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In the large Nc limit, gauge theories with different gauge groups and matter content sometimes turn out

to be ‘‘large Nc equivalent,’’ in the sense of having a set of coincident correlation functions. Large Nc

equivalence has mainly been explored in the glueball and meson sectors. However, a recent proposal to

dodge the fermion sign problem of QCD with a quark number chemical potential using large Nc

equivalence motivates investigating the applicability of large Nc equivalence to correlation functions

involving baryon operators. Here we present evidence that large Nc equivalence extends to the baryon

sector, under the same type of symmetry realization assumptions as in the meson sector, by adapting the

classic Witten analysis of large Nc baryons.
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I. INTRODUCTION

Large Nc limits of gauge theories [1,2] have many
remarkable and beautiful properties. A particularly striking
property of some largeNc gauge theories is the existence of
large Nc orbifold equivalence [3–6], which implies that
gauge theories with different matter content and gauge
groups can have a subset of coincident correlation func-
tions.1 Such equivalences can be useful if one of the
equivalent theories is more tractable than another, as in
the well-known case of the ‘‘orientifold equivalence’’ dis-
cussed in Refs. [8,9]. To date, explorations of large Nc

equivalences have focused on correlation functions involv-
ing glueball and meson operators, which couple to states
that remain light in the large Nc limit.2 In this paper we
discuss the extension of largeNc equivalence to baryons, in
the context of a particular topical example.

The motivation for exploring the applicability of large
Nc equivalences to baryons is a recent proposal that a large
Nc equivalence might be useful for studying QCD at finite
density [11], by providing a way to dodge the so-called
sign problem of lattice QCD. The sign problem refers to
the issue that when a chemical potential for quark number
� �c�0c is turned on, the fermion determinant of SUðNcÞ
QCD becomes complex. This makes Monte Carlo evalu-
ation of the path integral of QCD impossible, because
Monte Carlo methods rely on using importance sampling
with Z�1 detð 6Dþmq þ��0Þ expð�SYMÞ as a probability
distribution, where SYM is the glue action, and Z is the
partition function, and a probability distribution must be
positive. The sign problem has been notoriously intrac-
table for Nc ¼ 3 QCD, prompting attempts to find other,

related theories where one may be able to make some
progress. With this motivation, [11] proposed an approach
to dodge the sign problem of QCD by studying an
orbifold-equivalent theory, with the QCD gauge group
SUðNcÞ replaced by the gauge group SOð2NcÞ, which
has been further explored in Refs. [12–15]. In these works,
the focus was on correlation functions involving meson
and glueball operators. However, especially given the
motivations of this proposal in the physics of baryons at
finite density, it is natural to ask whether this large Nc

equivalence applies to correlation functions of baryons
as well.
To see why the baryon case is subtle, we first briefly

summarize how the orbifold equivalence works for meson
correlation functions. The equivalence is supposed to
hold in the ‘t Hooft large Nc limit, where one takes
Nc ! 1 with the ‘t Hooft coupling � � Ncg

2
YM and Nf

held fixed. If mðxÞ is a meson operator at position x to
which equivalence applies (a ‘‘common-sector’’ operator),
then at large Nc we expect an equivalence of (connected)
correlators of mðxÞ between SUðNcÞ gauge theory with ‘t
Hooft coupling � and SOð2NcÞ gauge theory with ’t Hooft
coupling 2�,

hmðx1Þ...mðxnÞiSOð2NcÞ;2�¼2hmðx1Þ...mðxnÞiSUðNcÞ;�: (1)

This relation implies (for instance) that the masses of the
lightest mesons m coupling to mðxÞ will agree in the two
theories, since the masses can be read off from the large-
time t behavior of the two-point correlation function
�e�mt after Wick rotation to Euclidean space. However,
the orbifold equivalence relates gauge theories with differ-
ent numbers of colors, and so baryons in the two theories
will be constructed from a different number of quarks.
Since baryon masses depend nontrivially on the number
of colors in the large Nc limit, baryon masses cannot
coincide in the two theories. Hence we should not expect
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1In the pure gauge case such relationships were discovered

very early on Ref. [7].
2For an exception, see e.g., Ref. [10].

PHYSICAL REVIEW D 86, 065006 (2012)

1550-7998=2012=86(6)=065006(12) 065006-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.86.065006


a relation of the form (1) to apply in the baryonic sector.
It is therefore clear that a direct use of this orbifold
equivalence, which relates theories with different number
of colors, will not be appropriate for extending the largeNc

equivalence to baryons.
Fortunately, this observation does not necessarily imply

that large Nc equivalence gives no relationship between
baryon correlation functions, because there is a natural way
to deal with the problem we described above. In the large
Nc limit the dependence of meson correlation functions
on Nc is just a simple scaling. Therefore the above orbifold
equivalence can easily be reinterpreted as defining an
equivalence of neutral mesons between SUðNcÞ and
SOðNcÞ gauge theory. This provides a more natural starting
point for discussing the extension of large Nc equivalence
to baryons. Although we can no longer directly use the
technique of orbifold projections, the equivalence of neu-
tral sector operators can be seen simply in perturbation
theory. Furthermore, such an approach is equally valid for
identifying large Nc equivalences between baryons. Hence
our approach in most of this paper is to give up the
elegance of working directly with the formal language of
orbifold projections and instead to explore the large Nc

equivalence between SOðNcÞ and SUðNcÞ gauge theories
directly.

The organization of this paper is as follows. First, we
briefly review the large Nc orbifold equivalence between
SOð2NcÞ and SUðNcÞ gauge theories in Sec. II and ex-
plain the difficulties in using it to discuss baryons in more
detail. In Sec. III A we reformulate the proof of large Nc

equivalence for meson correlation functions in theories
with the same number of colors directly in terms of
Feynman diagrams. We then show how this argument
allows us to generalize large Nc equivalence, at least in
perturbation theory, to baryons in Secs. III B and III C. In
particular we show that the masses of ‘‘common’’ baryons
should agree at leading order in Nc. To get some insight
into the nonperturbative conditions for the validity of the
large Nc equivalence, in Sec. IV we discuss 2D QCD with
gauge groups SOðNcÞ and SUðNcÞ, where one can go
beyond perturbation theory and work directly with the
full path integral. Finally, in Sec. V we summarize our
findings and sketch some possible directions for future
work.

