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Quantum fluctuations of matter fields contribute to the thermal entropy of black holes. For free

minimally coupled scalar and spinor fields, this contribution is precisely the entanglement entropy. For

gauge fields, Kabat found an extra negative divergent ‘‘contact term’’ with no known statistical

interpretation. We compare this contact term to a similar term which arises for nonminimally coupled

scalar fields. Although both divergences may be interpreted as terms in the Wald entropy, we point out that

the contact term for gauge fields comes from a gauge-dependent ambiguity in Wald’s formula. Revisiting

Kabat’s derivation of the contact term, we show that it is sensitive to the treatment of infrared modes. To

explore these infrared issues, we consider two-dimensional compact manifolds, such as Euclidean de

Sitter space, and show that the contact term arises from an incorrect treatment of zero modes. In a

manifestly gauge-invariant reduced phase space quantization, the gauge field contribution to the entropy is

positive, finite, and equal to the entanglement entropy.
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I. INTRODUCTION

The entropy of a horizon is given to leading order by the
Bekenstein-Hawking formula SBH ¼ A=4G (c ¼ ℏ ¼ 1).
However, the quantum fields near the horizon are in a
highly entangled state, and their entropy Sent ¼
�trð� ln�Þ should contribute to the Bekenstein-Hawking
entropy. It is well known [1,2] that the leading-order
divergence of the entanglement entropy Sent scales as the
area A of the horizon. However, Sent also depends on the
number of each kind of particle species and their interac-
tions, whereas the Bekenstein-Hawking entropy depends
only on Newton’s constant G. This ‘‘species problem’’
would be elegantly solved if the number of species affected
the renormalization of 1=G, so that SBH implicitly depends
on the field content [3,4].

This solution can only work if the fields’ entanglement
entropy divergence matches their renormalization of 1=G.
For minimally coupled scalars and spinors, the matching is
exact, at least at one loop [5–10].1 Since entropy is an
intrinsically positive quantity, as one flows to the infrared,
this requires a positive contribution to 1=G, resulting in

screening of Newton’s constant (i.e., gravity falls off with
distance faster than would be expected in classical
physics).
However, there appears to be a discrepancy for gauge

fields. This discrepancy was first identified by Kabat [6],
who found an extra ‘‘contact term’’ divergence in 1=G for
spin-1 Maxwell fields, which does not correspond to the
divergence in the entanglement entropy. Similar issues
arise for linearized gravity [12], but here we will focus
on the simpler case of Maxwell theory.
The entropy can be calculated by the conical method

[13,14] (see Ref. [15] for a review). Let Zð�Þ be the
Euclidean partition function on a spacetime with a conical
singularity at the horizon with conical angle�. The conical
entropy is given by

Scone ¼
�
1� �

@

@�

�
lnZð�Þj�¼2�: (1)

The one-loop partition function can be calculated using a
heat kernel regulator and is given by lnZ ¼ �R ffiffiffi

g
p

Leff

where

Leff ¼ � 1

2

Z þ1

�2
ds

e�sm2

ð4�sÞD=2

�
c0
s
þ c1RþOðsÞ

�
; (2)

with s a Schwinger proper time coordinate, � an ultraviolet
cutoff, and m the mass. The coefficient c1 associated with
renormalization of 1=G also determines the coefficient of
the leading-order entropy divergence using Eq. (1):

S ¼ 2�Ac1
Z 1

�2
ds

e�m2s

ð4�sÞD=2
: (3)
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1For scalars in odd-dimensional spacetimes, one calculation

[11] found a discrepancy. In fact, they did not even recover the
standard leading-order area divergence. We suspect that this may
be due to the fact that the entanglement entropy, unlike most
physical observables, is sensitive to arbitrarily high-energy states
and therefore receives contributions from near the cutoff. This
means that a) different regulator schemes need not commute past
one another, and b) because the Pauli-Villars regulator permits
negative normed states, there can be large, negative, unphysical
contributions to S.
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For a minimally coupled scalar field, c1 ¼ 1=6. For a
Maxwell field, the entropy divergence coefficient was
found to be [6]

c1 ¼ D� 2

6
� 1: (4)

In addition to theD� 2 bosonic degrees of freedom which
contribute just like D� 2 scalars, there is an additional
contact term which makes the entropy negative for D< 8.
Negative values of c1 correspond to antiscreening of
Newton’s constant by Maxwell fields.

This contact term is surprising for a number of reasons.
First, the term seemingly appears as a UV divergence even
in D ¼ 2, in which Maxwell fields have no local degrees
of freedom.2 In what follows, we will work primarily in
D ¼ 2. The reason is that in Kabat’s original calculation,
the polarizations in which the vector is transverse to the
horizon contribute exactly like D� 2 minimally coupled
scalar fields, while the contact term comes from the theory
reduced to the remaining two dimensions normal to the
horizon. Thus, the effect in higher dimensions is closely
related to the effect in D ¼ 2 dimensions.

Secondly, because the entanglement entropy Sent cannot
be negative, one cannot explain the contact term by means
of the entanglement entropy divergence. A similar discrep-
ancy occurs for a nonminimally coupled scalar field, for
which c1 ¼ 1=6� �, but the leading-order entanglement
entropy divergence is independent of �. (This can be seen
most easily in flat space where there is no curvature to
couple to.)

However, this nonminimal scalar discrepancy can be
explained [16,17] if we add to the Bekenstein-Hawking
entropy the Wald entropy [18–21] associated with the
nonminimal coupling of the scalar [20]

Sð�Þ
Wald ¼ �2��

Z
�
dD�2x

ffiffiffi
h

p
�2; (5)

where � is the bifurcation surface of the horizon, and h is
the determinant of the induced metric on �. This term in
the entropy is a consequence of the scalar coupling directly
to the singular curvature at the tip of the cone [22]. In the
quantum theory, �2 is divergent and therefore also con-
tributes to the renormalization of 1=G. In Sec. II A, we will
show how this exactly accounts for the �-dependent term.

