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We apply Zwanziger formalism to Cho restricted SUð2Þ theory to obtain the potential in a static quark-

antiquark pair. Cho restricted theory is a self-consistent subset of a non-Abelian SUð2Þ gauge theory

which tries to describe the infrared regime of Yang-Mills gauge theories. In Zwanziger formalism, a local

Lagrangian depending on two electric and magnetic gauge fields is constructed for the theories where both

electric and magnetic charges exist. Based on this local Lagrangian the propagator and then the potential

between quarks is calculated in two limits: mCr � 1 and mCr � 1, where mC is the mass of the dual

gauge boson and r is the distance between the quark and the antiquark.
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I. INTRODUCTION

One of the most interesting problems in particle physics
is the confinement of quarks in quantum chromodynamics
(QCD). There are various frameworks to solve this difficult
problem. One is the dual superconductor picture proposed
by Nambu, t’ Hooft, Mandelstam, and others in the 1970s,
which is based on the existence of magnetic monopoles in
QCD and their condensations [1]. Monopole condensation
can explain the confinement via the dual Meissner effect.
Indeed, one can easily argue that the dual Meissner effect
guarantees the confinement as a consequence of monopole
condensation. However, there has not been a satisfactory
proof for monopole condensation in QCD, yet.

If the dual superconductivity is considered as a promis-
ing mechanism for describing quark confinement, the
existence of magnetic monopoles should be confirmed.
The quantum theory of the magnetic monopole, initially
proposed by Dirac [2], has played a very important role in
QED. Dirac showed that the existence of magnetic mono-
poles leads to the quantization of electric charges. In the
meantime, it was discovered that magnetic monopoles
would occur naturally in non-Abelian models like the
Georgi-Glashow model but without the difficulties of the
Dirac magnetic monopoles. In this model, the non-Abelian
local symmetry is broken into an electromagnetic Uð1Þ
symmetry by the Higgs mechanism [3]. These magnetic
monopoles called ’t Hooft-Polyakov monopoles, are topo-
logical solitons which are massive and cannot become
superconducting in order to explain confinement. On the
other hand, in the pure Yang-Mills theory no matter fields
exist. In the absence of matter fields, two popular methods
have been introduced to extract magnetic monopole
degrees of freedom in the Yang-Mills theory. One is the
Abelian projection, which is a partial gauge fixing pro-
posed by ’t Hooft [4]. The second is a field decomposition

method where new variables are introduced by Cho,
Faddeev, and Niemi [5–7]. The first method leads to
Abelian dominance [8] and magnetic monopole domi-
nance [9] in the maximal Abelian gauge [10]. The second
method enables one to establish the dual superconductivity
in Yang-Mills theory. By applying the second method, one
is able to extract the Abelian part of the theory that confines
the quark.
In this paper we use the field decomposition method

proposed by Cho in his paper [5]. In this method, an extra
symmetry called magnetic symmetry decreases the dy-
namical degrees of freedom. It restricts the original gauge
theory and makes it Abelian. In fact, the original SUð2Þ
gauge field is decomposed to two fields, electric and mag-
netic, and the Lagrangian is rewritten based on these two
new fields. Although the two potentials appear in a sym-
metric way in the Lagrangian, there still exists a significant
disparity between them. While the electric potential is
regular, the magnetic one is singular and it contains a
string singularity. In addition, the magnetic potential that
describes monopoles is a ‘‘spacelike’’ potential while the
electric one describes isocharges with a ‘‘timelike’’ poten-
tial. Cho tried to solve these apparent asymmetries by
introducing the concept of the dual magnetic potentials.
But it leads to some singularities in both electric and
magnetic potentials. We remove these singularities to
obtain a local Lagrangian with regular electric and mag-
netic potentials by applying Zwanziger formalism [11] to
the Cho Lagrangian. As a result, we obtain a dual of
Ginsburg-Landau Lagrangian, which can describe quark
confinement. Using this Lagrangian, we calculate the
potential in a static quark-antiquark pair in two different
limits: mCr � 1 and mCr � 1, where mC is the mass of
the dual gauge boson and r is the distance between quarks.
The limitmCr � 1 has already been discussed with differ-
ent approaches [12–14].
In the next section, we briefly review the Cho decom-

position method as a restricted gauge theory. In Sec. III,
we apply Zwanziger formalism and improve the Cho
Lagrangian to a dual Ginsburg-Landau Lagrangian in the
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framework of a dual-superconductor picture. In Sec. IV, the
Coulombic and the linear parts of the potential are obtained
by calculating the propagator from the Lagrangian in two
different limits. Finally, the conclusion and summary are
given in Sec. V.

