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In the framework of the truncated Dyson-Schwinger equation for the fermion propagator, we inves-

tigate the chiral and fermion number susceptibility at finite temperature and chemical potential in quantum

electrodynamics in (2þ 1) dimensions (QED3). The critical end point in the phase diagram of QED3 is

identified, and the behavior of these two susceptibilities around the critical end point is highlighted.
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I. INTRODUCTION

A central goal of relativistic heavy ion collision experi-
ments at RHIC, the LHC, and the future FAIR project is to
chart the phase diagram of quantum chromodynamics
(QCD) in the plane of temperature (T) and chemical po-
tential (�). This will provide fundamental insight into the
origin of observable mass and the nature of the early
Universe. Results with two massless quarks in QCD
show that at high temperature, the phase transition associ-
ated to restoration of chiral symmetry is second-order and
belongs to the universality class of Oð4Þ spin models in
three dimensions [1]. Various results from QCD-inspired
models (see, e.g., Refs. [2–5]) indicate that at low tem-
peratures, the transition may be first-order for large values
of the chemical potential. This suggests that the first-order
transition line may end when the temperature increases.
The phase diagram thus exhibits a critical end point (CEP)
in the chiral limit, which separates the second-order tran-
sition line from the first-order one.

Due to the notorious sign problem, lattice Monte Carlo
simulations cannot be used to do some direct computation
at finite �. Fortunately, nonperturbative tools not limited
by the sign problem are at our disposal. In particular, it has
been shown that Dyson-Schwinger equations (DSEs) is
capable to describe the chiral transition at finite tempera-
ture and chemical potential [6]. Primarily, due to the com-
plex non-Abelian structure of QCD, it is difficult to have a
thorough understanding of chiral phase transition (CPT).
In this case, to gain valuable insight into the relation
between CPT and the order parameter for CPT before
we can treat it completely, it is very suggestive to study
some model which is similar to QCD and, at the same time,
simpler. Since the discovery of high-Tc superconductivity,
quantum electrodynamics in (2þ 1) dimensions (QED3)
has attracted more attention of the physicists. It is generally
believed that QED3 with N flavors can be regarded as a
possible effective theory for high-Tc superconductivity in

underdoped cuprates [7–9] and graphene [10,11].
Moreover, it has many features similar to QCD, for in-
stance, dynamical chiral symmetry breaking [12–17] and
confinement [18,19]. Therefore, it can serve as a toy model
of QCD.
Then, a natural question may be raised: how to chart the

chiral phase diagram of QED3 at finite temperature and
chemical potential and whether or not the phase diagram
exhibits a CEP.
In recent years, some works in lattice QCD [20–22]

showed that the peak of chiral susceptibility should be an
essential characteristic of CPT. Later, based on techniques
of continuum field theory, several groups [23–25] also gave
the same conclusion. Meanwhile, in Ref. [26], the authors
suggest that fermion-number susceptibility (FNS) should
develop some singularity near the critical point. From then
on, a lot of phenomenological model investigations as well
as lattice simulations toward those susceptibilities have
been attempted, all aimed at determining the location of
the CEP on the (T-�) plane [27,28]. Here it is interesting to
use these two susceptibilities to investigate the phase dia-
gram of QED3 in the same framework and to see whether
they yield results consistent with each other. The motiva-
tion of this paper is to adopt DSEs for the fermion propa-
gator to study the behaviors of chiral and fermion number
susceptibility at finite temperature and chemical potential
and try to locate the CEP in QED3.

