PHYSICAL REVIEW D 86, 064040 (2012)

Dynamical apparent horizons in inhomogeneous Brans-Dicke universes
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The presence and evolution of apparent horizons in a two-parameter family of spherically symmetric,
time-dependent solutions of Brans-Dicke gravity are analyzed. These solutions were introduced to model
space- and time-varying gravitational couplings and are supposed to represent central objects embedded in
a spatially flat universe. We find that the solutions possess multiple evolving apparent horizons, both black
hole horizons covering a central singularity and cosmological ones. It is not uncommon for two of these

horizons to merge, leaving behind a naked singularity covered only by a cosmological horizon. Two
characteristic limits are also explicitly worked out: the limit where the theory reduces to general relativity
and the limit where the solutions become static. The physical relevance of this family of solutions is

discussed.
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I. INTRODUCTION

Varying “constants” of nature, first hypothesized by
Dirac [1], can be implemented naturally in the context of
scalar-tensor gravity, in which the gravitational coupling
becomes a function of the spacetime point [2,3]. String
theories [4] contain a dilaton field coupling nonminimally
to gravity which mimics a Brans-Dicke-like scalar field
(indeed, it is well known that the low-energy limit of the
bosonic string theory is an w, = —1 Brans-Dicke theory
[5D. Scalar-tensor cosmology, in which the effective gravi-
tational coupling G.; depends on time, has been the sub-
ject of much work [6,7] but much less attention has been
devoted to inhomogeneous solutions in which G depends
also on space. However, there is really no support for
assuming that this spatial dependence can be neglected
[8,9]. Spherically symmetric inhomogeneous solutions of
scalar-tensor gravity representing a central condensation
embedded in a cosmological background have been found
in Ref. [9].

There is plenty of additional motivation for studying
analytical solutions of gravitational theories representing
a central object in a cosmological space. First, the present
acceleration of the cosmic expansion [10] requires, if one
is to remain within the boundaries of general relativity, that
approximately 73% of the energy content of the universe is
in the form of exotic (pressure P ~ —p™) dark energy
[11] (see Ref. [12] for a list of references and Ref. [13] for a
comprehensive discussion). An alternative to this ad hoc
explanation is that gravity deviates from general relativity
at large scales. Further motivation for alternative gravity
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comes from the fact that virtually all theories attempting to
quantize gravity produce, in the low-energy limit, not
general relativity but modifications of it containing correc-
tions such as nonminimally coupled dilatons and/or higher
derivative terms.

These ideas have led to the introduction (or better,
revival) of f(R) gravity to replace Einstein theory at large
scales [14—17] and explain the cosmic acceleration (see
Refs. [18,19] for reviews and Ref. [20] for shorter intro-
ductions). Since the f(R) theories of interest for cosmology
are designed to produce a time-varying effective cosmo-
logical ““constant,” spherically symmetric solutions repre-
senting black holes or central condensations in these
theories are expected to be asymptotically Friedmann-
Lemaitre-Robertson-Walker (FLRW), not asymptotically
flat, and to be dynamical. Very few such solutions are
known, among them the inhomogeneous time-dependent
solution of Clifton in f(R) = R'*% gravity [21,22].

Second, analytical solutions describing central objects in
a cosmological background are of interest also in general
relativity. The first study of this kind of solution by
McVittie [23] is related to investigations of the problem
of whether, and to what extent, the cosmic expansion
affects local systems (see Ref. [24] for a recent review).
In addition to the old (and largely overlooked) McVittie
solution [23], which is not yet completely understood
[25-28] relatively few other solutions with similar features
have been reported over the years [29].