II. ORBIFOLD PROJECTIONS

In this section we briefly review the orbifold projection
that connects SOð2NcÞ gauge theory and SUðNcÞ gauge
theory. Orbifold projections give algorithms for construct-
ing gauge theories which may be large Nc equivalent. The
idea is to start with a given ‘‘parent’’ theory, and apply a
projection based on some symmetry of the action. One
then constructs a ‘‘daughter’’ theory by discarding all the
degrees of freedom that transform nontrivially under
the chosen symmetry. Then one can show that under

certain conditions [5,6], certain correlation functions
coincide between the parent and daughter theories at
leading order in Nc to all orders in perturbation theory
[4]. In particular, these ‘‘common sector’’ operators in-
clude the meson operators (i.e., gauge invariant quark
bilinears) in the parent theory that are invariant under
the chosen symmetry and their orbifold projections in the
daughter. The necessary and sufficient conditions for
these equivalences to hold nonperturbatively are not fully
understood outside the context of gauge theories with
fermions in two-index representations [5,6]. However,
it is understood that in order for an orbifold equivalence
to hold the critical necessary condition is that the sym-
metry used in the projection must not be spontaneously
broken.
It was recently pointed out that SUðNcÞ and SOð2NcÞ

gauge theories with fundamental Dirac fermions are re-
lated by an orbifold projection. The orbifold projection
relating an SOð2NcÞ with Nf flavors of Dirac fermions to

an SUðNcÞ gauge theory with Nf fermions, which is QCD,

is based on the Z2 symmetry defined by taking an element
J 2 SOð2NcÞ given by J ¼ i�2 � 1Nc

, with 1N being an

N � N identity matrix, and ! ¼ ei�=2 2 Uð1ÞQ. Here

Uð1ÞQ is the quark number symmetry that acts on the

quark fields as � ! !�. J generates a Z4 subgroup of
SOð2NcÞ and! generates Z4 2 Uð1ÞQ, but since the action
of J and ! on the SO gauge field A� and the fermion

field � is

A� ! JA�J
T; � ! !J�; (2)

the combined action of J, ! is a Z2 symmetry. Some
algebra shows that a projection of the SOð2NcÞ theory
based on this Z2 gives SUðNcÞQCD as the daughter theory,
with an equivalence expected in the ’t Hooft large Nc limit
so long as the Z2 projection symmetry is not spontaneously
broken [13,15]. The key feature of this particular orbifold
projection is that it can be applied in the presence of a
quark number chemical potential in the SOðNcÞ theory, and
the result is an SUðNcÞ theory with a quark number chemi-
cal potential, and the latter theory is of obvious phenome-
nological interest.
The key symmetry used in the orbifold projection is based

on the quark number charge Z4 2 Uð1ÞQ. In SOðNcÞ gauge
theory we have two types of color singlet quark bilinears:

‘‘mesons’’, of the form ����; and ‘‘charged mesons’’
�TC�� with � ¼ 1; ��; . . . . The charged mesons are

charged under quark number and so are not in the common
sector. Therefore the orbifold equivalence is a correspon-
dence between the mesons in SOð2NcÞ and SUðNcÞ gauge
theories. This equivalence is expected to hold in the ’t Hooft
largeNc limit so long as theZ4 2 Uð1ÞQ remains unbroken.

In this paper wewill mainly discuss the physicswith� ¼ 0,
where the Vafa-Witten [16] theorem implies that Uð1ÞQ
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cannot break spontaneously, and hence the equivalence
should hold. For general � the story is more subtle and is
discussed in Refs. [11,13].

In SUðNcÞ, ‘‘quark number’’ and ‘‘baryon number’’ are
often used interchangeably, since the only states charged
under quark number are the baryons, the interpolating
operators for which contain Nc quark fields contracted
with a color-epsilon tensor. Hence at nonzero chemical
potential, the daughter theory has a finite density of bary-
ons. It is therefore natural to ask if these baryons are
related to operators in the SOð2NcÞ theory. In the
SOð2NcÞ gauge theories, using ‘‘quark number’’ and
‘‘baryon number’’ interchangeably would be unfortunate,
since there are the gauge-invariant ‘‘charged meson’’
states composed of two valence quarks which carry quark
number �2. Similarly, in an SOð2NcÞ theory one can
obtain gauge-invariant states by contracting both quark
and antiquark fields with the same epsilon tensor, since
quarks and antiquarks transform the same way under
color. Hence the quark number charge of baryons—that
is, states whose interpolating operators involve epsilon
tensors—can be less than j2Ncj.

There are therefore more baryon states in the
SOð2NcÞ gauge theory than in the SUðNcÞ theory. By
analogy with the meson case, we expect a subset of these
baryons to correspond to those in the SUðNcÞ theory. A
natural candidate for such a ‘‘common sector’’ baryon
might be the baryon operator, B, composed entirely of
quarks:

B ¼ �i1i2���i2Nc�
i1�i2 � � ��i2Nc ; (3)

where ij are color indices, and flavor and spin indices are

suppressed. In particular, for even Nc this operator is
neutral under Z4 2 Uð1ÞQ.

However, if one actually applies the projection of Eq. (2)
in the standard way, B is annihilated. The reason is that this
orbifold projection discards half of the color degrees of
freedom, leaving only Nc colors for the projected quark
fields. The color sum involving the 2Nc-index � tensor in
Eq. (2) then gives zero, suggesting that baryons are never
in the common sector.

Standard large Nc arguments suggest that this is a rather
counterintuitive conclusion. At large Nc Witten’s classic
analysis showed that baryons can be interpreted as sol-
itons of meson fields. Since the properties of the common-
sector (neutral) mesons coincide in the two theories, one
would expect to be able to construct a soliton of neutral
mesons in SO gauge theory which should be identifiable
with the SU baryon. Such considerations suggest that
the direct application of the orbifold projection recipe to
operators which contain � tensors, such as B, may be
misleading.

As we discussed in the introduction, it appears that a
major part of the difficulties with discussing baryons using
this orbifold projection can be traced to the fact that it

relates theories with different numbers of colors.3 This was
not a problem when discussing mesons and glueballs be-
cause those correlation functions have a trivial dependence
on Nc. Baryons, on the other hand, are made from Nc

quarks and so we can only expect to construct direct
equivalences between theories with the same number of
colors. It is therefore not surprising that a direct application
of the orbifold equivalence is unsuccessful.

III. LARGE Nc EQUIVALENCE IN
PERTURBATION THEORY

Given the difficulties with a direct application of the
standard orbifold prescription to baryon-sector operators,
we shall explore largeNc equivalence between SUðNcÞ and
SOðNcÞ theories by explicitly comparing Feynman dia-
grams in the two theories. Whilst perturbative proofs of
the meson equivalence have been given before [4], we first
reproduce these results without reference to the orbifold
projection. We then show that this method allows us to
successfully generalize the notion of the large Nc equiva-
lence to incorporate baryons.