II. CHO DECOMPOSITION METHOD

In Cho formalism, an extra symmetry called magnetic
symmetry is applied to the theory by a unit vector field m̂ in
the adjoint representation

D�m̂ ¼ @�m̂þ g ~B� � m̂ ¼ 0; (1)

where ~B� is an SUð2Þ gauge potential. Equation (1) can be
solved exactly for ~B�

~B � ¼ A�m̂� 1

g
m̂� @�m̂; (2)

where A� is the Abelian part of ~B� that is not restricted by

Eq. (1). The unrestricted part A� is called the electric

potential and the other part, which is restricted, is called
the magnetic potential.

Using ~B� of Eq. (2), one can easily show that the field

strength is decomposed to two parts F�� and H��

~G�� ¼ @� ~B� � @� ~B� þ g ~B� � ~B� ¼ ðF�� þH��Þm̂;

(3)

where

F�� ¼ @�A� � @�A�; H�� ¼ � 1

g
m̂:ð@�m̂� @�m̂Þ:

(4)

Equation (3) shows that ~G�� is parallel to m̂, and it is made

of two parts: F��, which comes from the unrestricted

potential A�, and H��, which comes from the restricted

part which contains m̂. It is natural to call F�� the electric

strength and H�� the magnetic strength.

It is possible to associate a magnetic potential C�
� to the

field strength H�� by choosing a hedgehog configuration

for m̂

m̂ ¼ ra

r
¼

sin� cos�

sin� sin�

cos�

0
BB@

1
CCA: (5)

Using Eq. (5) in Eq. (4), H�� is

H�� ¼ @�C
�
� � @�C

�
�; (6)

where

C�
� ¼ 1

g
cos�@��: (7)

C�
� is called the magnetic potential.

Now, an SUð2Þ QCD Lagrangian is constructed with
G�� defined in Eq. (3). Fermions are included as well

L ¼ � 1

4
F2
�� � 1

2
F��H�� � 1

4
H2

�� þ ��ði��D� �mÞ�:

(8)

Fixing the gauge by choosing m̂ along the third axis, B� is

obtained

B� ¼ ðA� þ C�
�Þ 12�3: (9)

This magnetic gauge is chosen to make the SUð2Þ
Lagrangian Abelian. After breaking the symmetry to the
Uð1Þ gauge group, B� will be an Abelian gauge field.

However, unlike QED, a magnetic current k� emerges in
the theory

@�G�
�� ¼ @�H�

�� ¼ k� � 0; (10)

where G�
�� is the dual field strength, H�

�� is the dual

magnetic field strength, and k� is the magnetic current
four-vector. Monopole current results from the magnetic
potential C�

� and it appears because of some unusual

magnetic potential features. This potential is spacelike
and contains a Dirac string. Actually, one can obtain Wu-
Yang monopoles from C�

� by choosing the appropriate �

and� in Eq. (7) [5]. Since in field theory we have a field for
every particle, we must introduce a field for magnetic
monopoles in the Lagrangian (8). Moreover, C�

� is space-

like and this is not desirable. In addition, the Dirac string
that appeared in the theory is an unphysical singularity. For
a field-theoretic description, it is necessary to remove these
undesirable features. Adding a complex scalar field � for
the monopole, one has to define a dual gauge field B�

� to

couple to the monopole field as well [5]

L ¼ � 1

4
F2
�� � 1

2
F��H�� � 1

4
H�

��
2 þ ��ði��D� �mÞ�

þ
��������
�
@� þ i

4�

g
B�
�

�
�

��������
2�Vð���Þ: (11)

However, there still exist spacelike potentials A�
� andC�

� in

the Lagrangian. These potentials contain Dirac strings. In
the next section we remove these potentials by Zwanziger
formalism [11] so that a final local Lagrangian is obtained,
and it depends on matter fields that are spinor fields for
quarks, scalar fields for monopoles, and regular timelike
electric and magnetic potentials.

