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We show that strictly stationary spacetimes cannot have nontrivial configurations of form fields/

complex scalar fields. This means that the spacetime should be exactly Minkowski or anti-deSitter

spacetime depending on the presence of negative cosmological constant. That is, self-gravitating complex

scalar fields and form fields cannot exist.
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I. INTRODUCTION

Whether the self-gravitating and stationary/static con-
figuration exists or not is a fundamental issue in general
relativity. The famous and elegant Lichnerowicz theorem
tells us that the vacuum and strictly stationary spacetimes
should be static [1]. The phrase ‘‘strict stationarity’’ means
that the existence of the timelike Killing vector field in the
whole region of the spacetime is assumed (no black
holes!). Since the total mass of the spacetime is zero, the
positive mass theorem shows us that the spacetime should
be the Minkowski spacetime [2,3]. The similar discussion
has been extended into asymptotically anti-deSitter space-
times [4]. But, we know that there is the static nontrivial
solution for the Einstein-Yang-Mills systems [5] (see
Ref. [6] and references therein). Holographic argument
of condensed matters relied on nontrivial self-gravitating
configurations in asymptotically anti-deSitter spacetimes
(see Ref. [7] for a review).

Recently, there are interesting new issues on self-
gravitating objects and final fate of gravitational collapse
in asymptotically anti-deSitter spacetimes [8–10] (see also
Refs. [11,12]). Nonstationary numerical solutions with
1-Killing vector field were found in the Einstein-complex
scalar system [10]. (This is a kind of boson star. For boson
stars, see Ref. [13] and reference therein). A kind of no-go
theorem or Lichnerowicz-type theorem is also important.
This is because they provide us some definite information
about the above issue in an implicit way.

In this paper we present a no-go theorem for nontrivial
self-gravitating configurations composed of p-form fields/
complex scalar fields in strictly stationary spacetimes. We
will consider asymptotically flat or anti-deSitter space-
times. This no-go does not contradict with the results of
recent works [8–10] because the spacetimes considered
there are not strictly stationary or there is some coupling
between gauge fields and scalar fields, etc. See Ref. [14]
for related issues about static configurations.

The organization of this paper is as follows. In Sec. II,
we discuss the strictly stationary spacetimes in four dimen-
sions, and show that the Maxwell field and complex scalar
field cannot have nontrivial configuration. In Sec. III, we
generalized this into higher dimensions with p-form fields

and complex scalar fields. In Appendix A, we present the
technical details. In Appendix B, we discuss an alternative
argument for asymptotically anti-deSitter spacetimes.

II. FOUR DIMENSIONS

Bearing the recent work [10] in mind, we consider the
following system:

L ¼ R� 1

2
F2 � 2j@�j2 � 2�; (1)

where F and � are the field strength of the Maxwell field
and a complex scalar field, respectively. There is no source
term for the Maxwell field and no potential of �. The
Einstein equations are

Rab ¼ Fa
cFbc � 1

4
gabF

2 þ @a�@b�
� þ @a�

�@b�

þ�gab: (2)

Let us focus on the strictly stationary spacetimes; that is,
we assume that there is a timelike Killing vector field ka

everywhere. In addition, we assume that the Maxwell field
and complex scalar field are also stationary, LkF ¼ 0,
ka@a� ¼ 0. Then we see LkTab ¼ 0, which is consistent
with the spacetime stationarity.
The twist vector !a is defined by

!a ¼ 1

2
�a

bcdkbrckd: (3)

Then, from the definition of !a, one can show

rað!aV�4Þ ¼ 0; (4)

where V2 ¼ �kak
a. We introduce the electric and mag-

netic components of the Maxwell field as

Ea ¼ kbFba (5)

and

Ba ¼ � 1

2
�abcdF

bckd; (6)

respectively. Using Ea and Ba, the field strength of the
Maxwell field is written as
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V2Fab ¼ �2k½aEb� þ �abcdk
cBd: (7)

The source-free Maxwell equation becomes

r½aEb� ¼ 0; (8)

r½aBb� ¼ 0; (9)

raðEaV�2Þ � 2!aB
aV�4 ¼ 0; (10)

and

raðBaV�2Þ þ 2!aE
aV�4 ¼ 0: (11)

From the first two equations, we see that Ea and Ba have
the potentials as

Ea ¼ ra�; Ba ¼ ra�: (12)