A. Mesons

Since our interest is in applying large Nc equivalence to
baryons, we will compare SO and SU gauge theories with
the same number of colors. In the large Nc limit the
difference between SOð2NcÞ and SOðNcÞ is simply a scal-
ing, and so we expect that planar equivalence for meson
correlation functions should take the form

hmðx1Þ . . .mðxnÞiSOðNcÞ;2� ¼ hmðx1Þ . . .mðxnÞiSUðNcÞ;�; (4)

where the two gauge theories involved are SOðNcÞ
gauge theory with a Yang-Mills coupling 2g2 and
SUðNcÞ with coupling g2.
The only difference in the evaluation of a Feynman

diagram in SO and SU gauge theories comes from the
traces over color indices. The color structure of the quark
propagator and the interaction vertices agree in the two

3It is possible to obtain SOðNcÞ gauge theory with Majorana
fermions via an orbifold projection of SUðNcÞ with Dirac fer-
mions using charge conjugation, and it may be that in such a
context the language of orbifold equivalence may be more
directly useful for discussing baryons. However, such a projec-
tion does not make sense at finite chemical potential since the
chemical potential breaks the charge conjugation symmetry,
and so understanding whether baryons survive such projec-
tions would not tell us directly whether they survive the
phenomenologically-motivated projection we focus on in this
paper. We also note that it is possible to discuss the large Nc
equivalences between SUðNcÞ and SOðNcÞ with Dirac fermion
theories using the orbifold language by viewing the SOðNcÞ
theory as a projection of the SOð2NcÞ by J ¼ 1 � �3 2
SOð2NcÞ. Then the SUðNcÞ-SOðNcÞ equivalence is a daughter-
daughter orbifold equivalence. However, we have not found a
way to use this point of view to clarify the issues with baryons,
and hence will not discuss it further.
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theories. The only difference is in the color structure of the
propagators. A free gluon propagator can be written as

hAi
�;jðyÞAk

�;lðxÞi ¼ D��ðx� yÞCi;k
j;l ; (5)

where D��ðx� yÞ is a standard propagator for a massless

vector field, and C is the color factor.
In SUðNcÞ gauge theory, C takes the form

Ci;k
j;l ¼ a

�
�i

l�
k
j �

1

Nc

�i
j�

k
l

�
; (6)

where a ¼ 1=2. When Nc is large, we can drop the second
term, since it is subleading compared to the first term.
Physically, this is simply the statement that at large Nc

the difference between UðNcÞ gauge theory and SUðNcÞ
gauge theory is 1=N2

c suppressed. The UðNcÞ propagator
has the same color structure as a quark-antiquark pair and
so can be represented by an arrowed double line as shown
in Fig. 1. The arrows, which are necessary because the
gauge group is complex, represent the direction of color
flow. Any Feynman diagram can be redrawn in terms of
double lines for gluon propagators and single lines for
quark propagators, with a consistent flow of arrows.

In SOðNcÞ the color structure is
~C i;k
j;l ¼

a

2
ð�i

l�
k
j � �ik�jlÞ; (7)

with the same a.
We see that the first term in the SOðNcÞ propagator has

the same color structure as the propagator in the SUðNcÞ
theory, but there is also an additional term which we shall
refer to as the ‘‘twisted propagator’’. In comparing SUðNcÞ
and SOðNcÞ theories, it will be convenient to introduce a
somewhat unconventional double line notation for the
SOðNcÞ theory. Usually when discussing SOðNcÞ gauge
theories, the gluon propagator is represented as a double
line, à la ’t Hooft, but without any arrows. This reflects the
fact that the genus expansion for SOðNcÞ includes non-
orientable surfaces, and if one tried to keep track of color
flow using arrows in the same way as in the SUðNcÞ case,
one would find that there are diagrams for which it is not
possible to consistently assign a direction of color flow.
However, it is possible to modify the double line notation
such that the SOðNcÞ diagrams also have a modified kind of
arrow flow. Each end of the lines appearing in the double
line notation is associated with a color index, with the lines
connecting indices which are contracted via Kroenecker
delta functions. In our notation for the SOðNcÞ theory, the

arrows on the double lines which indicate whether the
external indices associate with each double line are raised
or lowered, as shown in Fig. 1. A line emanating from an
end associated with an upper index gets an arrow pointing
away from the end, while ends associated with lower
indices have arrows pointing towards them. This is a useful
notation, because all vertices and propagators actually
represent matrix multiplication, which can always be writ-
ten in terms of raised and lowered indices, and so preserves
this ‘‘flow’’ of arrows. One can see that for the usual term
in the propagator, this is the same flow as the color flow in
SUðNcÞ. The twisted propagator couples two upper indices
and two lower indices. Diagrammatically, it therefore flips
the direction of the arrows and gives the crossed diagram
in Fig. 1. As shall be made explicit shortly, this twisted
contribution to the propagator is responsible for the intro-
duction of nonorientable diagrams.
Having established our notation we can now investigate

the large Nc equivalence between SO and SU theories. At
large Nc we need only consider Feynman diagrams that
contain a single quark loop and internal gluons. The meson
operator insertions lie on this quark loop. However, from
here on we require that these diagrams correspond to
common-sector operators, which at the Feynman diagram
level is simply the demand that a consistent flow of quark
number can be assigned to the quark loop. Then the first
order diagram for a common-sector meson correlation
function is just a quark loop with a single internal gluon,
as shown in Fig. 2. In order to compare this process in
SUðNcÞ and SOðNcÞ we simply insert the double line
propagators onto the diagram such that there is a consistent
flow of arrows at the vertices. We have two diagrams in
SOðNcÞ corresponding to the two terms in the propagator.
We see that the first term reproduces the same planar
diagram as in SUðNcÞ. The second term in the propagator
corresponds to a nonorientable diagram which contains
only one index loop and so is suppressed by a factor of
Nc. The only difference between the two theories in the
large Nc limit is the factor of two in the normalization of

−

(a)

(b)

i
j k

l

i
j k

l i
j k

l

FIG. 1. The double line notation for (a) SUðNcÞ and (b)
SOðNcÞ.

=

= −

(a)

(b)

FIG. 2. The first order diagrams contributing to a common-
sector meson correlation function in (a) SUðNcÞ and (b) SOðNcÞ.
The second diagram in (b) is suppressed by a factor of Nc.
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the propagator, which is precisely compensated for by the
difference in the coupling constants.

As was illustrated in our example the only double line
diagrams that survive in the largeNc limit are those ‘‘planar’’
diagrams where the gluons tile the quark loop. We wish to
argue that the meson correlators match for all such planar
diagrams. Before coming to the general argument, it is
instructive to first consider one further example—a quark
bubble with an interaction mediated via the three-gluon
vertex, illustrated in Fig. 3. The diagram contains four
vertices, each bringing a factor of the coupling constant
and three propagators. Therefore if one were to make a
tempting generalization from the preceding example and
naively make the assumption that the use of the ‘‘twisted
propagator’’ in SOðNcÞ only results in subleading diagrams,
one would conclude that the ratio of the amplitude associ-
ated to Fig. 3 in the SOðNcÞ theory to the amplitude in the

SUðNcÞ theory is 24=2 � 2�3 ¼ 1
2 , suggesting a mismatch.