It has been suggested [8] that the Kabat contact term can
be attributed to an effective nonminimal coupling of the
vector field to gravity. Following the same method as for
the nonminimally coupled scalar, the divergent term in the
Wald entropy would take the form

SðAÞWald ¼ ��
Z
�

ffiffiffi
h

p
AaAbg

ab
? (6)

where gab? is the inverse metric perpendicular to the hori-

zon [23]. In Sec. II B, we will verify that this term can
indeed explain the extra renormalization of 1=G in
Feynman gauge. However, this term is not manifestly
gauge-invariant, nor is it invariant under Becchi-Rouet-
Stora-Tyutin (BRST) symmetry. Furthermore, this term
actually corresponds to a Jacobson-Kang-Myers (JKM)
[20] ambiguity in the derivation of the Wald entropy as a
Noether charge. These JKM ambiguities vanish for classi-
cal fields at the Killing horizon, but may have nonvanishing
quantum expectation values.
In Sec. III, we review Kabat’s derivation of the contact

term [6]. In this derivation, the gauge-fixed Maxwell action
is integrated by parts in order to put it in the form field-
operator-field. Because of the JKM ambiguity, the Wald
entropy can depend on an integration by parts. So one
might wonder whether the contact term comes from an
improper treatment of the boundaries at the conical singu-
larity and/or infinity. To eliminate these boundaries, in
Sec. IV, we will consider the analogue of the contact
term for two-dimensional smooth compact spacetimes.
The partition function of a cone should be obtainable as
a limit of the partition function of smooth, compact ge-
ometries. Indeed, we will see that the contact term persists
even in the compact case. However, in this case, the contact
term in the entropy comes entirely from the zero-mode
sector. We will argue that these zero modes have not been
properly treated, so that in this case, the contact term
should be viewed as unphysical.
In Sec. V, we calculate the physical partition function on a

2D compact manifold in the reduced phase space, without the
use of gauge-fixing or ghosts, taking into account all non-
perturbative effects.Wefind that the entropy is finite and equal
to the entanglement entropy.As expectedonphysical grounds,
there is no renormalization of 1=G in two dimensions.
Thus, we conclude that—at least in two dimensions—

Maxwell fields do not antiscreen Newton’s constant. The
Kabat contact term is not present in the horizon entropy
and appears to be purely a gauge artifact. We discuss the
implications of this result in Sec. VI.

II. CONTACT TERM AS RENORMALIZATION
OF WALD ENTROPY?

The entropy of a bifurcate Killing horizon can be calcu-
lated in a D-dimensional diffeomorphism-invariant classi-
cal theory by the Wald Noether charge method [18,21]. If
the Lagrangian L does not depend on derivatives of the
Riemann tensor, and all derivatives of the matter fields are
symmetrized, the Wald entropy is given by differentiating
L with respect to the Riemann tensor [19,20]:

SWald ¼ �2�
Z
�
dD�2x

ffiffiffi
h

p @L

@Rabcd

�ab�cd; (7)

2More generally, for D � 4, it is not invariant under electric-
magnetic duality which relates a massless p-form field to a
massless ðD� p� 2Þ-form field (up to issues involving zero
modes of the fields). For example, in D ¼ 3, the on-shell
dynamics of the Maxwell field are exactly the same as a massless
scalar field, and yet their contributions to the entropy divergence
are not even of the same sign.
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where h is the pullback of the metric to the
D� 2-dimensional bifurcation surface � and �ab is the
binormal to the slice. This formula was proven to be
equivalent to the ‘‘Noether charge’’ on stationary Killing
horizons. However, on nonstationary backgrounds, Eq. (7)
is ambiguous, since it can be affected by integrating the
action by parts, or by performing field redefinitions which
involve the metric.

The Wald entropy is classical, and we are interested in
the full entropy as defined by the conical entropy formula
(1). For a classical theory, the conical entropy is equivalent
to the Wald entropy [24], while for minimally coupled
scalar and spinor fields, it equals the entanglement entropy
[25]. It is thus natural to conjecture, in accordance with the
arguments of Refs. [17,24], that for a general quantum field
theory, the conical entropy is given by the sum

Scone ¼ hSWaldi þ Sent; (8)

where the Wald term comes from the coupling of fields to
the curvature at the tip of the cone, while the entanglement
term comes from the angle deficit away from the tip. For
general relativity with minimally coupled matter, the right-
hand side of Eq. (8) is the generalized entropy, which is
conjectured to obey the generalized second law [26].3

Since Scone is defined in terms of the renormalized
effective action � lnZ, it must be independent of the
renormalization scale. Therefore, an important consistency
check of Eq. (8) is whether the generalized entropy is also
invariant under the renormalization group flow. This is
nontrivial, since the terms SWald and Sent depend explicitly
on the renormalization scale: the latter because of the
ultraviolet divergence of �trð� ln�Þ, and the former be-
cause of the renormalization-group flow of the coupling
constants such as 1=G, and (in some cases) divergent
products of fields such as �2. In order for Eq. (8) to
hold, the renormalization of the entanglement entropy
must match the renormalization of the Wald entropy,
when both are regulated in the same way. We will now
check this using the heat kernel regulator for the non-
minimally coupled scalar, and for Maxwell theory.