Here, to guarantee the existence of the potentials globally,
we assumed that spacetime manifolds are contractible.
Hereafter we assume this. Using the Einstein equations,
we can show that

r½a!b� ¼ B½aEb� (13)

holds. The right-hand side is the Poynting flux. To show the
above, we used the stationarity of the complex scalar field.
Using the fact that the electric and magnetic fields are
written in terms of the potential for each, we can rewrite
the above in several different ways; for example, we have
the following typical two equations

r½að!b� ��Eb�Þ ¼ 0 (14)

and

r½að!b� þ�Bb�Þ ¼ 0: (15)

Therefore, the existence of scalar functions are guaranteed
as

!a ��Ea ¼ raUE (16)

and

!a þ�Ba ¼ raUB: (17)

Then, using the Maxwell equation, Eqs. (4), (16), and (17)
give us

ra

�
UE

!a

V4
� �

2V2
Ba

�
¼ !a!

a

V4
� BaB

a

2V2
(18)

and

ra

�
UB

!a

V4
� �

2V2
Ea

�
¼ !a!

a

V4
� EaE

a

2V2
: (19)

They correspond to Eq. (6.35) on page 156 of Ref. [15]
which has a sign error (for example, see Ref. [16]).

On the other hand, the Einstein equations give us

2

V2
Rabk

akb ¼ ra

�raV2

V2

�
þ 4

!a!
a

V4

¼ �2�þ EaE
a þ BaB

a

V2
: (20)

Note that this corresponds to the Raychaudhuri equation
for nongeodesics.
It is easy to see that Eqs. (18)–(20) imply

ra

�raV2

V2
þWa

�
¼ �2�; (21)

where

Wa ¼ 2ðUE þUBÞ!
a

V4
��Ba þ�Ea

V2
: (22)

Let us first consider the cases with � ¼ 0. Then we see

ra

�raV2

V2
þWa

�
¼ 0: (23)

The space volume integral of the above implies the surface
integral. Here note that Wa does not contribute to the
surface integral because we can easily see that it behaves
like Wa ¼ Oð1=r3Þ near the infinities (r ! 1) and the
contribution to the surface integral becomes Oð1=rÞ.
Thus, we see that it will be the total mass and then

M ¼ 0 (24)

(see Appendix A). Here, note that the positive mass theo-
rem holds because the dominant energy condition is sat-
isfied. Thus, the corollary of the positive mass theorem
tells us that the spacetime should be the Minkowski space-
time [2,3]. This means that the electromagnetic fields and
complex scalar field vanish.
Next we consider the cases with �< 0. Introducing the

vector field, ra, satisfying

rar
a ¼ �2�; (25)

we find

ra

�raV2

V2
� ra þWa

�
¼ 0: (26)

The volume integral shows us

M ¼ 0 (27)

again. Then the positive mass theorem implies that the
spacetime should be the exact anti-deSitter spacetime
[17,18]. In Appendix A, we discuss the existence of ra

satisfying Eq. (25). However, one may not want to intro-
duce this ra. This is possible for a restricted case. In
Appendix B, we present an alternative proof for asymptoti-
cally anti-deSitter spacetimes. The price we have to pay is
that we cannot include the Maxwell field in the argument.
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One may wonder if one can extend this result to the
cases with positive cosmological constant, �> 0.
Although there are some efforts [19], we do not have the
positive mass theorem which holds for general asymptoti-
cally deSitter spacetimes. Thus, we cannot have the same
statement with our current result.

Note that almost of all basic equations presented here
were derived in Ref. [20]. However, these equations were
applied to the stationary axisymmetric black holes to derive
the Smarr formula and so on. On the other hand, we
focused on the strictly stationary spacetimes which are
not restricted to be axisymmetric in general and do not
contain black holes.

III. HIGHER DIMENSIONS

Let us examine the same issue in higher dimensions. The
Lagrangian we consider is

L ¼ R� 1

p!
H2

ðpÞ � 2j@�j2 � 2�; (28)

where HðpÞ is the field strength of a (p� 1)-form field

potential and � is a complex scalar field. We consider the
strictly stationary spacetimes, p-form fields, and complex
scalar fields LkHðpÞ ¼ 0, Lk� ¼ 0.

The Einstein equations become

Rab ¼ 1

p!