The resolution of this apparent paradox is that we can in
fact use the twisted propagators to construct a second
equivalent planar diagram. This is because in both theories,
the three-gluon vertex corresponds not to one but to two
vertices in the double line notation Fig. 4. These two
vertices have different orientations: one has the same ori-
entation as the external quark loop, the other, the ‘‘twisted
vertex’’, has the opposite orientation, and comes with a
relative minus sign. In SUðNcÞ gauge theory we can only
construct a planar diagram from the vertex that has the
same orientation as the external loop, since otherwise we
would not have a consistent flow of arrows.

On the other hand, in the SOðNcÞ gauge theory we can
effectively reverse the orientation of a vertex by attaching
enough twisted propagators to it. In this way we can
construct a second planar diagram which consists of the

twisted vertex and three twisted propagators (Fig. 5). The
minus signs in the propagators and the twisted vertex give a
factor of ð�1Þ3ð�1Þ and so this diagram is identical to the
usual planar one. At large Nc the ratio of any interaction in
the two theories therefore has three contributions arising
from the relative number of planar diagrams, the coupling
constants and the propagators. For the three-gluon interac-
tion the factors of 2 combine so that there is an equivalence
between the SO and SU theories, since the ratio of the

diagrams becomes 2� 24=2 � 2�3 ¼ 1.
Now we can easily generalize the argument to all orders

in perturbation theory, which at large Nc means generaliz-
ing to all planar gluon tilings of the quark loop. A general
diagram has V1 quark-gluon vertices, V3 three-gluon ver-
tices and V4 four-gluon vertices, andNg gluon propagators.

The ratio of the leading order diagrams in SO to SU will

have a factor of 2ðV1þV3þ2V4Þ=2 from the coupling constants.
Whilst in SUðNcÞ the orientation of any three- or four-
gluon vertex is fixed by the external quark loop, we can
construct a planar diagram from either orientation in
SOðNcÞ by using the twisted propagators. The number of
equivalent planar diagrams is therefore given by 2V3þV4 .
Taking into account the factors from the propagators the
overall ratio is therefore

SO

SU
¼ 2ð4V4þ3V3þV1Þ=2 � 2�Ng : (8)

FIG. 3. The three gluon interactions contains three gluon
propagators and four coupling constants. This tells us that simply
counting these factors is not enough to understand the orbifold
equivalence.

−=

FIG. 4. The three-gluon vertex in the double line notation can
come in two orientations.

(a)

(b)

FIG. 5. In SUðNcÞ gauge theory we can only construct planar
diagrams from vertices that have the same orientation as the
external quark loop, e.g., diagram (a). In SOðNcÞ gauge theory
we can use to the twisted propagators to also construct diagram
(b), where the vertex has the opposite orientation.
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But of course each gluon propagator must start and end on
a vertex, so

2Ng ¼ 4V4 þ 3V3 þ V1; (9)

and we see that the ratio of leading order diagrams is
always unity. Thus we have established planar equivalence
for common-sector mesons to all orders in perturbation
theory, without invoking the idea of orbifold projections.

B. Baryons at large Nc

In this section we generalize the large Nc equivalence to
baryon correlation functions. Just as in the meson case we
expect large Nc equivalence to apply to a subsector of the
baryons in the SOðNcÞ theory. Clearly we can only directly
compare correlation functions that are gauge-invariant in
both theories, and therefore the natural candidate for the
common sector of SOðNcÞ are the baryons with the quan-
tum numbers of Nc quarks (or Nc antiquarks). We will first
review the diagrammatics of these baryons in SUðNcÞ
gauge theory, before showing the equivalence with the
common sector of the SOðNcÞ theory.

The discussion of baryons in the large Nc limit is more
complicated than the analysis of mesons. Since a baryon
contains Nc quarks, the diagrams one can draw in pertur-
bation theory depend on Nc, and analyses of baryons in
terms of Feynman diagrams at large Nc are not straightfor-
ward. Nevertheless, Witten showed in his seminal paper [2]
that simple scaling relations do hold for baryons, which we
now review. We will focus our attention on the simplest
nontrivial observable involving baryons, which is the
baryon two-point function. To keep things as simple as
possible, we will discuss the two-point function of the
operator

JðxÞ ¼ �1ðxÞ . . .�NcðxÞ ¼ 1

Nc!
�i1...iNc�

i1ðxÞ . . . �iNc ðxÞ;
(10)

where� is a single-flavor Dirac field, the subscripts shown
refer to color, and the Lorentz indices are suppressed. If
one wants to include the Lorentz structure, then the sim-
plest thing to consider is to take each�i be drawn from the
same spinor component of �.

Despite the complications of counting, Witten showed
that one can draw interesting conclusions by focusing on
connected interactions involving m-quarks for m � Nc.
The restriction to m � Nc would be justified if the fermi-
ons were heavy, since then �ðmQÞ � 1. If the quarks are

light, considering only diagrams with m � Nc is not for-
mally justified, but gives great qualitative insight. Finally,
the restriction to the connected interactions is based on
Witten’s key insight that the baryon mass scales as N1

c , and
as a result the disconnected interactions essentially expo-
nentiate the connected ones.

The first order interaction in perturbation theory corre-
sponds to two quarks in the baryon exchanging a gluon as

shown in Fig. 6. It is simple to work out the color factor.
Using the UðNcÞ propagator the only interaction corre-
sponds to the two quarks exchanging color and so we
simply get a factor of 1=Nc introduced by the two vertices.
However, there are 1

2NcðNc � 1Þ pairs of quarks that can
exchange the gluon and so the overall amplitude scales as
N1

c . The interesting thing Witten noticed is that the same
scaling holds for any leading order interaction with
m � Nc. The leading order connected interactions be-
tween m quarks scale as N1�m

c ; for example, Fig. 7 shows
a three-quark interaction that scales as N�2

c . However, for
m � Nc there is a combinatorial factor of �Nm

c which
counts the number of choices of m quarks to participate in
the interaction from the Nc available quarks in the baryon.
One therefore finds that the contribution of m-body
diagrams to the baryon two-point function always scales
as Nc.
As a consequence of these observations, Witten argued

that there is a simple large Nc limit for baryons which has
the baryon mass scaling as Nc. This scaling suggests that
baryons can be viewed as solitons of the meson fields, since
MB ¼ 1=�meson, where �meson � 1=Nc is the quartic cou-
pling constant of mesons at large Nc. Since the common-
sector mesons of SOðNcÞ are equivalent to the mesons of
SUðNcÞ gauge theory, we might expect to be able to con-
struct a soliton of common-sector mesons in SOðNcÞ that
would be identifiable with the SUðNcÞ baryon. Standard
large Nc arguments therefore suggest that we should be
able to find some equivalence between baryons. Following
our approach to mesons, let us investigate this statement by
comparing the two-point function of the baryon operator
JðxÞ in the two theories using perturbation theory.
At first order in perturbation theory we have two

Feynman diagrams to consider. Firstly a single quark can

=

FIG. 6. Two quarks inside a baryon in SUðNcÞ gauge theory
interact at first order by exchanging color. The diagram �N�1

c

but the number of ways of choosing the two quarks from the Nc

quarks making up the baryon, which scales as N2
c , means that the

overall effect is �Nc.