A. Nonminimally coupled scalar field

An illustrative example of a field theory with a consis-
tent contact term is the nonminimally coupled scalar field
[22]. Its action is

I ¼
Z

dDx
ffiffiffi
g

p 1

2
�ð�r2 þ �RÞ�: (9)

Its contribution to the generalized entropy (8) is given by

Sgen ¼ �2��
Z

dD�2x
ffiffiffi
h

p h�2i þ Sent: (10)

The coefficient of the entropy divergence is given by
c1 ¼ 1=6� �. The value of 1=6 comes from the usual
entanglement entropy divergence in Sent, which in flat
spacetime is independent of �. However, there is also a
contact term coming from divergences in h�2i.
Divergences of this term are not associated with the en-
tanglement entropy. Instead, they correspond to particle
loops which interact with the curvature at the conic singu-
larity.4 Although �2 is an intrinsically positive quantity,
the coupling � can take either sign. Positive � corresponds
to antiscreening of Newton’s constant. In fact, there is
exact numerical consistency between the divergences in
Eq. (10) and the renormalization of 1=G.
The partition function of the theory (9) is a functional

determinant,

lnZ ¼ � 1

2
lndet��

0 ; (11)

where ��
0 ¼ ð�r2 þ �RÞ. In the heat kernel regulariza-

tion, the functional determinant is expressed in terms of the
trace of the heat kernel,

K�
SðsÞ ¼ tre�s��

0 : (12)

The partition function is then given by

lnZ ¼ 1

2

Z 1

�2
ds

e�m2s

s
K�

SðsÞ; (13)

where m is the mass of the field, and � is an ultraviolet
cutoff with dimensions of length.
The heat kernel can be expressed as a Schwinger path

integral over paths xaðsÞ through the Euclidean spacetime
with s as the ‘‘time’’ parameter:

K�
Sðs; x; yÞ ¼

Z xðsÞ¼y

xð0Þ¼x
Dxe�

R
s

0
ds014 _x

aðs0Þ _xaðs0Þþ�R: (14)

The heat kernel and its trace are related by

K�
SðsÞ ¼

Z
dDx

ffiffiffi
g

p
K�

Sðs; x; xÞ: (15)

We are interested in the heat kernel for first-order varia-
tions of � away from 2�. The conical deficit introduces a
singular curvature at the tip, given by [34]

3The generalized second law has been proven in various
regimes [26–28] for fields minimally coupled to general relativ-
ity, where SWald ¼ A=4G. For higher curvature gravity and
nonminimal couplings, it is not even known whether the theory
obeys a classical second law, except for special cases such as
fðRÞ gravity [29], nonminimally coupled scalars [30], and first-
order perturbations to Lovelock horizons [31]. However, it is
also known that the Wald entropy can decrease in classical
mergers of Lovelock black holes [20,32,33].

4This is not necessarily inconsistent with the hypothesis [3]
that the horizon entropy ultimately comes entirely from entan-
glement entropy. It could be that the nonminimal coupling term
is induced by entanglement at an even higher energy scale, as in
the OðNÞ model considered in Ref. [16].
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RtipðxÞ ¼ 2ð2�� �Þ��ðxÞ: (16)

The Schwinger path integral depends on � through both
the change of angular periodicity and the introduction of
curvature at the tip. To first order in �� 2�, these two
contributions are independent, and we can write the trace
of the heat kernel as a sum of paths which do not interact
with the singularity, and those that do [22]:

K�
SðsÞ ¼ K�

SðsÞj@n�¼0 þ KtipðsÞ: (17)

The first term is the heat kernel with Neumann boundary
conditions @n� ¼ 0 at the tip of the cone, whose contri-
bution to Scone is the entanglement entropy Sent [35]. The
second term is

KtipðsÞ ¼
Z

dDx
ffiffiffi
g

p Z xðsÞ¼x

xð0Þ¼x
Dx

Z s

0
ds0ð��Rtipðxðs0ÞÞÞ

� e�
R

s

0
ds0014 _x

aðs00Þ _xaðs00Þþ�R; (18)

¼ �2�ð2�� �Þ
Z

dDx
ffiffiffi
g

p Z
�
dD�2y

ffiffiffi
h

p

�
Z s

0
ds0K�

Sðs0; x; yÞK�
Sðs� s0; y; xÞ: (19)

¼ �2�ð2�� �Þ
Z
�
dD�2y

ffiffiffi
h

p
sK�

Sðs; y; yÞ: (20)

where we have used the heat kernel identity

K�
Sðs; y; yÞ ¼

Z
dDx

ffiffiffi
g

p
K�

Sðs0; x; yÞK�
Sðs� s0; y; xÞ: (21)

The contribution to the effective action is

lnZtip ¼ 1

2

Z 1

�2
ds

e�m2s

s
KtipðsÞ (22)

¼��ð2���Þ
Z
�
dD�2y

ffiffiffi
h

p Z 1

�2
dse�m2sK�

Sðs;y;yÞ:
(23)

We can identify in this last expression the expectation
value of �2 in heat kernel regularization:

h�2ðyÞi ¼
Z 1

�2
dse�m2sK�

Sðs; y; yÞ: (24)

We therefore have

lnZtip ¼ ��ð2�� �Þ
Z
�
dD�2y

ffiffiffi
h

p h�ðyÞ2i; (25)

and the contribution to the conical entropy is

Stip ¼ ð1� �@�Þ lnZtipj�¼2�

¼ �2��
Z
�
dD�2y

ffiffiffi
h

p h�ðyÞ2i: (26)

This is precisely the same as the expectation value of the
scalar contribution to the Wald entropy (7). So we see that
the conjecture (8) holds in the case of the nonminimally
coupled scalar field.

B. Maxwell field

It is tempting to interpret the Maxwell contact term in
the same way, as a contribution coming from the Wald
entropy, just as in the case of the nonminimally coupled
scalar field.
In Ref. [6], the thermal entropy of Maxwell fields in

Rindler space was obtained from the partition function Z
on the cone. The Euclidean action for the Maxwell field
includes (fermionic-scalar) ghosts and a gauge fixing term.
In Feynman gauge,

I ¼
Z

dDx
ffiffiffi
g

p �
1

4
FabF

ab þ 1

2
ðraA

aÞ2 � �cr2c

�
: (27)

To express the one-loop effective action as a determinant,
we integrate by parts:

I ¼
Z

dDx
ffiffiffi
g

p �
� 1

2
Aaðgabr2 � RabÞAb � �cr2c

�
: (28)