II. CHIRAL SUSCEPTIBILITY

In Euclidean space, the Lagrangian of QED3 at finite
chemical potential reads

L¼ �c ð6@þ ie 6A��3�þmÞc þ1

4
F2
��þ 1

2�
ð@�A�Þ2; (1)

where the four-component spinors are employed and �
matrices satisfy the algebra f��; ��g ¼ ���. In the absence
of the mass term m �c c , QED3 has chiral symmetry.
There are several equivalent choices of the order pa-

rameter for chiral symmetry breaking; here, we use the
fermion chiral condensate
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h �c c im ¼
Z d3p

ð2�Þ3 Tr½Sðm;pÞ�; (2)

where S is the dressed fermion propagator and Tr denotes
trace over Dirac indices of the fermion propagator. Below,
we shall determine the transition point via the maximum of

the chiral susceptibility @h �c c i
@m (see, e.g., Refs. [23,28,29]),

which is defined as [23]

�c
a ¼ @h �c c im

@m

��������m!0
: (3)

This equation indicates that the chiral susceptibility mea-
sures the response of the chiral condensate to an infinitesi-
mal change of the fermion mass. Note, here, we evaluate
chiral susceptibility in the chiral limit.

In order to derive a integral formula for the chiral
susceptibility of QED3 at finite temperature and density,
let us first derive such a formula for the chiral susceptibility
of QED3 at zero temperature and density. Differentiating
both sides of Eq. (2) with respect to m and using the
identity

@Sðm;pÞ
@m

¼ �Sðm;pÞ @S
�1ðm;pÞ
@m

Sðm;pÞ; (4)

one arrives at

�c
a ¼ �

Z d3p

ð2�Þ3 Tr½SðpÞ�ðpÞSðpÞ�; (5)

where the so-called scalar vertex �ðpÞ � @S�1ðm;pÞ
@m jm!0.

Therefore, we have obtained a closed integral formula
which expresses the chiral susceptibility in terms of the
dressed fermion propagator and the dressed scalar vertex,

both of the latter objects being basic quantities in quantum
field theory. The DSE approach provides a desirable frame-
work to calculate these quantities and hence the chiral
susceptibility.
Based on Lorentz structure analysis, the involved mas-

sive/massless fermion propagator at zero temperature and
density can be written as

S�1ðm;pÞ ¼ i� � pEðp2Þ þ Fðp2Þ; (6)

S�1ðpÞ � S�1ð0; pÞ ¼ i� � pAðp2Þ þ Bðp2Þ: (7)

In the high-energy limit, the fermion propagator reduces to
the free one: S�1

0 ðpÞ ¼ i� � p. We suppose the inverse

fermion propagator is analytic in the neighborhood of
m ¼ 0, and thus it can be Taylor expanded as

S�1ðm;pÞ¼S�1ðpÞþ@S�1ðm;pÞ
@m

��������m!0
mþ��� ; (8)

where the omitted terms are of high orders inm. In the limit
m ! 0, these terms can be neglected, and the scalar vertex
is written as

�ðpÞ � @S�1ðm;pÞ
@m

��������m!0

¼
�
i� � p@Eðp2Þ

@m
þ @Fðp2Þ

@m

�
m!0

� i� � pCðp2Þ þDðp2Þ: (9)

Substituting Eqs. (6) and (9) into Eq. (5), we obtain the
general formula for the chiral susceptibility at zero tem-
perature and density

�c
a ¼ �

Z d3p

ð2�Þ3 TrfSðpÞ½i� � pCðp2Þ þDðp2Þ�SðpÞg

¼ 4
Z d3p

ð2�Þ3 �
A2ðp2ÞDðp2Þp2 � 2Aðp2ÞBðp2ÞCðp2Þp2 � B2ðp2ÞDðp2Þ

½A2ðp2Þp2 þ B2ðp2Þ�2 : (10)

Here, we note that in the large momentum limit,
Aðp2Þ ! 1, Bðp2Þ ! 0 and Dðp2Þ ! 1. From this, it
can be seen that the integral in Eq. (10) is linearly
divergent. In this case, we should employ a renormal-
ization procedure to deal with this divergence. A natural
approach is to subtract the chiral susceptibility of the
free fermion field from the above chiral susceptibility.
That is to say, we define the renormalized chiral sus-
ceptibility by

�c � �c
a � �c

f; (11)

where �c
f is the chiral susceptibility of the free fermion

gas. This renormalization is justified because this sub-
traction will never affect the general temperature and
chemical potential effects of the chiral susceptibility

which we are interested in. Based on Eqs. (10) and
(11), we obtain the renormalized chiral susceptibility �c:

�c¼
Z d3p

ð2�Þ3 Tr½S0ðpÞ1S0ðpÞ�SðpÞ�ðpÞSðpÞ�

¼4
Z d3p

ð2�Þ3
�
A2Dp2�2ABCp2�B2D

½A2p2þB2�2 � 1

p2

�
: (12)

A. The dependence of �c on T and �

Because the dressed fermion propagator plays an im-
portant role in charting the phase diagram ofQED3 at finite
temperature and chemical potential, it is theoretically valu-
able to give a general recipe for calculating this function in
the framework of the DSEs approach,
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S�1ðm;pÞ ¼ i� �pþmþ
Z d3k

ð2�Þ3��Sðm;kÞ��D��ðm;qÞ;
(13)

with q ¼ p� k and scale e2 ¼ 1 in this paper. Let us first
recall the following general result given in Refs. [30,31]: If
one ignores the � dependence of the dressed photon
propagator (this is a commonly used approximation in
studying the dressed fermion propagator at finite �
[6,32,33]), then one can obtain the dressed fermion propa-
gator at finite � in a suitable truncation scheme from the
one at � ¼ 0 by the substitution

S�1ðm; ~pÞ ¼ i� � ~pEð~p2Þ þ Fð~p2Þ; (14)

where ~p ¼ ðP; p3 þ i�Þ. Therefore, once the dressed fer-
mion propagator at � ¼ T ¼ 0 is known, the dressed
fermion propagator at finite � and T ¼ 0 can be obtained

by means of Eq. (14). This result can be generalized to the
case of finite temperature. The model fermion propagator
at finite T and � in this work can be taken to be the
following form:

S�1ðm;�; T; PÞ ¼ i ~� ~PEkð$n;P
2Þ þ i$n�3E3ð$n;P

2Þ
þ Fð$n;P

2Þ; (15)

where $n ¼ ð2nþ 1Þ�T þ i�. Therefore, once the
dressed fermion propagator at � ¼ T ¼ 0 is known, the
dressed fermion propagator at finite � and T ¼ 0 can be
obtained by means of Eqs. (13) and (15). Then, one can
obtain the chiral susceptibility at finite temperature and
chemical potential by replacing the integration over the
third component of momentum with summation over fer-
mion Matsubara frequencies in Eq. (12):

�cð�; TÞ ¼ 4T
X
n

Z d2P

ð2�Þ2
@

@m

F

E2
3$

2
n þ E2

kP
2 þ F2

��������m!0
��c

f

¼ 4T
X
n

Z d2P

ð2�Þ2 �
�½A2

3$
2
n þ A2

kP
2 � B�D� 2A3BC3$

2
n � 2AkBCkP2

½A2
3$

2
n þ A2

kP
2 þ B2�2 � 1

$2
n þ P2

�
; (16)

where Ck ¼ @Ek
@m jm!0, C3 ¼ @E3

@m jm!0.

B. Model for �cð�;TÞ
In principle, the unknown functions in Eq. (16) can be

obtained by solving the finite temperature and chemical
potential version of the rainbow DSEs for the fermion
propagator. Now, let us give a short review of previous
studies on the effect of the wave-function renormalization
factor Ak and A3. At zero temperature, the results in

Refs. [34–36], which are obtained inQED3 with N fermion
flavors, suggest that the 1=N order contribution from the
vector function of fermion propagator only causes minor
changes. Here, we also expect that leading order of DSE
contribution plays the dominate role at finite temperature.
So, we take the fermion renormalization constant Z2¼1 in
this paper, and, hence, A ¼ E ¼ 1.