FIG. 7. A three quark interaction in a baryon that scales as
N�2

c . At large Nc there are N3
c quarks that can take part and so

the overall effect also �Nc.
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emit and then reabsorb a gluon—a one-body interaction
which is a contribution to the renormalized quark propa-
gator. There are Nc such diagrams, each of which scales as
Oð1Þ. In Fig. 8 we show the color structure of this interac-
tion in the SOðNcÞ theory. The diagram corresponding to
the usual propagator agrees precisely with the one in the
SUðNcÞ theory, with the factors of 2 in the coupling con-
stants and propagators canceling. The diagram containing
the twisted propagator is suppressed by Nc and so we have
an agreement at leading order.

Second, two quarks of different color can exchange a
gluon, shown in Fig. 9. As we noted before in SUðNcÞ this
simply corresponds to them swapping color. Once more the
first term in the SOðNcÞ propagator reproduces this effect,
with the factors of 2 working out as before. The additional
term in the propagator does not contribute at all—recall
that it has the color structure �ik�jl. At tree level this term

is only relevant for two quarks of the same color, and so at
first order it plays no role inside a baryon.

There are two important observations we can make from
this first order equivalence. First recall that the effect of
connected baryon interactions scales as Nc. From our dis-
cussion of the renormalized propagator it is clear that there
are going to be subleading corrections to these interactions
that differ in the two theories. Therefore the statement of
large Nc equivalence for baryons must apply to connected
m-quark interactions. A second observation is that it is
crucial that we are considering interactions between quarks
of different colors. For quarks of the same color the effects
of the twisted propagator cannot be ignored, and the inter-
actions would not agree in the two theories.

That this result depends crucially on the baryon struc-
ture, i.e., that the quarks have different colors, is nontrivial
and suggests we should be able to generalize it to higher
orders. To do this we need to show that connectedm-quark
interactions between m different colors will agree at lead-
ing order inNc.Given that the quarks have different colors,
the key in showing this result at first order was that the
factors of 2 in the propagator and the coupling constants

cancel, which are the same factors that were relevant for
the meson equivalence. This suggests that the combinato-
rial factors discussed in the meson sector are also the key to
realizing the large Nc equivalence of baryons.
That the combinatorics are in fact the same in both cases

can be made explicit by using the fact that leading order
baryon interactions can be constructed from (common-
sector) planar meson diagrams. The procedure, described
in (for instance) Ref. [17], is as follows. Any leading order
connected interaction between m different colored quarks
can be constructed by cutting a planar meson diagram onm
different color index loops. One then inserts a different
color index, for each of the quarks in the interaction, onto
each broken loop. The resulting diagram is therefore a
consistent color flow for m external quarks of different
colors, i.e., a connected baryon interaction. Apart from the
m broken loops, the diagram is the same as a planar meson
diagram and so scales as N1�m

c , which is the scaling of a
leading order baryon diagram before multiplication by the
baryonic combinatorial factor �Nm

c . This process is illus-
trated for SUðNcÞ diagrams in Fig. 10.
All leading order baryon diagrams can be constructed in

this way. The same argument can be used to construct the
leading order baryon diagrams in SOðNcÞ. The key point is
that since all leading order baryon diagrams can be viewed
as being constructed from meson diagrams, the combina-
toric factors in each given m-order interaction—i.e., the
numbers of equivalent diagrams, propagators and coupling
constants—are identical to the meson case. For example,
consider the three-quark interaction of Fig. 7. As in the
meson case illustrated in Fig. 5, there are four factors of the
coupling constant and three gluon propagators and so in
order to get large Nc equivalence we require that there are
twice as many leading order diagrams in SOðNcÞ. However
we know this to be the case because we can construct

= −

FIG. 8. At first order the renormalized quark propagator has
two contributions in SOðNcÞ. The twisted propagator gives a
term subleading in Nc.

= −

FIG. 9. In SOðNcÞ there are two ways quarks can interact at
first order. However, since the quarks inside a baryon always
have different colors, this additional term plays no role.

=1
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FIG. 10. Leading order m-body interactions for a baryon can
be constructed by cutting planar diagrams on m index loops and
inserting a different color on each.
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a baryon diagram from either of two meson diagrams
appearing in Fig. 5.

Thus we see that at the diagrammatic level we have a
natural generalization of orbifold equivalence to baryons.
In the meson case, we have a leading order equivalence
between the common mesons. In the baryon sector the
equivalence relates the SOðNcÞ baryons with quark number
charge Nc to the SUðNcÞ baryons. We have just seen that
the diagrams associated with these common-sector SOðNcÞ
baryons match to the equivalent ones for SUðNcÞ baryons,
in the sense that the connected diagrams contributing to the
baryon two-point function agree at leading order in Nc.
The full two-point function can be interpreted as exponen-
tiating this contribution. In particular we therefore expect
the baryon masses in the two theories to agree at leading
order.

In most of this paper we focus on a comparison between
the two-point functions of baryons in SUðNcÞ and SOðNcÞ
gauge theories. The fact that agreement between the two
theories in the two-point baryon correlation function sector
followed simply from the planar equivalence between
SOðNcÞ and SUðNcÞ makes it extremely plausible that the
same should happen for the higher point functions. At first
order in perturbation theory a baryon-baryon interaction
will involve one quark from each baryon exchanging a
gluon. One must make a choice of one quark from the Nc

quarks from each baryon to take part in this interaction, and
so the number of possible diagrams scales as N2

c . The
baryon-baryon interaction therefore scales as OðNcÞ just
like the baryon mass. Most (� N2

c) of these possible inter-
actions involve quarks of different colors in the two bary-
ons and therefore will agree between the two theories. Of
course, there are also�Nc diagrams involving interactions
between quarks of the same color, and these will not agree
between the two theories, but these effects are 1=Nc sup-
pressed. Clearly, we can make the same argument for any
m-quark interaction with m � Nc. Since these are the
interactions we can identify as contributing to the leading
OðNcÞ effect, this suggests that the large Nc equivalence
extends to baryon interactions as well, as is discussed from
another perspective in the following section.

