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We show how recent progress in real space renormalization group methods can be used to define a
generalized notion of holography inspired by holographic dualities in quantum gravity. The generalization
is based upon organizing information in a quantum state in terms of scale and defining a higher-
dimensional geometry from this structure. While states with a finite correlation length typically give

simple geometries, the state at a quantum critical point gives a discrete version of anti-de Sitter space.
Some finite temperature quantum states include black hole-like objects. The gross features of equal time

correlation functions are also reproduced.
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I. INTRODUCTION

Hilbert space, the mathematical representation of pos-
sible states of a quantum system, is exponentially large
when the system is a macroscopic piece of quantum matter.
Understanding the structure of such an exponentially large
many-body Hilbert space is one of the great challenges
of modern quantum physics. The traditional theory of
symmetry breaking reduces this overwhelming amount
of information to three key quantities: the energy (or
Hamiltonian), the symmetry of the Hamiltonian, and the
pattern of symmetry breaking. However, the existence of
exotic phases of matter not characterized by broken sym-
metry, as in the fractional quantum Hall effect [1-3],
demonstrates the need for a more general theory. Such
systems are distinguished by the presence of long-range
entanglement in the ground state [4,5], suggesting that
important information is encoded in the spatial structure
of entanglement. Here we show how such a “pattern” of
entanglement can be defined and visualized using the
geometry of an emergent holographic dimension. This
picture connects two new tools in many-body physics:
entanglement renormalization and holographic gauge/
gravity duality.

Entanglement renormalization [6] is a combination of
real space renormalization group techniques and ideas
from quantum information science that grew out of at-
tempts to describe quantum critical points. The key mes-
sage of entanglement renormalization is that the removal
of local entanglement is essential for defining a proper real
space renormalization group transformation for quantum
states. This realization has permitted a compact description
of some quantum critical points [7,8]. Holographic gauge/
gravity duality [9-11] is the proposal that certain quantum
field theories without gravity are dual to theories of quan-
tum gravity in a curved higher-dimensional “bulk™ ge-
ometry. Real space renormalization is also important in the
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holographic framework [12-15], thus hinting at a possible
connection between holography and entanglement renor-
malization. We will begin with entanglement renormaliza-
tion and build up to the full holographic picture.

II. MANY-BODY ENTANGLEMENT

We are interested in quantifying entanglement in many-
body systems, and we will use the entanglement entropy
S(A) of a subregion A as a measure of entanglement.
Entanglement  entropy is defined as S(A) =
—Trs(palnp,) where p, = tri(p) is the state of A (A is
the complement of A). If the global state p is pure then we
have S(A) = S(A) and nonzero S(A) implies that A is
entangled with its environment A. Considerable evidence
suggests that in most cases the entropy satisfies a boundary
law: S(A) is proportional to the size of the boundary 9A
[16]. This relationship is violated weakly in one-
dimensional critical systems where the entropy scales as
£ In(L) with L the length of the region and c the central
charge [17,18]. Random quantum states drawn from the
Haar measure strongly violate the boundary law with S(A)
proportional to the size of A [19]. Together this information
suggests that quantum ground states exist in a very special
corner of the many-body Hilbert space.

Thus we would like to understand in more detail how to
characterize the special “corner” of Hilbert space where
quantum ground states live. The universality of the bound-
ary law suggests that it follows from an equally universal
structure of local quantum systems: the renormalization
group. Let r denote the length scale at which we study our
system. We partition the degrees of freedom into groups
equally spaced in logr with measure dr/r [20]. Degrees of
freedom at each scale can be entangled with A, which we
take to have linear size L in d spatial dimensions.

Locality suggests that the contribution to the entropy of
A from scale r should be proportional to the size of the
boundary dA in units of the coarse-grained scale r. The
number of entangled degrees of freedom at scale r is also
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proportional to the measure dr/r. The infinitesimal en-
tropy contribution is thus

s~ (L)

r

. (1)
’

The total entanglement entropy is obtained by integrating
this formula from the ultraviolet (UV) cutoff to some larger
infrared (IR) length min(L, £g). &g is the length scale
beyond which there is no entanglement in the quantum
state, so we integrate until the quantum state has no more
entanglement or until the region has been coarse-grained to
a point. The integral gives a boundary law for d > 1,

L\d-1 L d-1
~ | = - 2
and a logarithm for gapless systems (ép — ) ind = 1,
i L
Sy ~ m(%). (3)
€

The usefulness of this simple estimate is considerable. It
unifies the boundary law and its apparent violations in one
dimension and connects the structure of entanglement to
the renormalization group, a well-studied structure in
quantum matter. As we will see, it also provides the foun-
dation for a simple geometrical picture correlation and
entanglement in local quantum systems. In many ways, it
is concretely realized by holographic duality, but before
turning to holography proper we will give these ideas more
concrete form in the guise of a lattice spin model.