III. APPLYING ZWANZIGER FORMALISM TO
CHO RESTRICTED THEORY

A local Lagrangian that contains electric and magnetic
charges and leads to local field equations without unphys-
ical singularities like Dirac strings has been introduced by
Zwanziger [11]. It depends on two electric and magnetic
four-potentials, and an arbitrary fixed four-vector. Using
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this framework we can avoid the undesirable features of
Lagrangian of Eq. (11) by constructing a Lagrangian de-
pending on a spinor field� for a quark, a scalar field� for
a monopole, an electric potential A�, a magnetic potential

C�, and a fixed spacelike four-vector n�.

In Cho formulation

@�G
�� ¼ j�; @�G

��� ¼ k�; (12)

where j� is an electric current.
In Zwanziger formalism both electric and magnetic

currents are Noether currents. The general solutions for
the above equations are [11]

G ¼ ð@ ^ AÞ � ðn:@Þ�1ðn ^ kÞ�;
G� ¼ ð@ ^ CÞ þ ðn:@Þ�1ðn ^ jÞ�: (13)

G can be described locally in terms of the electric and
magnetic potentials A and C [11]. Since for a field
theoretical description we need local fields without singu-
larities, we have been motivated to apply Zwanziger
formalism to the Cho-restricted theory. In Zwanziger for-
malism, there exist electric and magnetic potentials, plus a
spinor field for a fermionic particle that has both electric
and magnetic charges. To get the same physics as the Cho-
restricted theory but without singularities, we add a scalar
monopole field � to the Zwanziger Lagrangian that cou-
ples to the magnetic potential C. In addition, we couple the
fermionic field c to the electric potential A. In contrast to
Zwanziger formalism where c has electric and magnetic
charges, we associate the electric charge to c and the
magnetic charge to �. The final local Lagrangian is

L ¼ � 1

2n2
½n:ð@ ^ AÞ��½n:ð@ ^ CÞ��� þ 1

2n2
½n:ð@ ^ CÞ��

� ½n:ð@ ^ AÞ��� � 1

2n2
½n:ð@ ^ AÞ�2

� 1

2n2
½n:ð@ ^ CÞ�2 þ ��ði��@

� � g��A
�	3 �mÞ�

þ
��������
�
@� þ i

4�

g
C�

�
�

��������
2�Vð���Þ; (14)

where

Vð���Þ ¼ M2���þ 
ð���Þ2:
Choosing the above potential, the spontaneous symmetry
breaking would be possible and one can discuss the con-
densation of monopoles and confinement. In the absence of
a gauge field, the vacuum is at

j�j ¼ a ¼
��M2

2


�1
2
:

Expanding � around this vacuum

� ¼ aþ�1 þ i�2ffiffiffi
2

p ;

the Lagrangian is obtained in terms of the physical fields A,
C, c , and �1

L ¼ � 1

2n2
½n:ð@ ^ AÞ��½n:ð@ ^ CÞ��� þ 1

2n2
½n:ð@ ^ CÞ��

� ½n:ð@ ^ AÞ��� � 1

2n2
½n:ð@ ^ AÞ�2

� 1

2n2
½n:ð@ ^ CÞ�2 þ ��ði��@

� � g��A
�	3 �mÞ�

þ 1

2
m2

CC�C
� þ 1

2
ð@��1Þ2 � 1

2
m2

��
2
1

þ coupling terms; (15)

where m2
C ¼ �M2


 ð4�g Þ2 and m2
� ¼ �2M2. After approxi-

mating the monopole field as the constant mean field that
exterminates Vð���Þ, we get the final Lagrangian

L ¼ � 1

2n2
½n:ð@ ^ AÞ��½n:ð@ ^ CÞ��� þ 1

2n2
½n:ð@ ^ CÞ��

� ½n:ð@ ^ AÞ��� � 1

2n2
½n:ð@ ^ AÞ�2

� 1

2n2
½n:ð@ ^ CÞ�2 þ ��ði��@

�

� g��A
�	3 �mÞ�þ 1

2
m2

CC
2
�: (16)

In the next section, by using the above Lagrangian we
study the interquark potential by the gluon propagator
obtained from the nonperturbative sector.