C. Baryon equivalence on the hadronic level

Standard large Nc counting indicates that mesons con-
tribute to the properties of baryons at leading order [18]. In
particular the baryon two-point function involves leading-
order corrections from meson loops, as illustrated in
Fig. 11, whilst baryon-baryon scattering can be understood
via the exchange of mesons. Due to the presence of

charged mesons in the SOðNcÞ theory one may worry
that this raises some doubts about our conclusions based
on perturbation theory. In this section we argue that for
baryons with quark number Nc the analogous processes
involving charged mesons are suppressed at large Nc.
Let us start by briefly reviewing the large Nc behavior of

the baryon-meson coupling constant gmBB [2] in SUðNcÞ
gauge theories. The fastest way to find the large Nc scaling
of gmBB is to consider the contribution of one meson
exchange to the baryon-baryon scattering amplitude which
is proportional to g2mBB and is illustrated in Fig. 12. One-
meson exchange between baryons can be thought of as an
exchange of constituent quarks from one baryon to the
other. It is important to recall that thanks to the Levi-
Civita tensor involved in the color structure of baryons,
each quark color occurs precisely once in a baryon. Hence
if a quark with color c—for which there areNc choices—in
one baryon is to be exchanged with one of the Nc quarks in
another baryon, the new quark must have the same color c.
As a result, the one-meson-exchange diagram will scale as

g2mBB � N1
c , and as a result we see that gmBB � N1=2

c . This
is in sharp contrast to the large Nc scaling of meson-meson
coupling constants, which are such that in purely mesonic
processes, meson loops are suppressed at large Nc. On the

other hand, the scaling gmBB � N1=2
c leads to the naively

surprising fact that a class of meson loop diagrams
contribute to baryon properties at leading order in the large
Nc limit.
The argument for the large Nc scaling of gmBB is exactly

the same in an SOðNcÞ gauge theory. However, the pres-
ence of charged mesons b in the SOðNcÞ theory also allows
a charged meson–baryon coupling constant. If it were to be
the case that the charged meson–baryon coupling constant

scales as �N1=2
c , one would worry that charged meson

loops would contribute to baryon properties in SO theories,
raising some doubts about the conclusions of the previous
section.
As we discussed previously, baryons in the SOðNcÞ

theory can be composed of a mixture of quarks and anti-
quarks—we shall label these operators as Bq where q

indicates the net quark number. Our equivalence predicts
that the correlation functions of baryons composed entirely
of quarks, the BNc

operators, should match between the

SOðNcÞ and SUðNcÞ theories. The interactions we might be

FIG. 11. Leading-order meson loop contribution to baryon
propagator.

FIG. 12. One-meson-exchange contribution to baryon-baryon
scattering amplitude.
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concerned about would involve charged meson loops dress-
ing a BNc

propagator, or BNc
� BNc

interactions involving

exchanges of an even number of charged mesons. Quark
number conservation implies that a baryon with quark
number charge Nc which emits a charged meson with
charge þ2 must turn into a baryon with quark number
charge Nc � 2 (i.e., a baryon composed of Nc � 1 quarks
and an antiquark). Hence we denote the relevant coupling
constant as gbBNcBNc�2

. To understand the importance of

these processes, the crucial issue is the large Nc scaling of
gbBNcBNc�2

.

To work out the large Nc scaling of gbBNcBNc�2
, then, one

can consider the one-charged meson exchange scattering
amplitude of a BNc

baryon and a BNc�2 baryon, illustrated

in Fig. 13. As in the above argument for the scaling of gbBB,
to find the scaling of gbBNcBNc�2

it is sufficient to consider

the scaling of the quark-exchange diagram. If we wish to
construct a diagram that can be viewed as the exchange of a
charged meson then we must have a net quark number flow.
This means that the exchange must involve the antiquark in
BNc�2 and a quark of the same color from BNc

. There is

therefore no combinatorial factor of Nc for the diagram.
Hence gbBNcBNc�2

� 1 at large Nc, in contrast to gmBNcBNc
,

and charged meson loops make subleading contributions to
the properties of common-sector baryons. Futhermore, we
can also see to that two-charged meson exchange between
common-sector baryons scales as Oð1Þ, and so is sup-
pressed relative to meson exchange. These considerations
suggest that our large Nc equivalence is consistent with the
presence of charged mesons in the SO theory.

IV. LARGE Nc EQUIVALENCE IN 2D

Having discussed how large Nc equivalence for baryons
works in perturbation theory, we now turn to study SOðNcÞ
and SUðNcÞ gauge theories in two dimensions, where we
can get some insight into the nonperturbative conditions
for large Nc equivalence to be valid. Two-dimensional
QCD, often called the ’t Hooft model, is dramatically
simpler than its higher-dimensional analogues because
gauge fields can be made nondynamical by a judicious
choice of gauge fixing conditions. In his original paper

on large Nc baryons, Witten used this model to demon-
strate the validity of his large Nc counting away from
the heavy quark limit [2]. We go through a very similar
analysis in order to demonstrate the equivalence between
baryons in SOðNcÞ and SUðNcÞ gauge theory.
In Coulomb gauge A1 ¼ 0, one can integrate out the

gauge fields in two-dimensional large Nc gauge theories
with fermions, yielding theories of fermions interacting
through a nonlocal four-fermion interaction (the color-
Coulomb interaction). The structure of the four-fermion
interaction terms differs between the two theories thanks to
the different color structures of the gluon propagators.
Calling the four-fermion terms in the action S1, S2, we
write the action for SOðNcÞ gauge theory in the form

SSO ¼
Z

dxdt½ ��D�	 þ S1 þ S2; (11)

where D ¼ 6DþM, whilst the corresponding action for
SUðNcÞ gauge theory at large Nc is

SSU ¼
Z

dxdt½ ��D�	 þ S1: (12)

S1;2 are defined as

S1¼� �

Nc

Z
dxdydtð ��i�

0�jÞðx;tÞð ��j�
0�iÞðy;tÞjx�yj;

S2¼ �

Nc

Z
dxdydtð ��i�

0�jÞðx;tÞð ��i�
0�jÞðy;tÞjx�yj;

and � has mass dimension�2 and is proportional to the ’t
Hooft couplings in the SUðNcÞ and SOðNcÞ theories. For
the SUðNcÞ theory the parameter� ¼ �, whilst for SOðNcÞ
it is 2� ¼ �. Large Nc equivalence therefore relates the
actions SSU and SSO with the same �. The key point in
what will follow is that the interaction S1 has the structure