III. LATTICE IMPLEMENTATION

We now realize the above scaling argument in a lattice
system where entanglement renormalization can be carried
out numerically [7]. We study the quantum Ising model in
one spatial dimension with Hamiltonian

H = —JZafa? - gJZO’f, 4)
(ij) i

where J sets the overall energy scale and g is a dimension-
less parameter we can tune. The Hamiltonian consists of
two competing pieces, and this competition gives rise to a
quantum phase transition at ¢ = 1 between an ordered
ferromagnetic phase (g < 1) and a disordered paramag-
netic phase (g > 1).

Following the prescription of entanglement renormal-
ization, we implement a renormalization group transfor-
mation on the Ising ground state using unitary operators,
called disentanglers, to remove local entanglement and
isometries to coarse grain as shown in Fig. 1. Note that
information can be lost during the coarse graining steps
since the isometries typically contain projectors. The
resulting network of unitary and isometric tensors approxi-
mately encodes the ground state wave function using
a multilayered structure [21]. Each layer, indexed by
m=20,1,..., corresponds to a different length scale
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FIG. 1 (color online). The tensor network structure of entan-
glement renormalization. Circles are lattice sites at various
coarse-grained scales. Squares with four lines are unitary disen-
tanglers and triangles with three lines are isometric coarse
graining transformations. The network shown here represents a
2 — 1 coarse graining scheme and has a characteristic fractal
structure. In principle, each tensor can be different, but requiring
translation and scale invariance provides strong constraints.

log(r,,/a) = mlog2, so that m = 0 is the lattice scale
with r = a. Considering the extra index m we see that
the quantum state is effectively extended into an emergent
dimension representing renormalization group scale.

Inspired by holography and our scaling argument above,
we will define a discrete geometry from the entanglement
structure of the quantum state. We view each site in the
network as a cell filling out a higher-dimensional “bulk™.
The size of each cell is defined to be proportional to the
entanglement entropy S(site) of the site in the cell. The
connectivity of the geometry is determined by the wiring of
the quantum circuit implementing renormalization.
Disentanglers that remove more entanglement lead to
stronger geometrical connections because they can create
or remove more entropy. The geometry ends whenever the
coarse-grained state completely factorizes.

To compute the entropy of a block of sites in the original
UV lattice, we must know the reduced density matrix
of the block. The causal cone [21] of a block of sites in
the UV is defined as the set of sites, disentanglers, and
isometries that can affect the chosen block. The causal
cone should not be confused with ordinary causality in
time. For the causal cone of a large block, the number of
sites in a given layer shrinks exponentially with layer
index, but note that for a small block, the causal cone
will fluctuate around a few sites.

We start with the density matrix for a small number of
sites deep in the causal cone of the block. The goal is to
reach the UV by following the renormalization group flow
backwards. This is possible because we have recorded the
entire renormalization ‘“‘history”” of the state in the net-
work. More properly, the tensor network defines a large
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FIG. 2 (color online). (Upper left) A piece of the causal cone
of a small block. (Upper right) Reversing the flow to proceed
from three sites to six sites. (Lower left) Shaded sites are outside
the causal cone of the two-site block and can be traced out.
(Lower right) Four sites remain and we can now apply the next
layer of disentanglers to reach the two-site block of interest.

variational class of states for which the entanglement
entropy can be computed by “‘reversing the flow” [21].

Thus we reverse the isometries and disentanglers to
produce the density matrix of a larger number of sites at
a less coarse-grained scale. Any site at the new scale which
is not in the causal cone of the block of interest can
immediately be traced out as shown in Fig. 2. Tracing
out a site can increase the entropy of the remainder, but
the increase is no more than the entropy of the traced out
site. This procedure is repeated until the UV is reached.
Looking at the whole process, sites that are traced out
occur on the outside boundary of the causal cone and
form a curve in the bulk geometry. The length of this curve
is by definition the sum of the entropies of all the traced out
sites. Thus the length of a curve in the bulk provides an
upper bound for the entropy of a block in the UV.