The gauge-fixed vector field Aa has D degrees of free-
dom, while the two Faddeev-Popov ghosts c and �c each
represent�1 degrees of freedom. c exists to cancel out the
pure gauge modes A ¼ r�, while �c exists to cancel out the
Lorenz-gauge-violating modes with raA

a � 0.
The partition function can then be expressed as a func-

tional determinant

lnZ ¼ � 1

2
lndet�1 þ lndet�0; (29)

where

�0 ¼ �r2; �1 ¼ �gabr2 þ Rab: (30)

The ghosts are minimally coupled and so do not contribute
a contact term.
The manipulations leading to Eq. (26) can be repeated

for any theory in which the action depends on the Riemann
tensor. On the conical manifold, the singular part of the
Riemann tensor is given by [34]

Rtip
abcdðxÞ ¼ ð2�� �Þ�ab�cd��ðxÞ: (31)

The calculation proceeds much as in the case of the
nonminimally coupled scalar, with the result that

Stip ¼ �2�

�Z
�
dD�2x

ffiffiffi
h

p @L

@Rabcd

�ab�cd

�
: (32)

Calculating the Wald entropy (7) by differentiating the
action (28) with respect to the curvature, we obtain [23]

SWald ¼ ��
Z
�
dðD�2Þx

ffiffiffi
h

p
AaAbg

ab
? ; (33)

where gab? is the inverse metric projected onto the direc-

tions perpendicular to the horizon. The expectation value
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of Eq. (33) is the same as the contribution of two non-
minimally coupled scalars with � ¼ 1=2 [8]. This gives a
contribution c1 ¼ �1, in exact agreement with the contact
term. Thus, at first sight, it appears that the antiscreening of
Newton’s constant can be explained physically through a
divergence in the Wald entropy.

But this interpretation is problematic, because the A2

term is not gauge-invariant. This lack of gauge invariance
is just a consequence of the gauge-fixing of the action (28).
However, an avatar of the original gauge invariance re-
mains in the form of the fermionic BRST symmetry s
relating the ghosts to the unphysical vector modes:

sAa ¼ rac; s �c ¼ raA
a; sc ¼ 0: (34)

BRST symmetry guarantees that the expectation values of
BRST-invariant operators are independent of the choice of
gauge. The operator appearing in Eq. (33) is not BRST-
invariant, but instead transforms as

s ðAaAbg
ab
? Þ ¼ 2Aarbcg

ab
? : (35)

This may help explain the results of Ref. [36], where it was
found that the contact term depends on the parameter � of
the R� gauge using 	-function regularization in D ¼ 4
(though not in D ¼ 2).

The A2 term (33) is actually a JKM ambiguity [20] in the
definition of the Wald entropy, since it can be removed by
adding a total derivative to the Lagrangian; the Wald
entropy (7) of the original Maxwell Lagrangian 1

4FabF
ab

vanishes. Classically, ambiguity terms such as AaAbg
ab
?

vanish on the Killing horizon for stationary field configu-
rations, but in the quantum theory, they can have nonzero
expectation values.

Additionally, since Maxwell fields (coupled to general
relativity) satisfy the null energy condition, there is a
classical second law in which the horizon entropy is given
by the Bekenstein-Hawking area term alone. The addition
of Eq. (33) to the entropy seems likely to spoil this result.
This is in contrast with the nonminimally coupled scalar
field, for which the inclusion of the Wald entropy term
�2���2 is necessary for the classical second law [30].

III. DERIVATION OF THE KABAT
CONTACT TERM

We now summarize the calculation which led to the
puzzling contact term in Eq. (4).

Following the same method as in Sec. II, we express the
partition function in terms of the heat kernels of the vector
and scalar Laplacians. Let �n be a complete set of modes
for �0 (with � ¼ 0):

�r2�n ¼ 
n�n: (36)

The scalar heat kernel is given by

KSðs; x; yÞ ¼
X
n

e�s
n�nðxÞ�nðyÞ: (37)

Although we have written the heat kernel in the case of a
discrete spectrum, the results generalize naturally to the
case of continuous spectrum.
To compute the heat kernel of the vector Laplacian,

we construct a complete set of eigenfunctions of the
operator �1,

ð�gabr2 þ RabÞAb ¼ 
nA
a; (38)

and define the vector heat kernel

KVðs; x; yÞab ¼ X
n

e�s
nAnaðxÞAnbðyÞ: (39)

In two dimensions, the vector modes can be written in
terms of the scalar eigenfunctions as

1ffiffiffiffiffiffi

n

p ra�n;
1ffiffiffiffiffiffi

n

p �abrb�n: (40)

The vector heat kernel at coincident points and with the
vector indices contracted can be expressed in terms of the
scalar heat kernel as

KVðs; x; xÞaa ¼
X
n

e�s
n


n

½2ra�nra�n� (41)

¼X
n

e�s
n


n

½�2�nr2�nþ2rað�nra�nÞ�

(42)

¼ X
n

e�s
n

�
2�2

n þ 1


n

r2ð�2
nÞ
�

(43)

¼2KSðs;x;xÞþ
Z 1

s
ds0r2KSðs0;x;xÞ: (44)

In the heat kernel regularization, the partition function (29)
is given by

lnZ ¼ 1

2

Z 1

�2
ds

e�m2s

s
KMðsÞ; (45)

where the mass m is an infrared regulator. Here, we have
defined KMðsÞ as the trace of the ‘‘Maxwell heat kernel’’:

KMðsÞ ¼
Z

d2x
ffiffiffi
g

p ðKVðs; x; xÞ � 2KSðs; x; xÞÞ (46)

¼
Z

d2x
ffiffiffi
g

p Z 1

s
ds0r2KSðs0; x; xÞ (47)

using Eq. (44) in the last line. It seems tempting to move
the integration with respect to s past the Laplacian, turning
this expression into the integral of a total derivative.
However, this would not be valid as KS behaves as 1=s
for large s, so the s integral would be ill-defined.
To evaluate KM on a cone of angle �, Kabat exploits

rotation and scale symmetry to write KSðs0; x; xÞ ¼
fðr2=s0Þ=s0, so that Eq. (47) becomes
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KMðsÞ ¼ �
Z

rdr
Z 1

s
ds0

1

r
@rr@rs

0fðr2=s0Þ: (48)