Third, more recent interest in cosmological condensa-
tions in the context of general relativity arises from yet
another attempt to explain the present cosmic acceleration
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without dark energy and without modifying gravity. This is
the idea that the backreaction of inhomogeneities on the
cosmic dynamics is sufficient to produce the observed
acceleration [30]. However, the formalism implementing
this idea is plagued by formal problems and it has not been
shown to be able to explain convincingly the cosmic ac-
celeration. Indeed, even the sign of the backreaction terms
in the equation giving the averaged acceleration has not
been shown to be the correct one [31-33] and recent work
casts even more serious doubts on this proposed solution to
the cosmic acceleration problem [34].

Attempts to move beyond these riddles involve the
consideration of analytical solutions of Einstein theory
describing cosmological inhomogeneities and including
Lemaitre-Tolman-Bondi, Swiss-cheese, and other models
[35,36]. Moreover, the teleological nature of the event
horizon has prompted the consideration of apparent, trap-
ping, isolated, dynamical, and slowly evolving horizons
([37,38] and references therein), a subject of great interest
[39]. There has also been interest in dynamical black hole
horizons in relation to the accretion of dark energy [40].
Physically, black hole event horizons can only be traversed
from the outside to the inside while, for the traditional
cosmological event and particle horizons, signals can cross
from the inside to the outside but not vice-versa. Event
horizons are null surfaces and are appropriate to describe
stationary situations but, as said, they require the knowl-
edge of the entire spacetime manifold to even be defined.
An apparent horizon is a spacelike or timelike surface
defined as the closure of a 3-surface which is foliated by
marginal surfaces (those on which the expansion of the
congruence of radial null geodesics vanishes) [41].

With all these motivations in mind, it is interesting to
further explore analytical solutions of alternative gravity
theories representing spherical objects in cosmological
backgrounds. Here we consider the class of solutions dis-
covered by Clifton et al. [9] in Brans-Dicke theory, de-
scribed by the action [2]

w
Sun = [ at TR R eV, 6V, 0 + 26 ]
(n

where k = 87G, G is Newton’s constant, £ is the
matter Lagrangian, and the Brans-Dicke scalar field ¢
corresponds to the inverse of the gravitational coupling
G.;." Matter is assumed to be a perfect fluid with energy
density p™, pressure P, and equation of state P =
(y — 1)p"™, where 7y is a constant [9]. In the following
sections we analyze and discuss the structure of the solu-
tions of Ref. [9], focusing on the dynamical behavior of
their apparent horizons, in an attempt to understand if the
these solution harbor black holes or naked singularities.
The bizarre behavior of the apparent horizons we find

'We follow the notations and conventions of Ref. [42].
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seems to be rather typical of solutions describing cosmo-
logical black holes [43] in a certain region of the parameter
space, but other behaviors appear for different combina-
tions of the parameters.

Note that, even though it is standard procedure to rely on
apparent horizons as proxies for event horizons to charac-
terize black holes in theoretical and numerical relativity
[38,44], it is also well known that apparent horizons de-
pend on the spacetime slicing adopted [45] (this problem is
perhaps less worrisome when spherical symmetry is as-
sumed). We adopt the same practice here, bearing the
caveat just mentioned in mind.

III. CLIFTON-MOTA-BARROW SOLUTIONS

We begin with the Clifton-Mota-Barrow spherically
symmetric and time-dependent metric [9]

ds? = —e"@df? + a?(He*@(dp? + 0*d0?), (2)

where dQ)?> = d6? + sin’0d¢? denotes the line element on
the unit 2-sphere,

V(@) = (1_%)20‘ — A2a 3)
1+ 52 ’
ag@
4
er@ = (1 + —2ZQ> Asle=Dl@+2), “4)
¢ 200(2—y)+2
a(t) — a0<t_>3a'07(2—7)+4 = a*tﬁ, (5)
0
t 2(4-3y)
3wgy2—YFE 4 _2(g2—
#1,0) = o )T TAEEN o)
0
a = ’
2(1)0 + 3
myf 4 3y —
p" (1, 0) = py )(W‘;)) A%, (8)

p'™ is the energy density of the cosmic fluid, w, is the
Brans-Dicke parameter, m is a mass parameter, «, ¢, d,
p(()m) and ¢, are positive constants (where ¢y, pg") and 1, are
not actually fully independent). Moreover, @ is the iso-
tropic radius related to the Schwarzschild radial coordinate