This entropy calculation is a complicated process, but
we can extract at least two general lessons. First, the
intuitive picture of distinct entropy contributions from
each scale is realized concretely. Second, subadditivity of
the entropy permits us to give a discrete geometric upper
bound for the entropy of a block of sites in the UV. In fact,
this curve is a holographic screen that hides information
[22,23]. We emphasize that the boundary of the causal
cone is a minimal curve since it represents the minimal
number of sites that must be traced out. As an aside, when
the number of local degrees of freedom is large, similar to a
thermodynamic limit, subadditivity is expected to be re-
placed by approximate additivity.

IV. GEOMETRY FROM ENTANGLEMENT

What geometries do these definitions give for the Ising
model? In the large g limit, the Ising Hamiltonian is
dominated by the transverse field, and the ground state is
a product state. Each site is in a pure state and we find no
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geometry. Away from large g, the system possesses a finite
correlation length. The size of our cells is initially nonzero
due to the presence of entanglement. However, after a finite
number of coarse-graining steps any short range entangle-
ment will be removed. At this factorization scale, which is
&g, the coarse-grained quantum state factorizes, and the
geometry ends. The entanglement entropy of a block in the
UV lattice receives contributions from a finite range of
scales corresponding to a minimal curve hanging down
from the UV to the factorization scale.

The geometrical picture becomes more interesting at the
quantum critical point g = 1. Scale invariance forces each
coarse-grained layer to be identical, and the geometry
continues forever. It has been verified numerically that
each coarse-grained layer in the network gives an equiva-
lent contribution to the entropy of a block, which means
that the entropy is actually proportional to the length of a
minimal curve [7]. Because of the fractal nature of the
network, the distance between points also shrinks after
each coarse graining. Entanglement renormalization is
crucial for this result since we would have to keep many
more states in the local Hilbert space without it.

The discrete geometry that appears at the critical point is
nothing but a discrete version of anti-de Sitter space (AdS),
by which we mean a graph whose connectivity mimics the
geometry of AdS. The smooth version of two-dimensional
anti-de Sitter space has the metric

dr’ +dx* -2
ds2=R2(7r o )=R2<dw2+7eXp(az W)dxz), 5)

where R is some constant and w = log(r/a). In the lattice
setup w is simply the number of renormalization group
(RG) transformations and corresponds to the layer index.
The parameter R controls how big the geometry is and
hence should roughly correspond to the amount of local
entanglement. Larger R means larger entanglement, for
example, at one-dimensional critical points R would be
expected to increase with the central charge c. Indeed, it is
an old result in the holographic literature that R is actually
proportional to c. In the context of our lattice model, R is a
measure of the strength of disentanglers and hence the
entropy of local sites.

Let us briefly elaborate on what it means for a graph
to emulate a continuous space. To begin, let us consider
two curves, y; and vy,, in the geometry of Eq. (5).
We take v, = {(x(1) = xot, r(t) = ry)|t €[0, 1]} and y, =
{(x(1) = x( cos(rt), xy sin(wt))|t € [0, 1]}; v, is a line at
fixed r while y, is a geodesic connecting (xg, 0) to
(—x0, 0). We can compute the lengths of these two curves
to find |y;| = R(xy/ro) and |y, = 2R In(xy/a), where a is
a cutoff at small . Now we can compare these two lengths
to corresponding lengths using the graph distance in our
discrete version of AdS. A straight-line curve at the lattice
scale (r = a) of xy/a units will correspond to a length
of R(xy/a) if we use R as the length per bond. The
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corresponding curve at RG step wy has length R(xy/a)e™ "0
since e sites have been grouped into a single site after wy
RG steps, but this is nothing but R(xy/ry) in agreement
with the continuous result. Finally, let us consider the
analog of the geodesic curve. The minimal lattice path
connecting two points x,/a units apart at the lattice scale
(r = a) is, up to terms of order one, given by a path which
moves straight down in the RG direction until the two sites
are side by side. The length of this path, again up to order-
one terms, is given by 2R In(xy/a), where In(xy/a) is the
number of RG steps necessary to bring the sites adjacent
and the factor of 2 comes from the two sides of the path.
This again agrees with the continuum result up to terms of
order one.