By dimensional analysis, r@rK ¼ �2@sðsKÞ. Both
integrals can then be carried out, yielding

KMðsÞ ¼ �2�fðr2=s0Þjs0¼1
s0¼s

jr¼1
r¼0 : (49)

When r2 � s, the heat kernel on a cone takes the same
form as on the plane, fðr2=sÞ � 1

4� . When r2 � s, the heat

kernel is very sensitive to the conical singularity, and
fðr2=sÞ � 1

2� . In Eq. (49), there are two contributions

from r ¼ 0 which each give 1
2� and a contribution from

r ¼ 1, s0 ¼ s which yields 1
4� . But there is also a contri-

bution from s ¼ 1, r ¼ 1 which depends on the order in
which the limits are taken. If we take the limit s ! 1 first,
we find the same result as Kabat:

KMðsÞ ¼ � 1

2�
ð2�� �Þ ¼ � 1

4�

Z ffiffiffi
g

p
R: (50)

If instead we take the r ! 1 limit first, the Maxwell heat
kernel vanishes identically, and we obtain no contact term.

The partition function associated to Eq. (50) is given by

lnZ ¼ � 1

4�
ð2�� �Þ

Z 1

�2
ds

e�m2s

s
; (51)

from which we easily find the entropy using Eq. (1):

Scone ¼ �2�
Z 1

�2
ds

e�m2s

4�s
: (52)

This corresponds to a termc1¼�1 in the conical entropy (3).
We note that the Maxwell heat kernel on the cone (50) is

independent of s. Thus, it enters the heat kernel in the same
way as ð�=2�� 1Þ zero modes would, although this co-
efficient is not in general an integer. This suggests that the
calculation may depend on the way that zero modes are
handled. Indeed, the dependence on the order of limits
s ! 1 and r ! 1 shows that the calculation is sensitive
to the far infrared. Taking the limit s ! 1 first corresponds
to allowing paths a sufficient amount of Schwinger proper
time to probe the boundary at large r.

In Sec. IV, we will repeat the contact term calculation on
a smooth compact space without boundary or singularities.
We will see that the contact term does indeed arise from
zero modes.

IV. 2D MAXWELL THEORY ON A
COMPACT SPACETIME

Because Kabat derived the contact term on a manifold
with a conical singularity and a boundary at infinity, one
might wonder whether the result comes from the improper
treatment of these boundaries. To show that this is not the
case, in this section, wewill rederive the Kabat contact term
for smooth compact orientable two-dimensional Euclidean
manifolds. However, the interpretation is different: the

contact term in the entropy arises from zero modes of
ghosts, explaining its negative sign.
When calculating the entropy on smooth manifolds, we

will replace the conical singularity with a smooth cap,
smearing out the curvature over some finite radius r0
[24,34,37]. Because of approximate translation symmetry
near the horizon, to first order in the angle deficit 2�� �
and in the limit that r0 to 0, the heat kernel does not depend
on the details of the smoothing. Formally, therefore, the
replacement of the conical singularity with the smoothed
tip should have no consequences, and indeed this is what
we will find.
To compute the effective action, we use the trace of the

Maxwell heat kernel (46)

KMðsÞ ¼ trðe�s�1Þ � 2 trðe�s�0Þ: (53)

Both operators�0 and�1 are cases of the Hodge Laplacian
acting on p-forms:

�p ¼ d�þ �d; (54)

where d is the exterior derivative and � is the
codifferential.
By the Hodge decomposition, any 1-form A can be

expressed as

A ¼ d�þ �c þ B; (55)

where � is a 0-form (scalar), c is a 2-form, and B is a
harmonic 1-form, i.e., �1B ¼ 0. By Eq. (55), the spectrum
of �1 is the union of the spectrum of �0 and �2 up to zero
modes. Moreover, by Hodge duality, the spectra of �0 and
�2 are equivalent on orientable manifolds. In terms of the
heat kernels, this implies that

KVðsÞ ¼ 2KSðsÞ þ b1 � b0 � b2; (56)

where bp ¼ dimker�p is pth Betti number, which counts

the number of p-form zero modes. On a connected orient-
able manifold, b0 ¼ b2 ¼ 1, and b1 is twice the genus, so
we have

KVðsÞ ¼ 2KSðsÞ � �; (57)

where � ¼ b0 � b1 þ b2 is the Euler characteristic.
Subtracting the two scalar ghosts from the vector heat

kernel (57), we find the Maxwell heat kernel

KMðsÞ ¼ �� ¼ � 1

4�

Z
d2x

ffiffiffi
g

p
R: (58)

where we have used the Gauss-Bonnet theorem. Now, note
the similarity between this result and Kabat’s result for the
cone: the right-hand side of Eq. (58) and (50) are the same.
To find lnZ in terms of the heat kernel, we again in-

troduce an ultraviolet cutoff length � and an infrared
regulating mass m,

lnZ ¼ 1

2

Z 1

�2
ds

e�m2s

s
KMðsÞ (59)
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¼ �
Z ffiffiffi

g
p �

1

2

Z 1

�2
ds

e�m2s

4�s
R

�
: (60)

By comparison with Eq. (2), this corresponds to c1 ¼ �1
in the effective action.

We have therefore confirmed the presence of the contact
term for compact manifolds. But more importantly, we
have elucidated the origin of the contact term: it arises
from the difference in the number of degrees of freedom in
the vector zero modes as compared to the ghost zero
modes.5

As an example, let us consider the effective action on de
Sitter space dS2, for which the Euclidean geometry is the
sphere S2. All modes cancel except for the two zero modes
of the ghosts c and c, since there are no vector zero modes
on the sphere. These modes are ghosts and contribute
negatively to the entropy S ¼ ð1� �@�Þ lnZ. The � varia-

tion of the sphere (which corresponds to deforming it into a
‘‘football’’ with two smoothed-out conical caps) vanishes
because Z depends only on the topology, not�. This leaves
only the lnZ term, which is negative.