7 by

F= 9(1 + %)2, )
so that
mZ
di = (1 - 4a292)dg. (10)
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The quantity « is real for wy < —2 and for w, > —3/2.
For definiteness, we impose that w, > —3/2 and 8 = 0.
The Clifton-Mota-Barrow metric (2) is separable and re-
duces to the spatially flat FLRW metric in the limit m — 0
in which the central mass disappears. For y # 2, setting

= (y —2)7! yields B =0 and the metric becomes
static, whereas the scalar field remains time-dependent.
Setting y = 2 or y = 4/3 leads to 8 = 1/2 and the scale
factor scales as /7 independent of the value of the Brans-
Dicke coupling w,. We will consider the physically inter-
esting special cases in a separate section below.

Our main concern here is whether the solutions in the
Clifton-Mota-Barrow class represent black holes or naked
singularities, embedded in a cosmological background (by
naked singularity we simply mean a timelike or null sin-
gularity which is not covered by an event horizon). To
answer this question, we would like to determine the
location and the nature of horizons. Since the spacetime
is dynamical, it is appropriate to consider apparent, instead
of event, horizons and, therefore, we will locate the appar-
ent horizons and study their dynamics.

III. FINDING THE APPARENT HORIZONS

We proceed by rewriting the metric in the more familiar
form

ds® = —A2dP + @ (DALY Dd? + 2dQ?,  (11)

using the areal radius

2 1 1
r= a(t)Q(l + ) Aule= D@+ — g4(p)FAale—Dla+2),
2a0
(12)
The differential dr is related to d7 by

dr = a(t)FA= D@2 gt + q(r)Ade Dt g7

a(thhm

(e =Dt 2)Aue~ DD 2g5  (13)

which means that

dr — a(t)FA=(a~ D+ gy

F= . (14
a(t)Ai(“‘l)(“J“”‘z[A2 + %(a — (o +2)]
The line element can now be written as
ds? — _[AZa _ a*(n)r 2(a2+2a—2)]dt2
BXo)
1(t a?+3a—
QOO iz gy A o 202,
B*(0) B*(0)
(15)

where we have defined the positive function
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(a—1D(a+2)m

Blo) =A@+ —m5—" . (16)
a 7

(Note that B > 0 is a consequence of o = ‘/22(201? =1)

We now introduce a new time coordinate f which serves
the purpose of eliminating the time-radius cross term.
Define 7 such that

- 1

where (7, r) is a function to be fixed later and F(z, r) is an
integrating factor which guarantees that d7 is an exact
differential and satisfying the equation

e =5(7) S

The line element then assumes the form

()

B(e)?*
+ {2¢F|:A2a _ B((t))rz 2(a2+2a—2)]

Fa(t)r 1302 A?
ZB( )2 }ddt+{B( 7

2(0z2+201—2)i|

dS2 — _[AZa _ 2(a2+2a—2)]F2di2

a7
—_ 2 2a0 _

v [A B(e?
l,ba(f)r qz+?a 2
B(e )2

+2

}d 2+ r2dQ2. (19)

The choice

—a +"$a

a(pF A

V=" Dt o)’ 20)

for the function ¢, with

202
Do) =1-1 (tz)r Asta=1), Q1)

turns the metric into the simple form

H? A2
ds*=—A*DF*dP +(B D r2AM2-a) 4 )dr +r2dQ?,

(22)

where H = a(r)/a(t) denotes the Hubble parameter of the
background FLRW universe. We are now able to locate the
apparent horizons (when they exist), which are the loci of
spacetime points satisfying V¢rV.r=0, or g =0
[38,46], that is