ð ��i�
iÞð ��j�

jÞ in color space whereas S2 is of the form

ð�i�iÞð ��j
��jÞ. The extra term in SSO has the color struc-

ture of a charged meson–charged meson interaction and as
a result we will be able to argue that it does not affect the
properties of common-sector mesons at leading order.
The standard trick to deal with four-fermion interactions

is to linearize them via the introduction of auxiliary fields.
Following Witten we use a nonlocal version of this trick to
linearize the action via the introduction of a meson field

mðx; y; tÞ � ��iðx; tÞ�iðy; tÞ and a charged meson field
bðx; y; tÞ ��iðx; tÞ�iðy; tÞ. Strictly speaking m and b
should be introduced as a matrix of fields to represent the
Dirac structure of the above interaction. However, carrying
around the Dirac indices would clutter the presentation
without adding substantively to it, since the crucial role
is played by the color indices. Thus in what follows we
suppress the Dirac indices for simplicity: they are easy to
restore should one wish to do so.
Upon integrating in auxiliary fields, we get an equivalent

but different-looking action to Eq. (11), which can be

FIG. 13. One-charged meson-exchange contribution to scatter-
ing amplitude of a baryon BN with a BN�2 baryon, with the
subscript indicating the quark number charge.
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(schematically, since the Lorentz structure is being sup-
pressed) written as

SSO ¼
Z

dxdt ��D�þ NcSfree þ S1 þ S2; (13)

where

Sfree¼
Z
dxdydtmðx;y;tÞm
ðx;y;tÞþbðx;y;tÞb
ðx;y;tÞ;

S1¼
ffiffiffiffi
�

p Z
dxdydtmðx;y;tÞ ��iðx;tÞ�iðy;tÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jx�yj

q
þH:c:;

S2¼
ffiffiffiffi
�

p Z
dxdydtb
ðx;y;tÞ�iðx;tÞ�iðy;tÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jx�yj

q
þH:c:

The relevant action for 2D SUðNcÞ QCD is the same but
with the charged meson fields set to zero.

A. 2D Meson equivalence

Before moving on to baryons it is instructive to see how
the familiar results of large Nc equivalence are reproduced
nonperturbatively in the ’t Hooft model. Let us choose the
simplest operator that will display orbifold equivalence—

the renormalized quark propagator h ��ðxÞ�ð0Þi. This can
be calculated in the SOðNcÞ gauge theory via the path
integral

h ��ðxÞ�ð0Þi ¼ Z�1
Z

d½m	d½b	d½�	d½ ��	
� ð ��ðxÞ�ð0ÞeiSSOÞ: (14)

After integrating over the fermions, �c ðxÞc ð0Þ becomes
replaced by the quark propagator in the background field
D�1ðx;m; bÞ. We also pick up a factor of the partition
function of the fermions in the background fields m
and b. In the SUðNcÞ case with b ¼ 0, this corresponds

(schematically) to detð��p� þM� ffiffiffiffi
�

p
mÞ. However,

since the b field couples to c Tc , the result of the fermion
integration in the SO theory, with b � 0, is the Pfaffian
PfðCKÞ instead of the determinant detðDÞ, with

K¼ ��p�þM� ffiffiffiffi
�

p
m

ffiffiffiffi
�

p
bffiffiffiffi

�
p

by ��p�þM� ffiffiffiffi
�

p
m

0
@

1
A; (15)

and C the charge conjugation matrix. Up to a sign,

PfðCKÞ ¼ ðdetKÞ1=2, and we can write PfðCKÞ ¼
expð12 Tr logKÞ. The fact that the original action is diagonal
in color space means that the color trace simply gives Nc.
Thus we are left with

h ��ðxÞ�ð0Þi ¼
Z

d½m	d½b	D�1ðx;m; bÞeiSeff ðm;bÞ; (16)

where

SMeffðm; bÞ ¼ Nc

�
1

2
Tr logKðm; bÞ þ Sfreeðm; bÞ

�
(17)

is the effective action on the meson fields. The key point is
that having integrated out the fermions the only depen-
dence on Nc is the factor in front of the effective action,
which we have explicitly shown. This means that it is now
easy to find the largeNc limit of the theory: forNc � 1 the
integral can be evaluated by a saddle-point/stationary-
phase approximation. There will exist some set of field
configurations (m0, b0) that extremize SMeff , corresponding
to (possibly unstable, for some cases) phases of the theory.
Given one particular extremizing configuration, to the
leading order in the 1=Nc expansion, the quark propagator
in the associated phase can simply be evaluated in this
background field:

h ��ðxÞ�ð0ÞiSO ¼ D�1ðx;m0; b0Þ: (18)

In order to have a large Nc equivalence it is clear that we
need the SO theory to have a stable saddle point of the form
ðm0; b0Þ ¼ ðmqcd; 0Þ where mqcd is the stable saddle points
in the SUðNcÞ theory.4 Since the charged meson field is
charged under Uð1ÞQ and the effective action on this sub-

space is the same as in SUðNcÞ, we are guaranteed that the
above configuration will be an extremum point of Seff , but
we are not a priori guaranteed that it is a stable extremum.
If the saddle point is stable the effective actions for the two
theories coincide and therefore so do the quark propagators
to leading order in Nc. We therefore have a large Nc

equivalence, provided that the relevant saddle point in the
SOðNcÞ theory is stable. However, the value of the charged
meson field at the saddle point represents its vacuum
expectation value (to leading order in Nc). Consequently
the question of the stability of this saddle point is equiva-
lent to whether the Uð1ÞQ symmetry is ‘‘spontaneously

broken’’.5 In the Uð1ÞQ unbroken phase, the charged me-

sons cannot pick up a vacuum expectation value by defini-
tion, and so the additional interaction in the SO theory does
not renormalize the propagator at leading order in Nc. For
zero chemical potential, we expect that the symmetry will
be preserved thanks to the Vafa-Witten theorem [16],
which forbids spontaneous breaking of vector-like symme-
tries such as Uð1ÞQ in the class of theories we consider

here. Hence we expect that large Nc equivalence will hold
at zero chemical potential. If a Uð1ÞQ chemical potential is

turned on, a detailed analysis is necessary to determine the
realization of the symmetry, and if necessary one can
introduce deformations to protect Uð1ÞQ [11,13].

4To keep things simple, this paragraph is written assuming that
there is only one stable saddle point in e.g., the SU theory, but
this need not be true. It is not hard to adjust the discussion to take
into account the possibility that there are metastable phases in
the two theories.

5Spontaneous symmetry breaking is strictly speaking impos-
sible in 2D theories at finite Nc, but there is a sense in which
symmetry breaking becomes possible as Nc ! 1 in 2D theories,
as explained in e.g., Ref. [19].
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The effective action in (17) allows one to explore the
correlation functions of the m and b fields, since at large N
their dynamics are governed by fluctuations about the
saddle point. If we absorb a factor of

ffiffiffiffiffiffi
Nc

p
into the fields

we can see that the p-field coupling constant in Seff scales

asN1�p=2
c . This is simply an explicit realization of the well-

known idea that confining large Nc gauge theories become
weakly interacting theories of meson/charged meson
fields. The above scaling ensures that to leading order in
Nc we can evaluate the meson correlation functions using
the tree-level approximation to Seff . This tree-level argu-
ment was noted by Cherman and Tiburzi [13] as a heuristic
explanation of how large Nc equivalence works at the
hadronic level. For example, if one considers an mþm !
mþm scattering amplitude, the leading order terms cor-
respond to a contact interaction and tree-level intermediate
meson exchanges due to the three-meson coupling. So long
as Uð1ÞQ is conserved, charge conservation implies that

only common-sector mesons, which have zero Uð1ÞQ
charge, can appear on internal legs in tree-level diagrams,
and so charged mesons make no contribution to these
correlators at leading order. As shown by our construction
of the above effective action, this is precisely how orbifold
equivalence is realized in the ’t Hooft model. As we
remarked above the meson coupling constants are the
same in the SOðNcÞ and SUðNcÞ effective actions, and so
orbifold equivalence is realized for these correlators so
long as Uð1ÞQ is unbroken.