Thus, we rederive the contact term, but now, the interpre-
tation is that it comes from negative entanglement entropy
due to ghosts. But this should immediately arouse suspicion!
The sole purpose of ghosts is to cancel out unphysical vector
modes, and the ghost zero modes are extra fields which are
not associated with any such vector modes.

A similar calculation was carried out in Ref. [38] in
which all vector and ghost zero modes were omitted,
leading to a trivial partition function Z ¼ 1. This prescrip-
tion removes the contact term; however, it neglects non-
perturbative contributions to Zwhich will be considered in
Sec. V.

A. Problems with the naive Maxwell heat kernel

Let us go back to the original justification for the ghosts.
In the Faddeev-Popov trick, one takes a path integral of the
form Z

DAe�SðAÞ; (61)

and inserts the ‘‘identity’’

Z
D��ðGðA�ÞÞ det

�
�GðA�Þ
��

�
¼ 1: (62)

Here, GðAÞ ¼ raA
a is the Lorenz gauge-fixing condition,

and A� ¼ Aþr�. This assumes that for every A, there is
exactly one � such that GðA�Þ ¼ raA

a þr2� ¼ 0.
However, if � satisfies this condition, then so does �þ c
where c is a spacetime constant. This means that we should
integrate over equivalence classes of functions � under the
relation �� �þ c. In other words, the determinant in
Eq. (62) should not include zero modes; hence, the ghost
zero modes are spurious.
On manifolds with handles, the vector zero modes must

also be treated with great care. If the gauge group of the
Maxwell theory is R, there will be infrared divergences
coming from these winding modes. For a U(1) gauge field,
this infrared divergence is replaced with an integral over
the moduli space of flat connections, which has finite
volume. These zero modes must be excluded from the
one-loop determinant and handled separately. It is also
necessary to sum over nontrivial U(1) bundles.
Finally, there is an additional problem that the BRST

state space is not the same as the physical Hilbert space of
the canonical Maxwell theory, but contains extra degrees
of freedom with negative norm states. This problem arises
on any spatially compact manifold, but for specificity,
consider a static Lorentzian manifold (of any dimension)
taking the form �� Rtime. Let q be the determinant of the
spatial metric and t be the time coordinate on R. On any
t ¼ const time slice, the pair of canonically-conjugate
spatially constant ghost modes,

c0 ¼
Z
�
dD�1x

ffiffiffi
q

p
c; _�c0 ¼

Z
�
dD�1x

ffiffiffi
q

p d �c

dt
(63)

are BRST-trivial, i.e., they are not paired by BRST sym-
metry with any other modes. In the canonical BRST for-
malism, the physical Hilbert space is defined as the
cohomology of Q, the generator of the BRST symmetry s
(34). In other words, the Hilbert space is given by restrict-
ing to states in the kernel of Q, and modding out by states
in the image of Q. This means that the BRST-trivial ghost
modes remain in the ‘‘physical’’ state space despite the fact
that they include negative norm states and do not corre-
spond to any modes in the canonical Maxwell theory.
These spurious degrees of freedom are similar to the extra
ghosts which arise when BRST-quantizing the zero mode
of a string, and which are normally cured by imposing
Siegel gauge [39]. This problem arises even in the
0þ 1-dimensional gauge-fixed Maxwell theory, where
there are two Faddeev-Popov ghosts, yet only one compo-
nent of the vector field.
These problems cast doubt on the validity of the ‘‘vector

minus two scalars’’ calculations of the contact term. Rather
than try to resolve these issues here, we will instead
quantize the two-dimensional theory using the reduced

5Onemaywonder how these zeromodes could possibly give rise
to a logarithmic divergence in 1=G, considering that a finite
number of modes cannot give rise to an ultraviolet divergence.
The explanation is that when taking the determinant of a dimen-
sionful operator�, one must insert a dimensionful parameter� so
that the partition function Z ¼ detð��2�Þ is dimensionless.
Although conceptually, � has no necessary relationship to an
ultraviolet cutoff � on short-distance modes, since both � and �
are dimensionful parameters needed tomake thepath integralwell-
defined, one may as well identify � ¼ �. In any case, both
parameters must be varied in order to perform a renormalization
group flow. The distinction between these two conceptually dis-
tinct reasons for renormalization is obscured by the heat kernel
regulator �, which does not distinguish between them.

DO GAUGE FIELDS REALLY CONTRIBUTE NEGATIVELY . . . PHYSICAL REVIEW D 86, 064042 (2012)

064042-7



phase space of gauge-invariant canonical degrees of free-
dom. We will see that the contact term is absent.

V. REDUCED PHASE SPACE QUANTIZATION

Two-dimensional Maxwell theory has no local degrees
of freedom, but there are still global degrees of freedom. In
fact, the system is exactly solvable without the introduction
of gauge fixing or ghosts (for a review, see Ref. [40]).

On a 2-dimensional orientable Euclidean manifold, the
Maxwell action is

I ¼
Z

d2x
ffiffiffi
g

p 1

2
F2; (64)

where we define F ¼ 1
2
ffiffi
g

p Fab�
ab. In order to perform a

canonical analysis, we will start by assuming that the mani-
fold can be foliated by circles (i.e., is a sphere or torus); this
assumption will be lifted at the end of this section.