In order to obtain S�1ð�; T; PÞ from Eq. (15), we em-
ploy a familiar boson propagator at finite temperature (we
assume that it is �-independent) [36–39],

D��ðm; T;QÞ ¼ ��3��3

Q2 þ�0ðm; T;QÞ : (17)

Then, after some algebra, we obtain the corresponding
DSE for the scalar function for the inverse massive fermion
propagator in leading order:

FðP2Þ¼mþT
X
n

Z d2K

ð2�Þ2
FðK2Þ=½Q2þ�0ðm;T;QÞ�

$2
nþK2þFðK2Þ

¼mþ
Z d2K

ð2�Þ2
FðK2ÞðtanhEk��

2T þ tanhEkþ�
2T Þ

4Ek½Q2þ�0ðm;T;QÞ� ; (18)

with Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ F2ðK2Þp

. By application of some tricks
(for more details, see the appendix), the zero-frequency
boson polarization beyond the chiral limit can be re-
duced to

�0ðm; T;QÞ ¼ T

�

Z 1

0
dx

8><
>:ln

0
@4cosh2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ xð1� xÞQ2

p
2T

1
A

� m2 tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þxð1�xÞQ2

p
2T

T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ xð1� xÞQ2

p
9>=
>;:

When m ! 0, the above function reduces to boson
polarization in the chiral limit. With the general equa-
tion for the chiral susceptibility, we can obtain the
chiral susceptibility at finite temperature and density
in the leading order:
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�cð�; TÞ ¼ 4T
Z d2P

ð2�Þ2
X
n

�
DðP2Þ

$2
n þ P2 þ B2ðP2Þ �

2DðP2ÞB2ðP2Þ
½$2

n þ P2 þ B2ðP2Þ�2 �
1

$2
n þ P2

�

¼
Z d2P

ð2�Þ2
�
DðP2Þ
Ep

�
tanh

Ep þ�

2T
þ tanh

Ep ��

2T

��
1� B2ðP2Þ

E2
p

�
þDðP2ÞB2ðP2Þ½sech2ðEpþ�

2T Þ þ sech2ðEp��

2T Þ�
2TE2

p

� tanh
ffiffiffiffi
P2

p
þ�

2T þ tanh
ffiffiffiffi
P2

p
��

2Tffiffiffiffiffiffi
P2

p
�
; (19)

where the identities

X
n

1

$2
n þ x2

¼ tanhxþ�
2T þ tanhx��

2T

4xT
;

X
n

1

½$2
n þ x2�2 ¼

tanhxþ�
2T þ tanhx��

2T

8Tx3

� sech2 xþ�
2T þ sech2 x��

2T

16T2x2

have been used. The unknown function in the above equa-
tion, DðP2Þ, can be written as

DðP2Þ ¼ @FðP2Þ
@m

��������m!0
: (20)

An involved function in Eq. (20) is easily obtained

�0
0ðT;QÞ ¼ @�0ðm; T;QÞ

@m

��������m!0
¼ 0;

and so Eq. (20) is written as

DðP2Þ ¼ 1þ 1

4

Z d2K

ð2�Þ2
DðK2Þ

Ek½Q2 þ�0ðT;QÞ�
�

��
tanh

Ek þ�

2T
þ tanh

Ek ��

2T

��
1� B2ðK2Þ

E2
k

�

þ B2ðK2Þ
�
sech2 Ekþ�

2T þ sech2 Ek��
2T

2TEk

��
: (21)

Then, from Eqs. (18), (19), and (21), we can obtain the
chiral susceptibility at finite temperature and chemical
potential in the leading order, and we also see that
�cð�; TÞ depends linearly on the function DðP2Þ. From
those equations and Eq. (2) in the chiral limit, we can
obtain the chiral susceptibility and chiral fermion conden-
sate at finite T and �.