B*D
H?r?A?2~) + A2B2D

= 0. (23)

The solution of this equation reduces to the condition
D =0, or
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B2AY D) = {272, (24)

which, explicitly, reads

(a — 1)(a + 2) ma(z) Al

2

Aa—l[A2 +
a r

] = *Hr.
(25

In an expanding universe with H > 0 the quantity in
square brackets is positive, hence we choose the positive
sign. Equation (25) can then be written as
(@ — )(a +2)
—s——m

2(a—1)(a+1)
(3

— Aty =0,
(26)

Hr* — a(HA

The Ricci scalar becomes singular as r— 0 for all
positive values of the mass parameter m (see the
Appendix) and this limit denotes a central singularity.
The energy density (8) of the cosmic fluid also diverges
in this limit.

IV. SPECIAL CASES AND LIMITS

Before determining the generic behavior of apparent
horizons, it is useful to look into some special limits, of
either the theory or the solutions, which will help us gain
some intuition.

A. The zero mass limit

In the limit m — O in which there is no central object,
Eq. (26) reduces to Hr> = r, which yields » = H™!, the
Hubble horizon.” This value is also obtained in the limit of
large @ in which r becomes a comoving radius and the
metric approaches the spatially flat FLRW metric. This is
best seen using Eq. (24) as at this limit A, B — 1 (the limit
is less straightforward in Eq. (26) as r — o0 and ¢ — ).
Therefore, we expect the horizon at larger radii to be a
cosmological one.

B. The static limit

We now consider the limit in which the metric becomes
static, which corresponds to 8 = 0 and yields a(¢) = ay,
see Eq. (5). This value for 3 is obtained for wy = (y —2)7!
(with y # 2). This requirement implies that for each the-
ory in the Brans-Dicke class, (i.e., for each value of w)
there is at most one solution with a static metric in the
Clifton-Mota-Barrow family, and it corresponds to a spe-
cific choice of equation of state for the fluid. As mentioned
earlier, for @ to be real, one needs to have wy < —2 or
wy > —3/2. This translates to y > 3/2 or y < 4/3 when
the 8 = 0 condition has been imposed.

In a FLRW universe with curvature index k # 0, the cosmo-
logical apparent horizon has radius (H? + k/a2)~'/2.
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Equations (6) and (8) yield

1\2 -
81,1 = ol L) A, @)
0
p(m) — p(()m)A72a' (28)

The Brans-Dicke field ¢ depends on time even though
the metric g, and the matter energy density p'™ donot. In
fact, there is no solution in the Clifton-Mota-Barrow class
which is genuinely static.

In terms of the areal radius r, it is

A2
ds? = —A2eqs + ﬁdr2 + r2dQ?, (29)

and the apparent horizons are located by the equation
g'" = 0 equivalent to B = 0, or

2
m m

The discriminant of this quadratic equation is A(a?) =
g—;[(az —2)?> — a?] and one easily finds that A = 0 for
a =1 and @ =2 [remember that &« = 0, cf., Eq. (7)].
Therefore, for 1 < o < 2 there are no real roots and no
apparent horizons. For @ = 1 and for @ = 2 the real roots,

m 2

0: = 5[—(@>=2) £q(@*-27 -’ (3D

a

are both negative and do not correspond to apparent hori-
zons. We conclude that the solution with static metric
always describes a naked singularity.

C. The limit to general relativity

We now consider the limit to general relativity obtained
for wg— 0. When y # 0 and y # 2, this limit yields
a— 1, ¢ — ¢, and’

1 =55\2 m\4
ds> = —(—9) dr’ + az(t)(l +E) -(dp*+ 02d0?),

[+
(32)
alt) = ao<i)%, (33)
lo
p" (1) = pf)m)<t7°)2A*2- (34)

This metric corresponds to one of the generalized
McVittie metrics studied in Refs. [47-49] which, in iso-
tropic coordinates, assume the form

3When y = 2 the scale factor is forced to be a(z) « /7, ¢ =
t~! and p™ o 173 and does not depend on the Brans-Dicke
coupling parameter w,. However, the limit wy — oo still yields
a = 1 and leads to the same functional dependence on @ for the
various quantities as the y # 2 case. The metric still belongs to
the generalized McVittie class.
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_ M@
! 2ea(t)>2 e

ds*>= —(7
M(1)
1+ 20a(t)

M(1)
2¢al(t)

where M(t) is an arbitrary positive regular function of time.