�
pHa

c1���cp�1Hbc1���cp�1
� p� 1

n� 2
gabH

2
ðpÞ

�

þ @a�@b�
� þ @a�

�@b�þ 2

n� 2
�gab: (29)

The field equations for the source free p-form field are

raH
a1���ap�1a ¼ 0 (30)

and the Bianchi identity. Let us decompose the p-form
field strength into the electric (Ea1���ap�1

) and magnetic

parts (Ba1���an�p�1
) as

V2Ha1���ap ¼ �pk½a1Ea2...ap�

þ �a1���apapþ1apþ2���ank
apþ1Bapþ2���an ; (31)

where we define each component by

Ea1...ap�1
¼ Haa1���ap�1

ka (32)

and

Ba1...an�p�1
¼ 1

p!ðn� p� 1Þ! �b1���bpca1���an�p�1
kcHb1���bp1 :

(33)

Here we define the twist tensor !a1���an�3
as

!a1���an�3
¼ ��a1���an�3bcdk

brckd; (34)

where � is a constant. From the definition of the twist, it is
easy to check that

ran�3

�
!a1���an�3

V4

�
¼ 0 (35)

holds. From the field equations, we have

r½a1Ea2���ap� ¼ 0 (36)

and

r½a1Ba2���an�p� ¼ 0: (37)

Then there are the potentials, that is,

Ea1���ap�1
¼ r½a1�a2���ap�1� (38)

and

Ba1���an�p�1
¼ r½a1�a2���an�p�1�: (39)

It is seen from the definition of Ea1���ap�1
and Ba1���an�p�1

that ka1�a1...ap�2
¼ 0 and ka1�a1...an�p�2

¼ 0 hold. The

other field equations give us

�a1���ap�2
rap�1

�
Ea1...ap�2ap�1

V2

�

¼ ��1ð�1Þn!a1���ap�2b1���bn�p�1�a1���ap�2

Bb1���bn�p�1

V4

(40)

and

�a1���an�p�2
ra

�
Ba1...an�p�2a

V2

�

¼ ���1 ð�1Þp
ðn� p� 1Þ!ðp� 1Þ!

�!b1���bp�1a1���an�p�2�a1���an�p�2

Eb1���bp�1

V4
: (41)

Using the Einstein equations, we can show

��1�abcd1���dn�3rc!d1���dn�3

¼ 2ðn� 3Þ!ð�1ÞnðkaRb
c � kbRa

cÞkc

¼�2ð�1Þnþpðn� 3Þ!
ðp� 1Þ! �abcd1���dn�3Ecd1���dp�2

Bdp�1���dn�3
:

(42)

Note that we used the stationarity of the complex scalar
field. Then we see that there are the (n� 4) forms UE and
UB satisfying

r½a1U
E
a2���an�3� ¼ !a1���an�3

� ð�1Þn2�ðn� 3Þ!
ðp� 1Þ! E½a1���ap�1

�ap���an�3�

(43)

and
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r½a1U
B
a2���an�3�

¼!a1���an�3
þð�1Þnþp2�ðn�3Þ!

ðp�1Þ! �½a1���ap�2
Bap�1���an�3�;

(44)

respectively. Using UE;B and Eq. (35), we can have the
following equations:

ra

�
UE

a1���an�4

!a1���an�4a

V4

�ð�1Þp�2�
�a1���an�p�2

Ba1���an�p�2a

V2

�

¼ð�1Þn
�
!2

V4
��2�

B2

V2

�
(45)

and

ra

�
UB

a1���an�4

!a1���an�4a

V4

� ð�1Þnþp�2�
�a1���ap�2

Ea1���ap�2a

V2

�

¼ ð�1Þn
�
!2

V4
� �2�

E2

V2

�
; (46)

where � ¼ 2ðn� 3Þ!ðn� p� 1Þ! and �¼2ðn�3Þ!=
ðp�1Þ!. On the other hand, the Einstein equations give us

2

V2
Rabk

akb ¼ ra

�raV2

V2

�
þ 1

�2ðn� 3Þ!
!2

V4

¼ 2ðn� p� 1Þ
ðp� 1Þ!ðn� 2Þ

E2

V2

þ 2ðp� 1Þðn� p� 1Þ!
n� 2

B2

V2
� 4

n� 2
�:

(47)

Then, together with Eqs. (45) and (46), this implies

ra

�raV2

V2
þ Xa

�
¼ � 4

n� 2
�; (48)

where Xa is defined by

Xa ¼ ð�1Þn
�2ðn� 2Þ! ððp� 1ÞUE

a1���an�4
þ ðn� p

� 1ÞUB
a1���an�4

Þ!
a1���an�4a

V4
� ð�1Þnþp

� 2ðp� 1Þðn� p� 1Þ!
n� 2

�a1���an�p�2
Ba1���an�p�2a

V2

� ð�1Þp 2ðn� p� 1Þ
ðp� 1Þ!ðn� 2Þ

�a1���ap�2
Ea1���ap�2a

V2
:

(49)

In a similar argument with the four-dimensional case, we
can show that the mass vanishes. Then, using the positive

mass theorem in higher dimensions,1 we can see that the
spacetime is exactly Minkowski/anti-deSitter spacetime
depending on the presence of the negative cosmological
constant. In any cases, the p-form fields and complex
scalar fields vanish. For the asymptotically anti-deSitter
case, we had to introduce the vector field ra satisfying

rar
a ¼ � 4

n� 2
�: (50)

The existence of this ra is discussed in Appendix A. As in
the four dimensions, the argument without introducing ra

is given in Appendix B.

IV. SUMMARYAND DISCUSSION

In this paper, we showed that strictly stationary space-
times with p-form and complex scalar fields should be
Minkowski or anti-deSitter spacetime depending on the
presence of the negative cosmological constant.
From our result, there is no room to have the self-

gravitating solution composed of complex scalar fields in
strictly stationary spacetimes. Therefore, if one wishes to
explore a new solution, one has to think of a setup that
breaks some of the assumptions imposed here. For ex-
ample, we can find a new configuration which is nonsta-
tionary, but has a nonstationary 1-Killing vector field [10].
For asymptotically anti-deSitter spacetimes, we had to

introduce a vector ra to show the no-go. As shown in
Appendix B, there is a way to avoid this additional treat-
ment for the Einstein-complex scalar system. However, it
is quite hard to extend this into the cases with p-form
fields. This is left for future work.
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APPENDIX A: EVALUATION OF
BOUNDARY TERM

In this Appendix, we present details of the calculation of
the integral of Eqs. (26) and (48). Since the argument for

1If one considers spin manifolds, the positive mass theorem is
easily proven as in the four-dimensional Witten’s version [3]
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asymptotically flat spacetimes is included in asymptoti-
cally anti-deSitter cases, we will focus on the latter.

In asymptotically anti-deSitter spacetimes, the leading
behavior of the metric is

ds2 ¼ �V2dt2 þ V�2dr2 þ r2d�2
n�2 þ � � � ; (A1)

where

V2 ¼ 1� 2M

rn�3
� 2

ðn� 2Þðn� 1Þ�r2: (A2)

Let us consider the vector ra satisfying

rar
a ¼ � 4

n� 2
�: (A3)

Near the infinity, ra will be given by

ra ’ � 4

ðn� 2Þðn� 1Þ�rð@rÞa þ � � � : (A4)

The global existence of ra is guaranteed as follows.
Without a loss of generality, one can suppose the form of
ra ¼ ra’. Then the above equation becomes r2’ ¼
�2�. We can redefine ’ so that �2� is subtracted and
then r2 ~’ ¼ S, where S is a nonsingular source term. The
existence of the solution to this is a well-known fact in
regular Riemannian manifolds. Therefore, we can always
introduce that ra in general.

For the vectors Va satisfying Vaka ¼ 0, the spacetime
divergence is written as

raV
a ¼ 1ffiffiffiffiffiffiffi�g

p @�ð ffiffiffiffiffiffiffi�g
p

V�Þ ¼ 1

V
ffiffiffi
q

p @iðV ffiffiffi
q

p
ViÞ; (A5)

where q is the determinant of the spacial metric and the
index i stands for the space component. Therefore, the
volume integral of the left-hand side of Eqs. (26) or (48)
becomes the surface integral and then it is evaluated as

Z
S1
ð@iV2 � VriÞdSi

¼ !n�2r
n�2

�
@rV

2 þ 4

ðn� 2Þðn� 1Þ�r

�

¼ 2ðn� 3Þ!n�2M; (A6)

where !n�2 is the volume of the unit (n� 2)-dimensional
sphere.

For asymptotically flat spacetimes, we do not introduce
ra and the evaluation at the boundary is the same as the
above in the limit of � ¼ 0.