C. Numerical results

To indicate the dependence of the susceptibility on T
and �, we shall first obtain the two involved functions B,
D. Using iterative methods to resolve the coupled equa-
tions (18) atm ¼ 0 and (21) for a range of temperature and
chemical potential, we can obtain the two scalar functions
B, D. The typical behaviors of these two scalar functions
are shown in Fig. 1. It is found that the value of these two

functions decreases with the increasing momentum, and
each reduces to a constant in the low-energy region.
The infrared values of BðP2Þ and DðP2Þ are shown in

Fig. 2. As usual, BðP2ÞP2!0 can be regarded as the order
parameter for CPT, while DðP2Þ is related to the chiral
susceptibility. Substituting these two functions into
Eqs. (2) and (19), we immediately obtain the chiral fermion
condensate and chiral susceptibility at finite T and �. The
dependence of the chiral condensate and susceptibility on
the temperature for several chemical potentials are shown
in Fig. 2.
The upper lines of Fig. 2 give the behavior of chiral

susceptibility, while the lower lines in this figure show the
behavior of the fermion chiral condensate. As is shown in
Fig. 2, for any given chemical potential, �c almost keeps a
constant at small temperature, while it shows an apparent
peak at some critical temperature. This critical temperature
depends on the chemical potential and diminishes as the
chemical potential increases. From Fig. 2, it can also be
seen that the fermion chiral condensate decreases as the
temperature and chemical potential increase and vanishes
when T reaches a critical value. This critical value also
decreases with the increase of �. Moreover, near the
critical point of CPT, the susceptibility shows a large,
actually divergent peak at small �, while at high chemical
potential, it is discontinuous and shows a finite peak.
Compared with the two figures in Fig. 2, the vanishing
self-energy brings out restoration of chiral symmetry, and

FIG. 1. The functions BðP2Þ and DðP2Þ in the chirally broken
phase at ðT;�Þ ¼ ð10�3; 10�2Þ.
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the divergent/finite peak ofD corresponds to the divergent/
finite susceptibility. It is also found that, for any chemical
potential, the appearance of the peak of susceptibility and
the disappearance of fermion chiral condensate occur at the
same temperature.

III. FERMION NUMBER SUSCEPTIBILITY

The FNS is defined as the derivative of the fermion
number density 	ð�Þ with respect to the fermion chemical
potential:

�n ¼ @	ð�Þ
@�

: (22)

	ð�Þ can be expressed as (see, for example, Ref. [40]),

	ð�Þ ¼ �
Z d3p

ð2�Þ3 Tr½Ŝð�;pÞ�3�; (23)

where Ŝð�;pÞ denotes the fermion propagator at finite �.
Using the identity

@Ŝð�;pÞ
@�

¼ �Ŝð�;pÞ@Ŝ
�1ð�;pÞ
@�

Ŝð�;pÞ; (24)

we can obtain

�n¼
Z d3p

ð2�Þ3 Tr
�
Ŝð�;pÞ@Ŝ

�1ð�;pÞ
@�

Ŝð�;pÞ�3

�
: (25)

Recall that the well-known Ward identity,

i��ð0; pÞ ¼ @S�1ð0; pÞ
@p�

;

where p denotes the relative momentum of the vector
vertex ��ð0; pÞ and the corresponding total momentum
vanishes. Then,

ð�Þ�3ð0; pÞ ¼ @Ŝ�1ð�;pÞ
@�

: (26)

Substituting Eq. (26) into Eq. (25) and replacing the
integration over the third component of momentum with
explicit summation over Matsubara frequencies, we imme-
diately arrive at the general expression for FNS at finite
temperature and density:

�nð�;TÞ¼�T
X
n

Z d2P

ð2�Þ2 Tr½Ŝð~pÞ�3ð0; ~pÞŜð~pÞ�3�: (27)

The above model-independent integral formula for the
FNS is totally determined by the third component of the
dressed vector fermion-boson vertex and the fermion
propagator. Naturally, the next step is to calculate the latter
two objects. Here, we also employ DSEs to resolve these
quantities and then investigate the fermion-number
susceptibility.