We have just shown that various interesting curves have
approximately the same length in our discrete AdS geome-
try as in the true continuous AdS space. This is valuable
intuition, but can we say anything more general about why
these structures are related? A useful point of contact is
provided by random walks and diffusion processes. For
example, a random walk on the infinite square lattice
can be modeled, at long times, as a diffusion process
controlled by the Laplacian of the continuous plane. This
is because the low-lying eigenvalues of the graph
Laplacian, which controls the random walk, are given
by the eigenvalues of the usual continuous Laplacian i.e.,
cos(g,a) + cos(gya) — 2 — “—; (q2 + ¢?) for small g (wave
vector). Something similar happens for the discrete AdS
graph we are considering.

Consider a scheme in d-spatial dimensions where k?
sites are renormalized into a single site and where sites at
a given RG level are connected in a d-dimensional hyper-
cubic lattice. The graph Laplacian Ag on a graph G =
(V, E) acts on functions f: V — R and is defined by

1

Ng Fv) = fv) - Y W) ©

nE(U) v (vvYEE

where nz(v) is the number of edges leaving vertex v. If we
restrict our discrete AdS graph to a given RG scale, then we
will recover the usual d-dimensional flat space Laplacian
as the long wavelength limit of the graph Laplacian on the
hypercubic lattice. However, we must also consider the RG
direction. As a simple example, let us search for zero
modes of the graph Laplacian depending upon only the
RG direction. Let f(n) be the value of the zero mode f at
RG step n. We have

kif(n— 1)+ f(n + 1) + 2df(n)

0= (Af)(n) = f(n) - 1+2d+ k4

>

(N

which may be solved by setting f(n) = «”. This substitu-
tion gives the algebraic equation

0=a?—(1+kha + Kk, 8)
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which has solutions
a=1, k. 9

To compare with the continuum case, consider the
continuous Laplacian

1
—9
\/'g' M
with g,, = (R/r)?> and g;; = (R/r)*> for i = 1,...,d the
metric components, g*” the inverse metric, and with g =

det(g,,,) the metric determinant. If we look for zero-mode
solutions where f depends only on r then we must solve

0=ri*19,(r @Ds2g, f). (11)

Angs | = (Vgg""d,.f), (10)

Assuming that f = r* we have
A(A-d)y=0. (12)

Now in the discrete graph setting, n — n + 1 corresponds
to rescaling lengths by a factor of 1/k and hence we should
set r ~ k" to compare with the continuum result, but then
we immediately see that the two discrete zero modes going
like 1" and k" perfectly match the continuum zero modes
going like 7° and 4. This hopefully gives some idea of the
sense in which a graph can replicate the geometry of a
continuous space.

Having now extensively motivated our idea of associat-
ing the discrete graph generated by entanglement renormal-
ization with a continuous geometry (like AdS in the critical
case), let us recapitulate our correspondence. The collection
of unitaries and isometries that generate the quantum
ground state |¢) from an unentangled state |i/,) forms a
quantum circuit that we call Ugg. Our proposal here is to
associate Ugrg with a discrete geometrical space that enc-
odes the local structure of entanglement produced by the
circuit. Clearly Ugg contains more information than this
simple geometric data, but we argue that this is already a
very useful picture of the action of Ugg. Before exploring
the consequences of this association in more detail, let us
explore a few more examples of this correspondence,
namely what happens at finite temperature.

V. FINITE TEMPERATURE AND
CORRELATION FUNCTIONS

Extending our analysis to finite temperatures requires
a shift in thinking due to the presence of classical
correlations in addition to quantum entanglement.
“Entanglement” entropy now has an extensive component
due to thermal effects, hence the quotation marks.
However, the mutual information I(A, B) = S(A) +
S(B) — S(AB) between two regions A and B subtracts
out this extensive piece and obeys a boundary law at
finite temperature [24]. This boundary law indicates that
our previous renormalization group argument for the
locality of entanglement still applies to entanglement and
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classical correlation between spatial regions at finite tem-
perature. The appropriate generalization of entanglement
renormalization is thus still useful in removing local
entanglement and correlations. To be precise, we employ
a doubled quantum circuit to renormalize the thermal
density matrix p(T), that is we write p(T)=
Ura(T)poUrg(T)™" instead of |¢) = Urg(0)|4o). The
coarse-grained Hilbert space will typically grow if we
insist on keeping all eigenvalues of the reduced density
matrix of a block up to some fixed cutoff.