IV. QUARK CONFINEMENT POTENTIAL

The static potential between a heavy quark-antiquark
pair can be obtained from the energy of the vacuum where
the static quark and antiquark exist. Information on con-
finement is included in the gluon propagator, which gives
the strong interaction in the infrared sector. The vacuum
energy VðjÞ in the presence of the static quark sources j is
obtained from [12]

Z ¼ h0jei
R
ðLþj�A

�Þd4xj0i
¼ N

Z
DA�DC�e

i
R
ðLþj�A

�Þd4x ¼ e�iVðjÞT: (17)

Integrating out with respect to the dual gauge field C�, the

Lagrangian becomes

L ¼ � 1

4
F��F

�� þ 1

2
A�K��A

�

þ ��ði��@
� � g��A

�	3 �mÞ�; (18)

where
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K�� � n2m2
C

ðn:@Þ2 þ n2m2
C

X��;

X�� � 1

n2
����

 �
���n�n�@�@�: (19)

A quench approximation is used to remove the quantum
effects of the dynamical quarks. The external source j is
introduced to represent heavy quarks. Integrating out A� in

the Lorenz gauge @�A
� ¼ 0 and LGF ¼ � 1

2�g
ð@�A�Þ2,

the nonlocal current-current correlation is obtained

Lj ¼ � 1

2
j�D

��j�; (20)

where D�� is the propagator of the diagonal gluons

D�� ¼ 1

@2

�
g�� þ ð�g � 1Þ @�@�

@2

�

� 1

@2
m2

C

@2 þm2
C

n2

ðn:@Þ2 X��: (21)

The nonperturbative effect is included in the second term.
The action is

Sj �
Z

d4xLj

¼
Z d4k

ð2�Þ4
1

2
j�ð�kÞ

�
1

k2 �m2
C

g��

þ �m2
C

k2 �m2
C

n2

ðn:kÞ2
�
g�� �

n�n�

n2

��
j�ðkÞ; (22)

where j�ðkÞ is the Fourier component of j�ðxÞ.
Now consider a system of a heavy quark-antiquark pair

with opposite color charges located at a and b, respec-
tively. The quark current is given by

j�ðxÞ ¼ Qg�0½�3ðx� bÞ � �3ðx� aÞ�;
j�ðkÞ ¼ Qg�02��ðk0Þðe�ik:b � e�ik:aÞ:

Therefore, Sj of Eq. (22) becomes

Sj ¼ �Q2
Z

dt
Z d3k

ð2�Þ3
1

2
ð1� eik:rÞð1� e�ik:rÞ

�
�

1

k2 þm2
C

þ m2
C

k2 þm2
C

1

ðn:kÞ2
�
; (23)

n is a unit vector and r ¼ b� a is a vector which connects
the quark to the antiquark. We choose n parallel to r but n
may be chosen in a different direction [15]. After subtract-
ing the contribution of the self-energy of the quark and
antiquark we get the static quark-antiquark potential which
is written in two parts

VðrÞ ¼ VYukawaðrÞ þ VLinearðrÞ;

VYukawaðrÞ ¼ �Q2
Z d3k

ð2�Þ3 cosðk:rÞ 1

k2 þm2
C

¼ �Q2

4�

e�mCr

r
;

VLinearðrÞ ¼ �Q2
Z d3k

ð2�Þ3 cosðk:rÞ m2
C

k2 þm2
C

1

ðn:kÞ2 :

(24)

