

By direct, but rather tedious, computations, we check that
the corresponding Casimir operators are of the form

C1 ¼ M; C2 ¼ MJ � 1

2

XN
j¼0

ð�1Þ2j�N
2

j!ðN � jÞ!C
a
N�jC

a
j ;

C3 ¼ ðMH � AÞðMK � BÞ þ ðMK � BÞðMH � AÞ
� 2ðMD� CÞ2;

where

A ¼ 1

2

XN
j¼1

ð�1Þ2j�N
2

ðj� 1Þ!ðN � jÞ! �
abCb

j�1C
a
N�j;

B ¼ � 1

2

XN�1

j¼0

ð�1Þ2j�N
2

j!ðN � j� 1Þ! �
abCb

jþ1C
a
N�j;

C ¼ 1

2

XN
j¼0

ð�1Þ2j�N
2

j!ðN � jÞ! ðj�
N

2
Þ�abCb

jC
a
N�j:

(36)

The induced Poisson brackets of ~C’s take the form

fcaj ; cbkg ¼ ��ab�N;jþkð�1Þk�j
2 k!j!m; (37)

[for � see Eq. (14)]. Now let us define new coordinates as
follows

xaj ¼
ð�1ÞN�2j

2

j!
qaj ; j¼ 0; . . . ;

N

2
; a;b¼ 1;2;

xaN�j ¼
1

mðN� jÞ!p
a
j ; j¼ 0; . . . ;

N

2
� 1; a;b¼ 1;2:

(38)

Then, the nonvanishing Poisson brackets read

fqaj ;pb
kg ¼ �ab�jk; j; k¼ 0; . . . ;

N

2
� 1; a; b¼ 1;2;

fqaN
2

; qbN
2

g ¼ 1

m
�ba; a; b¼ 1;2: (39)

Let us introduce auxiliary notation (see Eq. (32) in
Ref. [7]) pa

N
2

¼ m
2 �

baqbN
2

. Then, the remaining dynamical

variables take the form

h ¼ 0 � 1 þ XN2�1

k¼0

~pk ~qkþ1;

d ¼ 2 þ XN2�1

k¼0

�
N

2
� k

�
~pk ~qk;

k ¼ 0 þ 1 � XN2�1

k¼1

ðN � kþ 1Þk ~pk ~qk�1

� N

�
N

2
þ 1

�
~qN
2�1 ~pN

2
;

j ¼ sþ XN2
k¼0

~qk � ~pk:

(40)

These results, in the case of trivial orbitH 0, agree with the
ones obtained in Ref. [7].

IV. CONCLUSIONS

We have shown that the most general dynamical system
admitting the N-Galilean conformal group, with N-odd in
the three-dimensional case and arbitrary N in the two-
dimensional one, as the symmetry group acting transitively
is described by the ‘‘external’’ variables obeying the equa-
tions of motion generated by the free higher-derivative
Lagrangian and two kinds of ‘‘internal’’ ones: spin varia-
bles undergoing trivial dynamics and pseudospin ones
obeying SLð2;RÞ-invariant equations of motion. The
form of dynamical equations is uniquely determined by
the symmetry group under consideration.
Let us discuss in some detail the dynamics of SLð2;RÞ

variables. It is, in fact, the standard conformal mechanics
[9] in disguise. This has been shown in detail in Ref. [10];
here, we present only a brief discussion. First, let us note
that the complete list of phase manifolds on which
SLð2;RÞ acts transitively as a group of canonical
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transformations is provided by Eq. (10). Let us take as an
exampleHþ

� . It is two-sheeted hyperboloid equipped with
the Poisson structure defined by Eq. (14). Consider the
upper sheet (the lower can be described in a similar way
[10]). Due to its trivial topological structure, it is not
difficult to find the single global smooth map covering
the whole sheet; it reads [10]

0 ¼ P2

4�
þ �2

�X2
þ�X2

4
;

1 ¼ � P2

4�
� �2

�X2
þ�X2

4
; 2 ¼ �XP

2
;

(41)

where 0< X <1, �1<P<1, and � is an arbitrary
positive constant. Moreover, X and P are global Darboux
coordinates, fX; Pg ¼ 1. It follows from (29) that the pseu-
dospin contribution to the total Hamiltonian h, when ex-
pressed in terms of new coordinates, reads:

h ¼ P2

2�
þ 2�2

�X2
; (42)

i.e., we arrive at the standard form of conformal mechanics
with positive coupling constant [9].

The case of one-sheeted hyperboloid is slightly more
involved. The phase space cannot be covered by one
Darboux map; however, the dynamics is completely regu-
lar, as it can be seen from Eq. (15). Locally, the Darboux
coordinates can be introduced by making the replacement
�2 � ��2 in Eq. (41). They yield, again, the standard
form of conformal mechanics with negative coupling con-
stant. It is interesting to note that, in this context, the
‘‘falling on the center’’ phenomenon that appears in the
attractive case is an artifact produced by the nontrivial
topology of phase manifold which does not admit global
coordinates.