At a fixed time, the configuration degrees of freedom are
the gauge equivalence classes of a Uð1Þ connection Aa on
the circle. These equivalence classes are parameterized by
a single degree of freedom, the Wilson loop around the
circle,

A ¼
I

Aadx
a: (65)

Note that the action (64) depends on the metric only via the
volume form. By choosing a coordinate x 2 ½0; 1� parame-
terizing the circle, and a coordinate t which measures the
elapsed spacetime volume, the volume element becomesffiffiffi
g

p
d2x ¼ dtdx. Then, we can reduce the phase space by

imposing Coulomb gauge, in which Ax is constant, and
At ¼ 0. Maxwell theory in two dimensions then reduces to
the free particle with Hamiltonian

H ¼ 1

2
E2; (66)

where the electric field E is canonically conjugate to A6:

fA; Eg ¼ 1: (67)

All the relevant information about the manifold is encoded
in the total volume V and the boundary conditions imposed
on A at t ¼ 0 and t ¼ V.

To quantize the theory, we simply replace the Poisson
brackets by commutators, giving a free particle. For a
theory with gauge group R, A can take any real value,
but for a U(1) gauge theory, A is periodic:

A� Aþ 2�

q
; (68)

where q is the minimal charge, so the free particle lives on

a circle. This implies that the electric field is quantized as

E 2 qZ: (69)

To compute the partition function, we first need to
specify the topology of the Euclidean manifold, which
determines the boundary conditions for A. We first con-
sider the torus, for which the appropriate boundary con-
ditions are the periodic ones:

Að0Þ ¼ AðVÞ: (70)

The partition function is

Z ¼ tre�VH ¼ X
E2qZ

e�1
2VE

2
: (71)

We can also compute Z by the Euclidean path integral.
Because the action is quadratic, we can factor the partition
function into a sum over classical paths times a contribu-
tion from fluctuations about the classical paths,

Z ¼ X
n2Z

e�S½An� � Zfluctuations; (72)

where An is the classical path which wraps around the
circle with winding number n:

AðtÞ ¼ 2�n

qV
t; F ¼ 2�n

qV
; (73)

which is the familiar quantization of magnetic flux. The
fluctuations can be calculated from the Euclidean free
particle propagator on the plane,

Uð�x;�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2��

s
e�ð�xÞ2=2�; (74)

yielding

Zfluctuations ¼
Z 2�=q

0
dAUð0; VÞ ¼

ffiffiffiffiffiffiffiffiffi
2�

q2V

s
:: (75)

Combining this result with the classical action, the parti-
tion function is

Z ¼
ffiffiffiffiffiffiffiffiffi
2�

q2V

s X
F2ð2�=qVÞZ

e�1
2VF

2
: (76)

While the formulae for the partition function Eq. (71) and
(76) have a similar form, the quantization of E (electric
quantization) and of F (magnetic quantization) are com-
pletely different in nature. The electric quantization con-
dition is quantum kinematical effect arising from the finite
radius of the circle, whereas the magnetic quantization
condition is a classical topological result which makes
use of the equation of motion. Nevertheless, Eq. (71) and
(76) can be shown to be equal by the Poisson summation
formula.

6Although on shell, E ¼ F, off shell, it is important to dis-
tinguish between the momentum E and the velocity F. The
former is conserved, and the latter fluctuates.
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When the spacetime manifold is a sphere, the circle
shrinks to a point at t ¼ 0 and t ¼ V, leading to the
boundary conditions

Að0Þ ¼ AðVÞ ¼ 0: (77)

The partition function on the sphere is then given by

Z ¼ hc je�VHjc i; (78)

where jc i is the (un-normalizable) wave function given in
the E basis by c ðEÞ ¼ 1 and in the A basis by

c ðAÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
2�=q

p
�ðAÞ.7 The result is identical to Eq. (71),

showing that the partition function of 2D Maxwell theory
does not distinguish between a sphere and a torus of the
same volume.

In fact, we can generalize this result to Euclidean mani-
folds of arbitrary genus by sewing together manifolds with
boundary. Using the same boundary condition (78) as the
sphere, one can show that manifold of volume V with the

topology of a disk produces the state c ðEÞ ¼ e�1
2VE

2
.

These disks can be sewn together using manifolds with
three spatial boundaries (‘‘pairs of pants’’). If we consider
a pair of pants in the limit in which the volume vanishes, it
can be viewed as a wave function of the electric fields on
each of its three boundaries, given by c ðE1; E2; E3Þ ¼
�ðE1; E2Þ�ðE2; E3Þ, where the normalization factor is fixed
by the requirement that one recover the partition function
of the sphere when sewing the pants to three disks. By
sewing together an arbitrary number of pants and disks, we
find that the partition function for an arbitrary two-
dimensional closed Euclidean manifold without boundary
depends only on the volume,

Z ¼ X
E2qZ

e�1
2VE

2
: (79)

The conical entropy is easily calculated from Eq. (79).
Since the volume of the Euclidean manifold is linear in the
deficit angle �, the formula (1) for the entropy yields

S ¼ ð1� V@VÞ lnZ ¼ � X
E2qZ

pðEÞ lnpðEÞ (80)

where pðEÞ is the probability of measuring a given value of

E locally, pðEÞ ¼ Z�1e�1
2VE

2
. This entropy is manifestly

positive and has an obvious statistical interpretation: the
only local observable is E, and this is constant over space.
Therefore, observers on different sides of the horizon
measuring E will find perfect correlation of their measure-
ment results; the degree to which their states are entangled
is given by the entropy in Eq. (80). We conclude that in two
dimensions, the conical entropy of a gauge field coincides
with its entanglement entropy. Note that this entropy van-
ishes in the large volume limit q2V ! 1.

The results of this section can be generalized immedi-
ately to ðD� 1Þ-form electromagnetism in D dimensions.
Since the action depends only on the total spacetime
volume, the dimension is irrelevant.
Although 1=G is not renormalized in the reduced phase

space calculation, one might worry that this may depend on
the quantization scheme used. In aD ¼ 2 theory with scale
invariance, any divergence in 1=G would be logarithmic,
with a scheme-independent coefficient which appears in
the trace anomaly [41]. However,D ¼ 2 electromagnetism
is not scale-invariant since the minimum charge q is di-
mensionful. However, we note that the trace of the stress-
energy tensor is scheme-independent. In the reduced phase
space calculation, this is given by

hTi ¼ �hE2i: (81)

This is equal to the classical result and does not include any
term proportional to the Ricci curvature R, as expected in a
theory in which 1=G is not renormalized.