The integration for VYukawaðrÞ is done easily but an exact
calculation cannot be done for VLinearðrÞ. There are some
approaches leading to different results for calculating
VLinearðrÞ [12–15]. In some of them a cutoff is used to
make the integral converge at large k [13,14] or k? [12],
where k? is the perpendicular component of kwith respect
to n or r (Fig. 1). However, Suzuki used no cutoff and n
and r are no longer parallel in his approach [15].
In this paper, we calculate the linear term in two limits:

mCr � 1 and mCr � 1. For mCr � 1, m� is used as a

cutoff to converge the k integral at large k. Applying a
cutoff for this regime to converge the k integral has been
done before but with different methods [12–14]. For the
mCr � 1 limit, we use " as a cutoff for cosð
Þ, where 
 is
the angle between k and r as shown in Fig. 1. This cutoff
makes the integral converge at cosð
Þ ¼ 0. In fact, this
cutoff makes a constraint on k for mCr � 1. In this limit,
the flux tube between the quark-antiquark pair may not be
approximated by a thick and very long vortex. Therefore,
the situation is not the same as mCr � 1, where one can
approximate the thickness of the vortex with the inverse of
the maximum k?, the mass of the monopole. It means that

FIG. 1 (color online). The relative situations of vectors k, r,
and n
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k cannot be chosen in the direction k?, but the angle
between k and k? should have a small deviation from
zero, which is discussed after Eq. (31).

After applying these limits we get

VLinearðrÞ ¼ Q2m2
C

8�
ln

�m2
C þm2

�

m2
C

�
r (25)

for mCr � 1 and

VLinearðrÞ ¼ Q2m2
C

8�
ln½"�2�r (26)

for mCr � 1. The details of our calculations are shown in
the Appendix. Comparing the string tensions of Eqs. (25)
and (26) obtained from the two limits mCr � 1 and
mCr � 1, one can fix " versus the physical quantities
mC and m�

" ¼ cos
c ¼ mCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

C þm2
�

q : (27)

If m� ! 1, we get " ¼ cos
c ! 0, which means that no

cutoff is used.
Finally, we get the quark-antiquark potential

VðrÞ ¼ �Q2

4�

e�mCr

r
þ �r; (28)

where � is the string tension of the quark-antiquark pair

� ¼ Q2m2
C

8�
ln"�2: (29)

The first part of the linear potential represents the
Coulombic potential if mC ! 0 and the second part shows
confinement of the quark-antiquark pair.

We calculate the values of the parameters of Eqs. (27)
and (28) using the data of the Monte Carlo simulations
[16]. The SUð2Þ static quark-antiquark potential is
obtained by

VðrÞ ¼ ��

r
þ krþ constant (30)

with �� 0:244 and k ¼ ð420 MeVÞ2 from the simulation
results. We choose

Q ¼ g

2
¼ 1:75; mC ¼ 480 MeV; m� ¼ 11 GeV;

(31)

to reproduce the SUð2Þ static quark-antiquark potential
and we get " ¼ 0:043 and 
c ¼ 87:8 by fixing the above
parameters. The result is shown in Fig. 2, where the
potential versus distance is plotted for both potentials
calculated in this paper and from the lattice data.

V. CONCLUSION

One can restrict the SUð2Þ QCD by adding an
extra symmetry called magnetic symmetry (Cho decom-
position method). As a result of this restriction, magnetic
monopoles appear in the theory. However, the Cho
Lagrangian has some problems like having a Dirac string
and spacelike potentials. We solve these undesirable prob-
lems by the Zwanziger dual variables method. We obtain a
Lagrangian that is a dual of the Ginsburg Landau
Lagrangian such that a symmetry breaking can occur and
monopole condensation makes the magnetic potential C�

massive. This massive magnetic potential changes the
usual propagator to a propagator that leads to a linear
potential known as the quark-confinement potential in a
quark-antiquark pair. The string tension is calculated for
two different limits, mCr � 1 and mCr � 1, by making
physical constraints on k. One can generalize this method
for the other SUðNÞ gauge groups. Other decomposition
methods may be investigated to obtain confinement poten-
tial as well.
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APPENDIX

We find the solution of the integral of Eq. (24). First, the
Yukawa potential is obtained from the following formula:

VYukawaðrÞ ¼ �Q2
Z d3k

ð2�Þ3 cosðk:rÞ 1

k2 þm2
C

¼ �Q2
Z 1

0

Z 1

�1

Z 2�

0

k2dkdxd�

ð2�Þ3

� cosðkrxÞ 1

k2 þm2
C

:
FIG. 2 (color online). The solid curve is obtained by fixing the
parameters of the potential calculated in this paper. Dashed curve
shows the lattice results.