B. 2D Baryon equivalence

The path integral treatment we used in the last section
can be repeated to analyze baryons. We now wish to
evaluate the baryon two-point function,

hJyðxÞJð0Þi ¼ Z�1
Z

d½m	d½b	d½�	d½ ��	JyðxÞJð0ÞeiSSO ;
(19)

where J is given in Eq. (10). Once more we integrate out
the fermions. Since the action is diagonal in the color

indices JyðxÞJð0Þ ¼ c y
Nc
ðxÞ . . . c y

1 ðxÞc 1ð0Þ . . . c Ncð0Þ be-
comes replaced by ðD�1ðx; m; bÞÞNc , yielding

hJyðxÞJð0Þi ¼ Z�1
Z

d½m	d½b	ðD�1ðx;m; bÞÞNceiS
M
eff
ðm;bÞ:

The saddle points of SMeff do not directly determine the

baryon correlation functions because of the explicit Nc

dependence in the baryon operator J. However, following
Witten [2], we can define a new effective action in the
baryon sector:

hJyðxÞJð0Þi ¼
Z

d½m	d½b	eiNcS
B
eff
ðm;b;xÞ;

where

SBeffðm; b; xÞ ¼
�
logðD�1ðx;m; bÞÞ þ 1

2
Tr log ~Mðm; bÞ

þ Sfreeðm; bÞ
�
: (20)

For Nc � 1 we can evaluate the baryon two-point func-
tion as the saddle point approximation to SBeff . Ignoring
numerical factors, we find

hJyðxÞJð0Þi ¼ Z�1 e
iNcS

B
eff
ðmB;bB;xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðd2SBeffÞ
q ; (21)

where (mB, bB) are the coordinates of the saddle point and
d2SBeff is the matrix of second derivatives of the effective

action at the saddle point. This term is necessary because it
will not be cancelled by anything in the partition function.
As Witten noticed this analysis reproduces the large Nc

counting we saw in perturbation theory. There is an order
Nc contribution to the baryon mass coming from the saddle
point, and then order N0

c corrections corresponding to
meson fluctuations about it.
Since SBeff still possesses a Uð1ÞQ symmetry there is

once again a saddle-point configuration with bB ¼ 0 at
which the effective action is the same as in SUðNcÞ gauge
theory. Expanding about this saddle point corresponds to
the baryon equivalence we saw in perturbation theory.
Assuming the saddle point is stable, the agreement of the
saddle-point action implies the baryon masses agree at
leading order, but there will be discrepancies at order N0

c .
The question of the stability of the bB ¼ 0 saddle point

is more subtle in the baryon case than in the meson case. To
see whether theUð1ÞQ symmetry is preserved at the baryon

saddle point, one would have to study the meson and
charged meson fluctuations around the baryon solution,
and we leave a study of this to future work. It is conceiv-
able that the bB ¼ 0 saddle point may be unstable even if
the bM ¼ 0 saddle point is stable, since a baryon back-
ground field affects the meson and charged meson spec-
trum. If that turns out to be the case, however, it is plausible
that one could construct a deformed version of the SOðNcÞ
theory to which the equivalence would apply by adding
deformation terms to the action which protect the Uð1ÞQ
symmetry and prevent charged meson condensation, as
was discussed in the 4D context in Refs. [11,13].

V. CONCLUSIONS

In this paper we have shown that baryons can be natu-
rally incorporated into the framework of large Nc equiva-
lence provided one works with gauge theories of the same
number of colors. In the meson sector largeNc equivalence
takes the form of a leading order equivalence between the
correlation functions of the mesons common to both
SOðNcÞ and SUðNcÞ. We showed that for common-sector
correlation functions, the two theories match to all orders
in perturbation theory, which was known previously. The
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novel step in this paper is the generalization of this argu-
ment to the baryon sector, where we showed that the
diagrams determining e.g., the masses of baryons agree
to all orders in perturbation theory to leading order in the
1=Nc expansion. For light quarks, the perturbative analysis
is only meant to be suggestive, but for very heavy quarks
the theory becomes weakly coupled since the relevant
coupling becomes �ðmQÞ � 1, and hence perturbation

theory becomes a reliable approximation. The all-orders
agreement of the perturbative expansions of the two theo-
ries immediately implies that the recent calculation of the
baryon mass in the large Nc and heavy quark limits for
SUðNcÞ QCD described in Ref. [20] also applies to the
SOðNcÞ theory.

To get some insight into the extent to which the impli-
cations of the perturbative arguments apply for light
quarks, we analyzed the nonperturbative conditions neces-
sary for the equivalences to hold using the ’t Hooft model.
In two dimensions, the meson sector orbifold equivalence
was shown to hold provided the quark number symmetry
Uð1ÞQ is unbroken at largeNc. The realization of theUð1ÞQ
symmetry also turned out to be the critical issue for
whether the equivalence holds in the baryon sector.

There are many directions for future work. While we
chose not to use it in our analysis here, it would be nice to
find some way to adapt the machinery of orbifold projec-
tions to the study of baryon-sector observables. This may
allow one to understand the conditions for baryons to be in

the common sector of large Nc equivalences in general,
rather than checking it in particular cases, as we did here in
the context of SOðNcÞ=SUðNcÞ equivalence. Another
direction for future work is to do more detailed studies of
the ’t Hooft model, since 2D QCD-like theories provide a
uniquely tractable case where large Nc equivalences can be
explored nonperturbatively. Our exploratory study already
revealed that, reassuringly, the symmetry realization con-
ditions identified in Refs. [5,6] as the necessary and suffi-
cient conditions for large Nc equivalence for theories with
matter in two-index representations play the same role in
the theories discussed here, with matter in the fundamental
representation. It is important to develop techniques to
check whether this continues to be the case in higher
dimensions. In such cases analytic methods are not avail-
able for many observables of interest, but given the encour-
aging results we have obtained thus far, it would also be
exciting to begin comparing the physics of SUðNcÞ and
SOðNcÞ theories using lattice Monte Carlo methods.
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