A. Free fermion-number susceptibility

Before going to the model calculation of FNS, let us
analyze the limiting behavior of FNS at high temperature
and density. In the limit of high temperature and density,
the dressed fermion propagator reduces to the free one,

Ŝ�1ð�;pÞ ¼ i� � ~p; (28)

and the corresponding vertex reduces to

�3ð0; ~pÞ ¼ �3: (29)

Inputting Eqs. (28) and (29) into Eq. (27), we obtain the
free FNS

�f
n ¼ �T

X
n

Z d2P

ð2�Þ2 Tr

�
1

i�~p
�3

1

i�~p
�3

�

¼ 4T
Z d2P

ð2�Þ2 �
X
n

�
1

$2
n þ E2

p0

� 2E2
p0

½$2
n þ E2

p0�2
�

¼ 2

Z d2P

ð2�Þ2
�

e
ðEp0þ�Þ

½e
ðEp0þ�Þ þ 1�2 þ
e
ðEp0��Þ

½e
ðEp0��Þ þ 1�2
�

¼ 2
@

@�

Z d2P

ð2�Þ2
�

1

e
ðEp0��Þ þ 1
� 1

e
ðEp0þ�Þ þ 1

�

¼ T

�
lnðe
� þ e�
� þ 2Þ; (30)

FIG. 2. The upper figure gives the infrared values of the
functions BðP2Þ and DðP2Þ as functions of T with several �;
the lower one shows the dependence of chiral susceptibility and
fermion chiral condensate on T and �.
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where Ep0 ¼
ffiffiffiffiffiffi
P2

p
, 
 ¼ 1=T. From Eq. (30), it can be

seen that the limiting value of �f
n at zero temperature

and finite density, and the one at zero density and finite
temperature, are

lim
T!0

�f
n ¼ �

�
; lim

�!0
�f
n ¼ T

�
ln4; (31)

respectively.

B. Model for the susceptibility

To calculate the FNS, we have to calculate the dressed
fermion propagator and dressed vector vertex at finite
temperature and chemical potential in advance. The inte-
gral equation for the dynamically generated fermion self-
energy function at finite temperature can be written as

BðP2Þ ¼ T
X
n

Z d2K

ð2�Þ2
BðK2Þ=½Q2 þ�0ðT;QÞ�

$2
n þ K2 þ B2ðK2Þ

¼
Z d2K

ð2�Þ2
BðK2Þ½tanhEk��

2T þ tanhEkþ�
2T �

4Ek½Q2 þ�0ðT;QÞ� ; (32)

where Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ B2ðK2Þp

and the Matsubara frequency
has been summed analytically. Of course, the fermion self-
energy depends on the temperature and chemical potential.
The boson polarization is given in Refs. [34,37],

�0ðT;QÞ ¼ 1

8

�
Qþ T

16 ln2

�
exp

�
� �Q

16T ln2

��
: (33)

Following the above approximation, we take �3 ! �3 and
then the particle-number susceptibility reduces to

�n ¼ 2

Z d2P

ð2�Þ2
�

e
ðEpþ�Þ

½e
ðEpþ�Þ þ 1�2 þ
e
ðEp��Þ

½e
ðEp��Þ þ 1�2
�
:

(34)

After the fermion self-energy is obtained, one can calculate
the fermion chiral condensate and FNS.

C. Numerical results

Substituting Eq. (32) into Eqs. (2) and (34), we also
obtain the chiral fermion condensate and fermion number
susceptibility at finite T and �. The typical dependence of
FNS on the temperature for several values of chemical
potential are shown in Fig. 3. The upper figure in Fig. 3
shows the behavior of fermion chiral condensate, while the
lower figure in Fig. 3 shows the behavior of FNS, where
�ð�; TÞ is normalized by the FNS in the case of free

fermion gas �f
n (33) and is hence dimensionless.

Let us analyze the observations from this figure. As is
shown in Fig. 3, for any given chemical potential, � rises
with the increasing temperature and shows an apparent
inflexion and then � ¼ 1 beyond a critical temperature
Tcð�Þ. This critical temperature depends on the chemical
potential and diminishes as the chemical potential

increases. From Fig. 3, it can also be seen that the fermion
chiral condensate decreases as the temperature and chemi-
cal potential increase and vanishes when T reaches a
critical value. This critical value also decreases with the
increasing of �. Comparing with the two figures, we see
that the vanishing fermion chiral condensate brings out
restoration of chiral symmetry and corresponds to the
clockwise inflexion of �ð�; TÞ. That is to say, for any
given chemical potential, the appearance of the inflexion
of susceptibility and the disappearance of fermion chiral
condensate occur at the same temperature.