The place where finite temperature has the most pro-
found impact is at the quantum critical point. There we
initially find a region of discrete AdS geometry for energy
scales much greater than the temperature. However, the
temperature grows as we renormalize since it represents a
relevant perturbation of the critical point (finite size in the
imaginary time direction). Thermal effects gradually be-
come important, and the size of coarse-grained sites must
begin to grow to incorporate thermalized degrees of free-
dom. Note that for our model, there is no hydrodynamic
behavior for conserved currents, but the order parameter
displays low energy ‘‘quantum relaxational” dynamics
[25]. What would be the “hydrodynamic” scale is charac-
terized by a renormalized temperature greater than the
energy scale of interest but still less than the lattice scale.
If the temperature continues to grow under further renor-
malization then it may exceed even the lattice scale, a
result familiar from the real space renormalization group
of the classical one-dimensional Ising model.

At this final scale the reduced density matrix of any site is
proportional to the identity, and the coarse-grained density
matrix completely factorizes. We interpret this situation as
corresponding to a black hole horizon for three reasons.
First, the geometry ends from the point of view of an
observer “hovering” at fixed scale. Second, the completely
mixed state is like an infinite temperature state, and the local
temperature measured by a hovering observer diverges at
simple black hole horizons. Third, the final layer has non-
zero size because the coarse-grained sites are in mixed
states. In particular, the entropy of a large block in the UV
now consists of two pieces: the usual boundary contribution
plus an extensive piece due to the horizon.

Having accumulated an interesting set of RG circuits
and discrete geometries, let us investigate some of the other
physical consequences of our proposal. Equal time corre-
lation functions are quite interesting when viewed geomet-
rically. Two local operators, @(x) and O(y), can be
correlated if the sites, x and y, at which they are inserted
have overlapping causal cones. The causal cone of a single
site is a “‘thickened” line in the bulk geometry with a width
of a few sites. Consider a simple gapped system. Sites
separated by less than a correlation length have overlap-
ping causal cones, but distant sites have causal cones that
end at the factorization scale before touching. Thus distant
sites, that is sites with |x — y| > &g, cannot be correlated,
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a sharp cutoff version of the exponential decay of correla-
tions in a gapped phase.

In the case of a critical geometry, the causal cones of
distant sites always touch. For primary operators @,,
which have a simple scaling behavior under renormaliza-
tion, the correlation functions have an additional geomet-
rical interpretation. Scale invariance demands that
(0,(x)O,(y)y = |x — y|™** with A the scaling dimen-
sion. From our geometric perspective the correlator of
two primary operators separated by |x — y| is proportional
to exp(—Af), where A is the operator dimension and
€ ~ 2log|x — y| is the length of a minimal curve connect-
ing them. This is because we can compute the correlator by
systematically moving the operators down through the
network and because they are primaries they merely ac-
quire a scale factor A2 after each coarse-graining step. A is
determined by the renormalization scheme e.g., A = 1/k
for a k — 1 site scheme but A is universal. Each operator
must be renormalized roughly log,(|x — y|/a) times (the
minimal number of steps in the extended geometry neces-
sary to connect the two operators) with each renormaliza-
tion bringing a factor of k=2 for each operator. Putting all
the factors together gives for (O, (x) O, (v)) roughly

1 —
exp[—Z(A logk)<%>] ~lx =yl 13)

At finite temperature, the horizon is a source of decaying
correlations because the causal cones of distant sites can
end at the horizon before touching. In each case, the
structure of correlation functions is determined by the
geometry.

Although the role of the geometry is already clear at the
level of two-point functions, it is also instructive to study
the structure of higher-point functions. For critical points
which possess conformal symmetry (e.g., the Ising critical
point we have been using as an example) the three-point
function of primary fields is also totally constrained by
conformal invariance. For operators O; of dimension A;
the result is

1 1 1
(01(r)05(r2)05(r3)) ~ —— —— —-—, (14)
F2 T3 T3

with r;; = [r; — r;land 6;; = A; + A; — A;; ;. With this
result in mind, let us see what structure entanglement
renormalization predicts for higher-point correlation
functions.