QUARK CONFINEMENT IN RESTRICTED SUð2Þ GAUGE . . . PHYSICAL REVIEW D 86, 065005 (2012)

065005-5



Keeping k fixed and integrating with respect to � and x,
where x is cos
 and 
 is the polar angle in momentum
space (Fig. 1), we obtain

VYukawaðrÞ ¼ �2Q2

ð2�Þ2r
Z 1

0

k sinðkrÞ
k2 þm2

C

dk

¼ �Q2

ð2�Þ2r
Z 1

�1
y siny

y2 þ ðmCrÞ2
dy:

From the calculus of residues

Z 1

�1
y siny

y2 þ a2
dy ¼ �e�a:

Finally, VYukawa is

VYukawaðrÞ ¼ �Q2

4�

e�mCr

r
:

Using the same procedure for the Linear potential, we
obtain

VLinearðrÞ ¼ �Q2
Z d3k

ð2�Þ3 cosðk:rÞ m2
C

k2 þm2
C

1

ðn:kÞ2

¼ �Q2
Z 1

0

Z 1

�1

Z 2�

0

k2dkdxd�

ð2�Þ3

� cosðkrxÞ m2
C

k2 þm2
C

1

k2x2
:

Integrating with respect to � and using the cosx ¼ 1�
2sin2 x

2 formula we have

VLinearðrÞ ¼ �Q2m2
C

ð2�Þ2
Z 1

0

dk

k2 þm2
C

Z 1

�1

1� 2sin2ðkrx2 Þ
x2

dx

¼ Q2m2
Cr

ð2�Þ2
Z 1

0

kdk

k2 þm2
C

Z kr
2

�kr
2

sin2y

y2
dy:

We neglect the term 1
x2
because it is independent of r. For

regions where mCr � 1we can use the following approxi-
mation:

Z kr
2

�kr
2

sin2y

y2
dy ’

Z 1

�1
sin2y

y2
dy ¼ �:

Then,

VLinearðrÞ ¼ Q2m2
Cr

4�

Z 1

0

kdk

k2 þm2
C

¼ Q2m2
C

8�
ln

�m2
C þm2

�

m2
C

�
r;

where a sharp cutoff m� was introduced to make the k

integral converge at large k. We have gotten the same result
forVLinear as Refs. [12,14] but with different approximations.
For regions where mCr � 1, we evaluate the integral

from the first place with a different method. After integra-
tion with respect to �, VLinear is obtained:

VLinearðrÞ ¼ �Q2m2
C

ð2�Þ2
Z 1

0

Z 1

�1
dkdx

1

k2 þm2
C

cosðkrxÞ
x2

¼ �Q2m2
C

ð2�Þ2
Z 1

0

dx

x2

Z 1

�1
cosðkrxÞ
k2 þm2

C

dk:

To get the second line we have used the fact that the
integrand is even with respect to both x and k. Now, we
have to use a physical cutoff for the x integral, as men-
tioned in Sec. IV. As a result of this cutoff, no divergence
happens in the integral for small x. Using " instead of zero
in the lower limit of the x integration, we get

VLinearðrÞ ¼ �Q2m2
C

ð2�Þ2
Z 1

"

dx

x2

Z 1

�1
cosðkrxÞ
k2 þm2

C

dk

¼ �Q2m2
C

ð2�Þ2 r
Z 1

"

dx

x

Z 1

�1
cosy

y2 þ ðmCrxÞ2
dy:

Using the calculus of residues

Z 1

�1
cosy

y2 þ a2
dy ¼ �

a
e�a;

we get

VLinearðrÞ ¼ �Q2mC

4�

Z 1

"

e�mCrx

x2
dx:

In addition, for mCr � 1 we can use the following expan-
sion:

e�mCrx ¼ 1�mCrxþOððmCrxÞ2Þ:
Therefore,

VLinearðrÞ ¼ �Q2mC

4�

Z 1

"

1�mCrx

x2
dx:

We again neglect the term 1
x2
because it is independent of r.