APPENDIX B: ALTERNATIVE PROOF

For asymptotically anti-deSitter spacetimes, one may
want to avoid introducing the vector ra satisfying
Eq. (50). This is because its introduction is artificial.
Therefore, we try to present an alternative proof. Here
we focus on the Einstein gravity with complex scalar fields.
In the following proof, unfortunately, we cannot include

the p-form fields. The argument here basically follows
Ref. [21] which was devoted to the vacuum case (see
also Ref. [22]).
In the absence of the p-form fields, the volume integrals

of Eqs. (18) and (45) give us

!a1���an�2
¼ 0 (B1)

and then the spacetimes must be static. Here we assumed
that the scalar fields are also stationary,Lk� ¼ 0. Then we
can employ the following metric form:

ds2 ¼ �V2ðxiÞdt2 þ gijðxkÞdxidxj: (B2)

The Ricci tensor becomes

R00 ¼ VD2V ¼ n� 1

‘2
V2 þ S00; (B3)

Rij ¼ ðn�1ÞRij �
1

V
DiDjV ¼ � n� 1

‘2
gij þ Sij; (B4)

where ‘�2 ¼ �2�=ðn� 1Þðn� 2Þ and

Sab ¼ Tab � 1

n� 2
gabT ¼ @a�@b�

� þ @a�
�@b�: (B5)

For the current case, S00 ¼ 0 and Sij ¼ Di�Dj�
� þ

Di�
�Dj�.

The ðn� 1Þ-dimensional Ricci scalar becomes

ðn�1ÞR ¼ �ðn� 1Þðn� 2Þ
‘2

þ 1

V2
S00 þ Sii

¼ �ðn� 1Þðn� 2Þ
‘2

þ 2jD�j2: (B6)

Using the Einstein equations, we have the equation

D2c � V�1DiVD
ic

¼ 2

�
DiDjV � 1

‘2
gijV

�
2 þ 2SijDiVDjV

þ 2DiV

V
DiS00 � 2

V2
S00ðDVÞ2 þ 2

‘2
S00

¼ 2

�
DiDjV � 1

‘2
gijV

�
2 þ 4jDiVDi�j2 � 0; (B7)

where c ¼ ðDVÞ2 þ ‘�2ð1� V2Þ. Since c ! 0 as
r ! 1, the maximum principle implies c � 0. Thus, we
have the following inequality:

ðDVÞ2 � ðV2 � 1Þ‘�2: (B8)

We will use this soon.
Let us perform the conformal transformation defined by

�g ij ¼ ð1þ VÞ�2gij: (B9)

Then we see that the Ricci scalar of �gij is non-negative,
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ðn�1Þ �Rð1þ VÞ�2

¼ ðn�1ÞRþ 2ðn� 2Þ D2V

V þ 1
� ðn� 1Þðn� 2Þ ðDVÞ2

ð1þ VÞ2

¼
�
1

V2
þ 2ðn� 2Þ

VðV þ 1Þ
�
S00 þ Sii

þ ðn� 1Þðn� 2Þ
‘2

�
� 1� V

1þ V
� ‘2

ðDVÞ2
ð1þ VÞ2

�

¼ �ðn� 1Þðn� 2Þ
ð1þ VÞ2 c þ 2jD�j2 � 0: (B10)

The r ¼ 1 boundary is the unit sphere in the confor-
mally transformed space and the trace of the extrinsic
curvature is �kjr¼1 ¼ n� 2. Thus, the conformally trans-
formed space is a compact Riemannian manifold, �M, with
the boundary of the unit sphere, @ �M ¼: Sn�2. Pasting the
flat space removing the unit ball with �M along Sn�2, we can
construct the manifold with the zero mass. Since the Ricci
scalar is non-negative there, we can apply the positive mass
theorem [2,23] and then see that the space should be flat.
This means �R ¼ 0 and then Eq. (B10) implies

Di� ¼ 0 (B11)

and

c ¼ 0: (B12)

Then Eq. (B7) implies

DiDjV ¼ 1

‘2
gijV: (B13)

Therefore, ðn�1ÞRij ¼ �ðn� 2Þ‘�2gij. Due to the confor-

mal flatness, the Weyl tensor with respect to gij is zero

and then the Riemann tensor becomes ðn�1ÞRijkl ¼
� 1

‘2
ðgikgjl � gilgjkÞ. Using the Einstein equations, we

can compute the Riemann tensor of spacetime as follows:

R0i0j ¼ VDiDjV ¼ V2

‘2
gij ¼ � 1

‘2
g00gij; (B14)

Rijkl ¼ ðn�1ÞRijkl ¼ � 1

‘2
ðgikgjl � gilgjkÞ: (B15)

Therefore, Rabcd ¼ �‘�2ðgacgbd � gadgbcÞ holds and
then the spacetime is exactly anti-deSitter spacetime.
Once the p-form fields are turned on, we cannot show

the inequality as Eqs. (B7) and (B10). So the current proof
does not work for such cases.
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