The McVittie solution of general relativity originally
introduced to study the effect of the cosmological expansion
on local systems [23] is obtained for M(¢) = const. This
time independence of the function M(¢) in this case follows
from the McVittie condition G} = 0 which corresponds to
zero radial energy flow T} = 0. Lifting this restriction and
allowing for radial accretion of energy generates the solu-
tions [47] with general functions M(¢) (see the discussion in
Ref. [47]. It is shown in Ref. [49] that, in the class of
generalized McVittie solutions [47], the solution with co-
moving mass function M(t) = Mya(t) (where M, is a con-
stant) is a late-time attractor for solutions characterized by a
background universe which keeps expanding in the future
(a — +o0). This is precisely the wy— oo limit of the
scalar-tensor solution (2)—(8), which also makes it clear
that the Clifton-Mota-Barrow solutions are indeed accreting.
Incidentally, the generalized McVittie solutions [47] of gen-
eral relativity were derived two years after the discovery of
the Clifton-Mota-Barrow solution (2)—(8) and the one with
late-time attractor behavior and with M = Ma(z) could, in
principle, have been discovered by taking the limit to gen-
eral relativity of this Brans-Dicke solution.

The apparent horizons of the generalized McVittie met-
rics [47] have been discussed in Ref. [48]. For large values
of wg, the solution (2)-(8) approaches the attractor
McVittie solution and its apparent horizons should also
approach those of the attractor McVittie metric: jumping
ahead slightly, this is indeed the case, as can be seen by
comparing our Fig. 4 with Fig. 3 of Ref. [48].

The y = 0 case, which corresponds to a cosmological
constant, leads to a diverging exponent S for the scale
factor a(f) when wg, — 0. This behavior can be attributed
to the fact that the Clifton-Mota-Barrow solution assumes a
power law form for the scale factor, whereas the general
relativity limit of the solution is actually expected to be
Schwarzschild-de Sitter spacetime.

For y = 2 the wy,— oo limit yields o — 1, ¢ < 1,
a(t) « /1, p(t) =« t3A72, and the metric is the same as
in Eq. (32).

+ az(t)(l + )4(d92 +02d0?), (35)

V. GENERIC BEHAVIOR OF APPARENT
HORIZONS

Having discussed the special cases, we now turn our
attention to the behavior of apparent horizons in generic
solutions of the Clifton-Mota-Barrow family. In order to
solve Eq. (26) and determine the location of these horizons,
it is convenient to introduce the new quantity x = %, in
terms of which it is
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1—=x

1+ x

while H = B/t. One can now express parametrically the

radius r of the apparent horizon(s) and the time coordinate
as functions of the parameter x, obtaining

m (1 + x)? (1 - x)—(“lff””
2a0 X 1+ x

(36)

. (3D

r(x) = a.t

2a X
ma,fB (1 + x)ala+D

r2l@ @D P
o

x) = { [(1 e

The radii of the apparent horizons as functions of time
are plotted in Figs. 1-4 for the values of the Brans-Dicke
parameter w, = —17/12, —1/3, 1, and 10°, respectively,
and for various choices of the equation of state parameter
v. In these plots r and ¢ are actually measured in units of

1
(ma,)™s = <a0 f)"%, (39)
Iy
as this convenient normalization completely absorbs the
dependence on the parameters m, ay, .