Let us also note that the geometrical structure of
conformal mechanics may be expressed [13] in terms of

nonlinear realizations [14] of SLð2;RÞ group. This is a
particular example of the general fact that the orbit method
can be described using the ideas and methods of nonlinear
realizations theory [15].
Let us come back to the simple case of pseudospin living

on Hþ
� . Then we can summarize our findings as follows

(we restrict ourselves to the case d ¼ 3, i.e., N-odd): the
basic dynamical variables are the coordinate ~q, spin ~s,
and the additional coordinate X obeying 0<X <1. The
dynamics is given by the higher-derivative Lagrangian

L ¼ m

2

�
dðNþ1Þ=2 ~q
dtðNþ1Þ=2

�
2 þ�

2

�
dX

dt

�
2 � 2�2

�X2
: (43)

For the remaining cases [i.e. remaining orbits (10)], similar
description can be given except that the internal coordinate
is not global.
As in the case of Schrödinger algebra [cf. Eq. (16)], it is

easy to construct the explicitly time-dependent integrals of
motion. They are generators (in the sense of canonical
formalism) of the relevant symmetry transformations.
We conclude that the general dynamical system admit-

ting N-Galilean conformal symmetry with N-odd (N-even
in dimension two) as the symmetry group acting transi-
tively is described by the ‘‘external’’ variables correspond-
ing to higher derivative Lagrangian and two kinds of
‘‘internal’’ ones: spin variables ~s (s, respectively) with
trivial dynamics and SLð2;RÞ pseudospin variables �

with the nontrivial conformal invariant one.

ACKNOWLEDGMENTS

The authors would like to thank Professor Piotr Kosiński
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Lukierski, and P. Maślanka, Phys. Lett. B 699, 129 (2011);

NONRELATIVISTIC CONFORMAL GROUPS AND THEIR . . . PHYSICAL REVIEW D 86, 065009 (2012)

065009-7

http://dx.doi.org/10.1063/1.3070673
http://dx.doi.org/10.1103/PhysRevD.5.377
http://dx.doi.org/10.1103/PhysRevD.31.1841
http://dx.doi.org/10.1103/PhysRevD.43.3907
http://dx.doi.org/10.1103/PhysRevD.43.3907
http://dx.doi.org/10.1007/BF02186756
http://dx.doi.org/10.1063/1.523670
http://dx.doi.org/10.1063/1.523670
http://dx.doi.org/10.1088/1751-8113/42/46/465206
http://dx.doi.org/10.1088/1751-8113/42/46/465206
http://dx.doi.org/10.1007/3540171630_79
http://dx.doi.org/10.1016/j.aop.2009.01.006
http://dx.doi.org/10.1016/j.aop.2009.01.006
http://arXiv.org/abs/1201.0683
http://dx.doi.org/10.1007/JHEP07(2010)069
http://dx.doi.org/10.1007/JHEP07(2010)069
http://dx.doi.org/10.1063/1.532067
http://dx.doi.org/10.1063/1.532068
http://dx.doi.org/10.1016/j.physleta.2006.04.016
http://dx.doi.org/10.1016/j.physleta.2006.04.016
http://dx.doi.org/10.1016/j.physletb.2007.04.058
http://dx.doi.org/10.1103/PhysRevD.78.087701
http://dx.doi.org/10.1088/1126-6708/2009/07/037
http://dx.doi.org/10.1007/JHEP08(2010)004
http://dx.doi.org/10.1140/epjc/s10052-009-1221-x
http://dx.doi.org/10.1140/epjc/s10052-009-1221-x
http://dx.doi.org/10.1088/1751-8113/44/33/335203
http://dx.doi.org/10.1088/1751-8113/44/33/335203
http://dx.doi.org/10.1016/j.physletb.2011.06.093
http://dx.doi.org/10.1016/j.physletb.2011.03.059


S. Fedoruk, E. Ivanov, and J. Lukierski, Phys. Rev. D 83,
085013 (2011); J. Lukierski, arXiv:1101.4202; V. K.
Dobrev, H.-D. Doebner, and C. Mrugalla, Rep. Math.
Phys. 39, 201 (1997); J. Phys. A 29, 5909 (1996); Mod.
Phys. Lett. A 14, 1113 (1999); N. Aizawa and V.K.
Dobrev, Nucl. Phys. B828, 581 (2010); M. Henkel and
J. Unterberger, Nucl. Phys. B660, 407 (2003); M. Henkel,
Phys. Rev. Lett. 78, 1940 (1997); R. Cherniha and M.
Henkel, J. Math. Anal. Appl. 369, 120 (2010).

[7] J. Gomis and K. Kamimura, Phys. Rev. D 85, 045023
(2012).

[8] A. Kirillov, Elements of the Theory of Representations
(Springer, New York, 1976); J.M. Soriau, Structure of
Dynamical Systems. A Symplectic View of Physics
(Birkhauser, Berlin, 1997); V. I. Arnold, Mathematical

Methods of Classical Mechanics (Springer, New York,
1989); R. Giachetti, Riv. Nuovo Cimento 4, 1 (1981).

[9] V. de Alfaro, S. Fubini, and G. Furlan, Nuovo Cimento
Soc. Ital. Fis. 34A, 569 (1976).

[10] K. Andrzejewski and J. Gonera, arXiv:1108.1299.
[11] D. Martelli and Y. Tachikawa, J. High Energy Phys. 05

(2010), 091.
[12] M. Ostrogradski, Mem. Acad. St. Petersburg VI(4), 385

(1850).
[13] E. Ivanov, S. Krivonos, and V. Leviant, J. Phys. A 22, 345

(1989).
[14] S. Coleman, J. Wess, and B. Zumino, Phys. Rev. 177, 2239

(1969); C. Callan, S. Coleman, J. Wess, and B. Zumino,
Phys. Rev. 177, 2247 (1969).

[15] J. Gonera (to be published).
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