Consider a three-point function of scaling operators
inserted at x;, x,, and x3 with x; <x, <x3 (d=1) at a
critical point. For simplicity suppose that |x; — x,| <
|x, — x3], then the RG will quickly bring operators 1 and
2 together to yield a factor of |x; — x,| ™41~ %2, Operator 3
will also contribute a factor of |x; — x,|™2: from the
renormalization to the scale where x; and x, meet. The
resulting composite operator made from 1 and 2 will in
general be a sum of new scaling operators with different
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dimensions (in the continuum these are the operator prod-
uct expansion coefficients). The dominant contribution
will come from the operator with the lowest scaling di-
mension that has a nontrivial correlator with operator 3. Let
the scaling dimension of that operator be A;,. We now
renormalize further until x5 and x, = x; come together, a
process that gives additional factors of

Alz
) , (15)

1
<|X3 - X2|/|X2 - x1|

and

1 A,
. 16
(|x3 — o/l - x1|) (16)

The strange denominator appears because the separation
between x5 and x, = x; when x, and x; have been brought
together is renormalized to |x; — x,|/|x; — x;].

Setting |x, —x;| =€ and |x3 — x| = |x3 — x| =L
we have

1 1 € A12 € AS
©0:00 s g (z) @) o

Simplifying the right-hand side we find

1 1
fA1TA—Ap [ Ap+AsT

(0,0,03) ~ (18)
To compare to the conformal field theory result we must
use the fact that a two-point function of scaling operators
is only nonzero if the dimensions agree which requires
A, = A;. Substituting our lengths into the expression in
Eq. (14) gives the result

1 1 1
(DA, —A; [ A AN, [A A4

(0,0,05) ~ (19)
which perfectly reproduces our calculation using entangle-
ment renormalization. It is interesting to note that entan-
glement renormalization is consistent with a slightly more
general three-point function, a result we expect since en-
tanglement renormalization can handle more general scale-
invariant critical points without conformal symmetry. We
can of course also consider even higher-point functions,
but these are increasingly complex and not fixed by con-
formal invariance. Nevertheless, a similar analysis to that
considered for the three-point function shows that the
rough features of these correlation functions are
reproduced.

VI. HOLOGRAPHIC DUALITY

The appearance of higher-dimensional black holes to
describe thermal states of gauge theories is precisely the
content of holographic gauge/gravity duality. The best
known example is the duality between N = 4 SU(N)
Yang-Mills theory in four dimensions, and a theory of
quantum gravity, type IIB string theory, in a fluctuating
spacetime that is asymptotically five-dimensional anti-de
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Sitter space times a sphere, AdSs X S3. When the field
theory is strongly coupled and when the number N of
“colors” tends to infinity, quantum gravity reduces to
classical gravity in a weakly curved space.

In this limit, the 3 + 1-dimensional gauge theory in
infinite volume is dual to anti-de Sitter space in the
Poincaré patch with metric

drt  —de* + did
’ 7“) (20)

ds? = Rz(— +
2 )

where again r represents length scale in the dual gauge
theory. Finite temperature effects map to black hole phys-
ics in AdS and, in particular, thermal screening has an
interpretation in terms of geodesics falling into the horizon.
The entanglement entropy of a region A in the field theory
is given by the area (in Planck units) of a minimal surface
which hangs from the two-dimensional boundary of A into
the bulk [26,27].

The general prescription in the holographic setting is to
obtain field theory correlators by solving wave equations in
the gravitational bulk as a function of certain boundary
conditions. For scalar primary operators at a critical point,
the dimension of the primary in the boundary field theory is
related to the mass of a dual field in the gravitational bulk
(the specific formula is A(A — (d + 1)) = m?R? for sca-
lars). However, in a certain limit (mR — o0) the solution of
the bulk wave equation is related to the trajectory of a
massive particle in the gravitational spacetime. This is the
so-called geometric optics approximation, and our compu-
tations of two- and three-point functions using entangle-
ment renormalization are strongly reminiscent of this
approximation. The fact that entanglement renormalization
can reproduce correlation functions even when the dimen-
sion (bulk mass) is not large deserves further study.