The blue, dotted curves correspond to a cosmological
constant (y = 0) and the red, dashed curves correspond to
dust (y = 1). The green, solid curves show the behavior of
the apparent horizons for both radiation (y = 4/3) and stiff
matter (v = 2). This is because 8, which determines the
scaling of the scale factor with time, is equal to 1/2 and

0.3 1
0.2} 1
N
/ /\\\\
// \\
01t / |
/ \\
/
/ S
/ S~
)/ S
! \\\
! TN
! e
i ~———
0 L L L
0 1 2 3 4

FIG. 1 (color online). Radii of the apparent horizons in units of
(ma.)"/1=B) as functions of time in the same units for w, =
—17/12. The red, dashed curve corresponds to dust (y = 1) and
the green, solid curve corresponds to both radiation (y = 4/3)
and stiff matter (y = 2). For dust, there is only one apparent
horizon whose radius reaches a maximum and then decreases.
For radiation and stiff matter, instead, there is a naked singularity
in a universe which expands forever.
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6 , :

FIG. 2 (color online). Same as Fig. 1 but for wy = —1/3. The
blue, dotted line corresponds to a cosmological constant
(y = 0). In all cases there is one, ever expanding horizon, and
so the solution appears to represent a naked singularity in an
expanding universe.

independent of w for both of these values. For wy =
—17/12 (Fig. 1) we do not consider the case of a cosmo-
logical constant, corresponding to y = 0, as it leads to a
contracting universe.

As can be seen in the figures (see captions for more
details), for wg = —17/12 and w, = —1/3 there is only
one apparent horizon for all of the values of y we have
considered. In most cases, this horizon is expanding for-
ever, so the solution is most likely to represent a naked
singularity in an expanding universe. For oy = —17/12
and for dust (v = 1), on the other hand, the apparent
horizon exhibits a perhaps more remarkable behavior: it
initially expands, to reach a maximum radius and then
contracts to reach zero radius asymptotically.

Even more noteworthy is the behavior of the apparent
horizons when wy = 1 (Fig. 3). For dust, radiation, and
stiff matter there is initially one expanding apparent hori-
zon, see Fig. 3(a). Two more apparent horizons appear. The
outer one expands, while the inner one eventually merges
with the initial one and they both disappear. Similar phe-
nomenology was reported in Ref. [22] for Clifton’s solu-
tion [21] of metric f(R) = R'*? gravity.*

In fact, this puzzling behavior was found long ago in the
Husain-Martinez-Nufiez solution [43] describing a black
hole embedded in a universe filled with a free massless
scalar field minimally coupled to gravity and accreting
onto the black hole (compare Fig. 3(a) with Fig. 1 of
Ref. [43]).

“This fact is not surprising since metric f(R) gravity is
equivalent to a Brans-Dicke theory with ¢ = f'(R), v =0
and a scalar field potential V(¢) [18].
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For wy = 1 and y = 0, which corresponds to a cosmo-
logical constant and is presented in Fig. 3(b), the situation
is similar, except for the fact that the pair of horizons
actually appears inside the initial horizon. Such behavior
has not been reported before to the best of our knowledge.

Finally, Fig. 4 corresponds to the large value of the Brans-
Dicke parameter w, = 10°. The behavior of the apparent
horizon dynamics is very similar to that present in the
general relativity limit of the Clifton-Mota-Barrow solution
obtained for wy — o0 and discussed in Sec. IV C. For dust,
radiation and stiff matter, the singularity is initially naked
and eventually gets covered by two expanding horizons, see
Fig. 4(a). For a cosmological constant this picture
is reversed: there are initially two nested horizons, one

0.006

0.004 - P

0.002} .