A. Topological Susceptibility

In Ref. [42], it was proposed that the contact term is
related to the topological susceptibility �t, which measures
the response of F to the introduction of a source term
ið q
2�Þ�

R ffiffiffi
g

p
F,

�t¼� 1

V

@2

@�2
lnZj�¼0¼Z�1

ffiffiffiffiffiffiffiffiffi
2�

q2V

s X
F22�

qVZ

�
q

2�

�
2
VF2e�1

2VF
2

¼
�
q

2�

�
2
VhF2i: (82)

The topological susceptibility has properties reminiscent
of Kabat’s contact term: in particular, the contribution from
the electromagnetic field has a sign opposite to all possible
matter terms (which contribute negatively). In Ref. [42], it
was conjectured that the ‘‘wrong sign’’ term in the topo-
logical susceptibility is responsible for the negative contact
term in the entropy. We will now show that, although the
entropy remains manifestly positive, the topological sus-
ceptibility does contribute to the entropy with a negative
sign.
To see how the susceptibility appears in the entropy, we

can compute the entropy from the partition function (76):

S ¼ ð1� V@VÞ lnZ ¼ lnZþ 1

2
� 1

2

�
2�

q

�
2
�t: (83)

The first term is proportional to the free energy. The 1=2
comes from the fluctuation term (75). The last term comes
from differentiating the sum over nontrivial bundles and is
proportional to the topological susceptibility. It appears
that the �t term could make the entropy negative, but this
is not the case. At small V, the lnZ term is positive and
dominates the entropy. As V increases, �t increases to
ðq=2�Þ2 in the large volume limit, and its negative con-

7Although this normalization is the most natural, if one were to
choose a different normalization of jc i, this would be equivalent
to a finite shift of 1=G.
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tribution to the entropy exactly cancels with the 1=2 con-
tribution from the fluctuations.

B. Yang-Mills

The partition function of non-Abelian gauge theory is
also known exactly in 2D and is given by the generalization
of Eq. (79),

Z ¼ X
R

ðdimRÞ�e�1
2q

2VC2ðRÞ (84)

where the sum extends over all irreducible unitary repre-
sentations R of the gauge group, and C2 is the quadratic
Casimir. In the U(1) theory, the representations are labelled
by integers, with dimðRnÞ ¼ 1 and C2ðRnÞ ¼ n2. The de-
pendence on the Euler characteristic � is reminiscent of the
contact term, but the contribution of this term to the
entropy is finite and positive:

S ¼ �X
R

pðRÞ lnpðRÞ þX
R

pðRÞ lndimsR (85)

where pðRÞ is the probability distribution over representa-

tions, pðRÞ / e�1
2q

2VC2ðRÞ. We can see that the entropy is
positive and is equal to the entanglement entropy derived in
Ref. [43].

VI. DISCUSSION

We have shown in Sec. V that in two dimensions, when
the physical Wilson loop is regulated by introducing a
finite minimum charge and is normalized correctly, the
partition function depends only on the Euclidean volume,
not the curvature. The contribution of the Maxwell field to
the effective action is finite and vanishes as the Euclidean
volume goes to infinity. In two dimensions, Maxwell fields
do not renormalize 1=G. The contact term does not appear
when the theory is quantized using the true physical de-
grees of freedom. Hence, there is no need to include the
gauge-dependent term in the Wald entropy discussed in
Sec. II B. Thus, the JKM ambiguity in the Wald entropy is
resolved in a gauge-invariant way: the contribution to the
Wald entropy from a Maxwell field is zero.

This result is in disagreement with the partition function
computed from the Maxwell heat kernel KM ¼ KV � 2KS,
which we have calculated for compact manifolds in
Sec. IV. Although we confirm the existence of the contact
term in this model, the model is unphysical because it
includes contributions from spurious ghosts identified in
Sec. . The path integral contains a contribution from ghost
zero modes, and the canonical phase space contains a pair
of spatially constant BRST-invariant ghost modes.

Additionally, the infrared divergence of the vector zero
modes was treated in an unphysical way by introducing a
small mass. This is physically incorrect since gauge fields
cannot be given masses without introducing an extra de-
gree of freedom. The physically correct infrared regulator
is to mod out by large U(1) gauge transformations, and this
gives a different result for the partition function.
Since a noncompact manifold can be viewed as the limit

of an infinitely large compact manifold, the absence of the
contact term ought to manifest somehow in this limit as
well. Since a noncompact manifold has a continuous spec-
trum, it is harder to see the effects of the zero mode pre-
scription. However, in Sec. III, it was observed that the
derivation of the contact term for the cone is sensitive in
the infrared to an order of limits: if one takes r ! 1 before
taking s ! 1, the contact term does not appear. Thus, the
calculation on the cone is also sensitive to the prescription
for dealing with the infrared aspects of the theory.
Although these conclusions are confined to the case of

D ¼ 2, the absence of the contact term in D ¼ 2 suggests
that the D> 2 calculations should also be revisited. Since
in Kabat’s derivation, the contact term in the higher-
dimensional heat kernel just comes from the product of the
contact term in the two-dimensional Maxwell heat kernel
times the D� 2-dimensional scalar heat kernel, one might
think that the contact term will also be absent in higher
dimensions. However, in higher dimensions, the contact
term no longer arises solely because of zero modes, so the
analysis will be different. Since 1=G is power-law-divergent
in D> 2, the results may also depend on one’s choice of
renormalization scheme, as well as the choice of gauge [36].
A similar negative contact term appears in the case of

gravitons [12,15]. Hence, pure gravity seems to antiscreen
itself, suggesting the possibility of a nontrivial UV fixed
point at positive G [44]. However, since the Maxwell
contact term is not actually present (at least in D ¼ 2),
these calculations should be carefully revisited.
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