IV. PHASE DIAGRAM

Now, we are in a position to study the phase diagram of
QED3 by analyzing the temperature and density depen-
dence of these two susceptibilities. First, let us see the
chiral susceptibility. When the chemical potential is small,
the susceptibility gives a large and acutely divergent value.
As the chemical potential increases and reaches a critical
value �e, the chiral susceptibility remains discontinuous,
but the corresponding peak has a finite value near the point
of CPT. The critical temperature and chemical potential of
the fermion chiral condensate and the susceptibility are
plotted in Fig. 4. Two separate phases are shown in the T-�
plane: the chiral symmetry restored phase and the phase

FIG. 3. The dependence of h �c c i (up) and � ¼ �n=�
f
n (down)

on the temperature for several values of �.
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with chiral symmetry dynamically broken. The solid line
represents discontinuous chiral susceptibility, and the chi-
ral susceptibility shows a finite peak, which begins from
�c ¼ 0:0195 at vanishing temperature and ends at the end
point (Te ¼ 2:45� 10�3, �e ¼ 7:5� 10�3). Beyond Te,
one ends up with divergent susceptibility (dotted line) to a
so-called pseudocritical temperature Tc ¼ 3:75� 10�3 at
vanishing chemical potential.

Now, let us see the case of FNS. Around ðTe;�eÞ, FNS
shows different behaviors from the chiral susceptibility.
When the chemical potential is small, the susceptibility
exhibits a continuous rise near the chiral critical tempera-
ture, which is a typical characteristic of continuous phase
transition. However, as the chemical potential increases
and reaches a critical value which is the same as �e, the
susceptibility exhibits a skip across Tcð�Þ and has a dis-
continuity due to its first-order phase transition character.
We plot the critical temperature and critical chemical
potential for the FNS in Fig. 4 (here, the phase diagrams
extracted from the critical behaviors of FNS and chiral
susceptibility are the same, so we plot it in one figure). As
is shown in Fig. 4, two separate phases exist in the T-�
plane: chiral symmetry and the phase with dynamical
chiral symmetry breaking. In Fig. 4, the solid line repre-
sents the skip of the susceptibility, which begins from
1:95� 10�2 at vanishing temperature and ends at the
CEP which also lies at ðTe;�eÞ. Below �e, the suscepti-
bility reveals a continuous rise (represented by the dotted
line). This line extends to Tc ¼ 3:75� 10�3 at vanishing
chemical potential.

In this paper, we try to study two different susceptibil-
ities of QED3, i.e., the FNS and chiral susceptibility, and
from these we extract the phase diagram of QED3 in the
(T-�) plane. By comparing the behaviors of FNS and
chiral susceptibility we find that they give the same phase
diagram. This is what one expects in advance since these
two order parameters should give the same physical results.
From Fig. 4, it can be seen that near the critical point of
CPT, chiral susceptibility is discontinuous and shows a

finite peak, while the FNS shows a skipping behavior. This
shows that at high density, it is a first-order phase transition
(the solid line). While at high temperature, a divergent
chiral susceptibility corresponds to a continuous FNS,
which shows it is a second order phase transition (the
dotted line). This suggests that both FNS and chiral sus-
ceptibility can be regarded as equivalent order parameters
for studying chiral phase transitions in QED3.