Finally, VLinear is

VLinearðrÞ ¼ Q2mC

4�

Z 1

"

mCrx

x2
dx ¼ Q2m2

C

8�
ln½"�2�r:

S. DELDAR AND A. MOHAMADNEJAD PHYSICAL REVIEW D 86, 065005 (2012)

065005-6



[1] Y. Nambu, Phys. Rev. D 10, 4262 (1974); G. ’t Hooft, in
High Energy Physics, edited by A. Zichichi (Editorice
Compositori, Bologna, 1975); S. Mandelstam, Phys. Rep.
23, 245 (1976).

[2] P. A.M. Dirac, Proc. R. Soc. A 133, 60 (1931).
[3] G. t Hooft, Nucl. Phys. B79, 276 (1974); A.M. Polyakov,

JETP Lett. 20, 194 (1974).
[4] G. t Hooft, Nucl. Phys. B190, 455 (1981).
[5] Y.M. Cho, Phys. Rev. D 21, 1080 (1980); 23, 2415 (1981).
[6] L. Faddeev and A. J. Niemi, Phys. Rev. Lett. 82, 1624

(1999); Nucl. Phys. B776, 38 (2007).
[7] S. V. Shabanov, Phys. Lett. B 458, 322 (1999); 463, 263

(1999).
[8] T. Suzuki and I. Yotsuyanagi, Phys. Rev. D 42, 4257 (1990).

[9] J. D. Stack, S. D. Neiman, and R. Wensley, Phys. Rev. D
50, 3399 (1994); H. Shiba and T. Suzuki, Phys. Lett. B
333, 461 (1994).

[10] A. Kronfeld, M. Laursen, G. Schierholz, and U.-J. Wiese,
Phys. Lett. B 198, 516 (1987).

[11] D. Zwanziger, Phys. Rev. D 3, 880 (1971).
[12] H. Suganuma, S. Sasaki, and H. Toki, Nucl. Phys. B435,

207 (1995).
[13] D. A. Komarov and M.N. Chernodub, JETP Lett. 68, 117

(1998).
[14] G. Ripka, arXiv:hep-ph/0310102v2.
[15] T. Suzuki, Prog. Theor. Phys. 80, 929 (1988).
[16] A. Huntley and C. Michael, Nucl. Phys. 270, 123

(1986).

QUARK CONFINEMENT IN RESTRICTED SUð2Þ GAUGE . . . PHYSICAL REVIEW D 86, 065005 (2012)

065005-7

http://dx.doi.org/10.1103/PhysRevD.10.4262
http://dx.doi.org/10.1016/0370-1573(76)90043-0
http://dx.doi.org/10.1016/0370-1573(76)90043-0
http://dx.doi.org/10.1098/rspa.1931.0130
http://dx.doi.org/10.1016/0550-3213(74)90486-6
http://dx.doi.org/10.1016/0550-3213(81)90442-9
http://dx.doi.org/10.1103/PhysRevD.21.1080
http://dx.doi.org/10.1103/PhysRevD.23.2415
http://dx.doi.org/10.1103/PhysRevLett.82.1624
http://dx.doi.org/10.1103/PhysRevLett.82.1624
http://dx.doi.org/10.1016/j.nuclphysb.2006.12.011
http://dx.doi.org/10.1016/S0370-2693(99)00612-7
http://dx.doi.org/10.1016/S0370-2693(99)01024-2
http://dx.doi.org/10.1016/S0370-2693(99)01024-2
http://dx.doi.org/10.1103/PhysRevD.42.4257
http://dx.doi.org/10.1103/PhysRevD.50.3399
http://dx.doi.org/10.1103/PhysRevD.50.3399
http://dx.doi.org/10.1016/0370-2693(94)90168-6
http://dx.doi.org/10.1016/0370-2693(94)90168-6
http://dx.doi.org/10.1016/0370-2693(87)90910-5
http://dx.doi.org/10.1103/PhysRevD.3.880
http://dx.doi.org/10.1016/0550-3213(94)00392-R
http://dx.doi.org/10.1016/0550-3213(94)00392-R
http://dx.doi.org/10.1134/1.567832
http://dx.doi.org/10.1134/1.567832
http://arXiv.org/abs/hep-ph/0310102v2
http://dx.doi.org/10.1143/PTP.80.929
http://dx.doi.org/10.1016/0550-3213(86)90548-1
http://dx.doi.org/10.1016/0550-3213(86)90548-1