In the case of N =4 SU(N) Yang-Mills theory the
constant R? measured in Planck units is proportional to
N? and hence is indeed a measure of the number of degrees
of freedom. A large value of N, where the geometry is
weakly fluctuating in the quantum gravity theory, thus
precisely corresponds to a highly entangled quantum sys-
tem. From this perspective the main difference between the
smooth geometry encountered here and the discrete ge-
ometry we constructed earlier is the amount of local en-
tanglement, an observation that suggests a way to recover a
smooth geometry from our lattice construction above by
studying quantum systems with a large amount of local
entanglement.

Because holographic minimal surfaces control entangle-
ment we see that the metric of the bulk spacetime is
intimately tied to entanglement, but the gravitational the-
ory typically contains other fields which we must also
define from field theory quantities. Consistent with the
interpretation of the extra dimension in terms of scale,
we can define the higher-dimensional bulk fields in terms
of renormalized couplings in the dual field theory. The
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equations of motion for the bulk fields should be taken to
be the renormalization group equations for the dual field
theory [14]. One can check that relevant and irrelevant
couplings in the Hamiltonian grow or decay as expected
under entanglement renormalization [28]. We note in
passing that there are additional issues away from large
N i.e., defining fluctuating bulk fields, but we do not
address these here.

One further interesting feature of gauge/gravity duality
at finite temperature is that the geometry is not always
equivalent to a black hole. For example, the entanglement
structure of a gapped state should not change dramatically
due to the presence of a small temperature. Alternatively, a
conformal theory on a compact space can give at least two
generic renormalization group behaviors based on whether
one reaches zero spatial size or infinite temperature first.
Something similar occurs in gauge/gravity duality in the
form of the Hawking-Page transition [29]. If we perform
entanglement renormalization on a compact system at
finite temperature, we will reach a completely mixed state
(black hole) before the whole system shrinks to a point
only if the temperature is much greater than the inverse size
of the system, so entanglement renormalization can repro-
duce a crossover version of the Hawking-Page transition.
When a black hole does exist in the holographic geometry,
the stretched horizon appears to be interpretable as the
hydrodynamic scale in our construction, which is naturally
distinct from the null surface horizon.

VII. DISCUSSION

We have described a framework for thinking about en-
tanglement and correlation based on higher-dimensional
geometry. We can construct an emergent holographic space
from entanglement in a large class of many-body states
including free bosons and fermions, quantum critical
points, topological phases, frustrated quantum magnets,
superconductors, and more. The gross features of entangle-
ment and equal time correlation functions are encoded
geometrically. This geometrical picture of entanglement
is realized both in a concrete lattice setup based on entan-
glement renormalization and in the context of gauge/grav-
ity duality, thus connecting these two beautiful ideas. The
theory also incorporates black hole-like objects at finite
temperature that seem to share many properties with more
conventional black holes in semiclassical general relativity.
We have not given a detailed proposal for the gravity dual of
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the Ising model, and if such a dual exists, it seems likely to
be very complicated. Remarkably, much of this complexity
seems irrelevant for the geometrical ideas explored here.

There are additional features as well as open questions.
For simplicity, we worked primarily with the quantum
Ising model in one spatial dimension, but the framework
applies to more generic systems in higher dimensions. It is
also possible to include time evolution, so that the fixed
geometry found here is analogous to specifying the state in
quantum gravity [30]. The inability to traverse wormholes
is interpreted as the inability to use entanglement for faster-
than-light communication. Other interesting geometries
also exist, including situations where the effective spatial
dimension changes as a function of scale or where the
dynamical critical exponent flows. There are issues of
nonuniqueness in the renormalization group that should
be matched to bulk diffeomorphisms [31], and it must be
possible to understand in what sense the geometry fluctu-
ates away from large N.

Perhaps the most pressing issue for condensed matter
applications is the need for a better understanding of what
lies between gauge/gravity duality as inspiration and ac-
tually having the N = 4 plasma in the lab. The frame-
work outlined here seems well suited to attacking this
question. For example, our construction applies to quan-
tum O(N)-vector models, which are known to show hints
of a holographic description [32]. A certain class of
topological “‘string-net”” phases realize exact versions of
entanglement renormalization [33,34] and provide a use-
ful testing ground. Finally, from the perspective of entan-
glement renormalization, variational principles for the
higher-dimensional geometry may help simplify the
search for quantum circuits to describe interesting
many-body states. An important step towards making
use of such variational principles is establishing more
firmly the connections between entanglement renormal-
ization and holography proposed here, and one simple
way to make progress is to examine systems with many
local degrees of freedom.
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