V. CONCLUSIONS

The primary goal of this paper is to identify and
locate the CEP in QED3 through a continuum study
of the quark number and chiral susceptibility. To this
end, we first derive a model-independent integral for-
mula expressing the chiral and quark number suscepti-
bility in terms of dressed fermion propagator and the
corresponding dressed vertex. Then, based on the suit-
able approximation of truncated DSEs for the fermion
propagator and numerical model calculations, we study
the behavior of FNS and chiral susceptibility near the
critical point of CPT in QED3. We find that, with the
rise of temperature and chemical potential, the appear-
ance of the peak of chiral susceptibility and CPT occur
at the same critical point. At the critical point, the
curve of FNS shows an inflexion.
Moreover, we find that both of these two order parame-

ters exhibit different behaviors at the chiral-phase transi-
tion point. Our calculation predicts that the CEP lies at
ðTe;�eÞ. Around this point, the peak of chiral susceptibility
is divergent, and FNS shows a continuous behavior at high
temperature, which exhibits a typical characteristic of
second-order phase transition driven by chiral symmetry
restoration. Nevertheless, at high density, chiral suscepti-
bility is discontinuous and has a finite peak, while FNS
jumps. This is a typical first-order phase transition. From
this, we obtain the phase diagram of QED3 in the (T-�)
plane.
The model we have used in the present work is of course

schematic and might be far from reality (for example, we
have neglected the effect of the wave-function renormal-
ization factor A and C [13,17,36,37,41]). We note, how-
ever, that this is the first time which one observes CEP in
QED3, which is similar to the case of QCD [4,27,28,42]. In
order to further confirm this observation, we need to study
this problem in more realistic models.
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FIG. 4. The phase diagram for the condensate and susceptibil-
ity. The solid line represents the first-order transition, and the
dotted line gives the second-order transition. The black circle
indicates the position for CEP in the Lagrangian (1).
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APPENDIX A: BOSON POLARIZATION WITH
FINITE FERMION MASS AT T � 0

Beyond the chiral limit, the boson polarization tensor
in one-loop order at zero temperature and zero density
reads

���ðm; qÞ ¼ ��
Z d3k

ð2�Þ3 Tr

�
��ðm� i6kÞ��ðm� i 6pÞ
ðk2 þm2Þðp2 þm2Þ

�

¼ 4�
Z d3k

ð2�Þ3

�
�
k�p� þ k�p� � ðpkþm2Þ���

ðk2 þm2Þðp2 þm2Þ
�
;

where q ¼ p� k and � ¼ e2. Setting l ¼ kþ qx, we can
write the above equation as

�m0
��¼4�

Z d3k

ð2�Þ3
Z 1

0
dx

I��
½l2þxð1�xÞq2þm2�2 ; (A1)

where

I��¼2xð1�xÞðq2����q�q�Þ�½l2þxð1�xÞq2þm2����

þ2l�l�þð1�2xÞðl�q�þl�q��lq���Þ: (A2)

At finite temperature, l ¼ ðl0; LÞ, l0 ¼ 2ðnþ xm0 þ 1
2Þ�T.

Following the approximation in the chiral limit [38], we
also keep the zero-frequency value of the polarization
(q0 ¼ 0) and then arrive at

�00ðQ; TÞ ¼ 4T�
Z d2L

ð2�Þ2
Z 1

0
dx
X
n

�
�

1

l20 þ L2 þ xð1� xÞq2 þm2
� 2½L2 þm2 þ xð1� xÞq20� � ð1� 2xÞl0q0

½l20 þ L2 þ xð1� xÞq2 þm2�2
�

¼ 2T�

�

Z 1

0
dx

Z 1
C
2T

dz�
�
xð1� xÞq2

4T2

�
tanhz

z2
� sech2z

z

�
þ z � sech2z

�
;

where C2 ¼ m2 þ xð1� xÞq2, z ¼
ffiffiffiffiffiffiffiffiffiffiffi
L2þC2

p
2T and the following formulas

Z 1

A
dzz � sech2z ¼ lnð2 coshAÞ � A tanhA;

Z 1

A
dz

�
tanhz

z2
� sech2z

z

�
¼ tanhA

A
;

are used. Finally, the boson polarization with zero-frequency approximation at finite temperature is obtained:

�0
00ðm; T;QÞ ¼ T�

�

Z 1

0
dx

�
ln

�
4cosh2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ xð1� xÞQ2

p
2T

�
� m2 tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þxð1�xÞQ2

p
2T

T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ xð1� xÞQ2

p
�
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