0 0.004 0.008 0.012
t
(b) wo =1, zoom-in

FIG. 3 (color online). Same as previously but for wy, = 1. For
all three values of vy, at early times there is only one horizon. As
the universe expands, the singularity gets covered by two more
apparent horizons. Two of the horizons eventually merge and
disappear, leaving behind only the cosmological horizon cover-
ing a naked singularity.
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FIG. 4 (color online). Same as previously but for w, = 107,
wy — oo being the limit to general relativity. Here for all three
cases there are two horizons, presumably a black hole horizon
and a cosmological horizon. For a cosmological constant (blue,
dotted curve) these two horizon merge and disappear. For the
other two cases, there is initially a naked singularity which
eventually gets covered by the two horizons.

expanding and one contracting, which eventually merge and
disappear, leaving the singularity naked, see Fig. 4(b).

VI. DISCUSSION AND CONCLUSIONS

There are relatively few solutions describing central
matter configurations embedded in FLRW backgrounds
in general relativity, and even fewer in alternative theories
of gravity. We have studied here the Clifton-Mota-Barrow
class of spacetimes, which are solutions of Brans-Dicke
theory. The latter is perhaps the minimal implementation
of a varying gravitational coupling, containing only a
scalar extra degree of freedom. As such, it is justly
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regarded as the prototypical alternative to Einstein’s the-
ory. It is, therefore, quite interesting to assess whether or
under which conditions can the Clifton-Mota-Barrow
spacetimes describe a realistic localized matter configura-
tion embedded in an evolving universe.

Given that these spacetimes contain singularities, we
have focused our study on the behavior of dynamical
apparent horizons. According to the position in parameter
space, we have uncovered different types of behavior for
these horizons. The most important result is perhaps that,
for certain values of the parameters, the Clifton-Mota-
Barrow spacetime appears to contain a naked singularity
(at least as far as one can tell based on the presence/absence
of apparent horizons; though unlikely, it is possible that the
particular slicing of the spacetime leads to the absence of
an apparent horizon even though the singularity is cloaked
by an event horizon). In some cases, this singularity is
present from the time of the big bang, thus preventing us
from obtaining the metric and scalar field as regular devel-
opments of Cauchy data, and later gets covered by black
hole and cosmological horizons. For other values of the
parameters, pairs of black hole and cosmological horizons
appear and bifurcate, or merge and disappear, a phenome-
nology known from a solution of general relativity [43] and
one of f(R) gravity [21,22]. Overall, the Clifton-Mota-
Barrow class of solutions exhibits a great richness of
behaviors of its apparent horizons, including the new
ones reported in Figs. 1 and 3.

The physical relevance of spacetimes harboring naked
singularities is, of course, questionable. However, there are
still two scenarios in which the Clifton-Mota-Barrow
spacetimes might still be physically relevant: (i) in the
region of the parameter space where a black hole horizon
eventually cloaks the singularity, it is conceivable that they
can (approximately) describe the late time evolution of
black holes that have formed from collapse in FLRW
spacetime (a different solution would be needed to describe
this collapse); (ii) even in the region where no horizon
forms, they might be able to (approximately) describe the
exterior of a matter configuration embedded in an FLRW
universe (a different solution will be needed in order to
describe the interior). Whether or not any of these two
scenarios are meaningful requires further investigation.

The fact that such a variety of behaviors (cosmological
black holes, naked singularities, appearing/bifurcating and
merging/disappearing pairs of apparent horizons) is con-
tained in the relatively simple Brans-Dicke theory leads us
to believe that more complicated theories of gravity will
exhibit an even greater degree of richness and complication
when it comes to dynamical horizons, which has not yet
been explored.

Lastly, one might be tempted to consider the thermody-
namics of these dynamical apparent horizons, although its
physical meaning is still questioned [50]. In any case, it
should be noted that the field equations of Brans-Dicke
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theory can be recast in the form of effective Einstein
equations G, = 87 (T,, + Tifi,)) in which the Brans-
Dicke scalar field plays the role of an effective stress-
energy component T,(f;,) The latter can easily violate all
of the energy conditions because it contains terms linear in
the second derivatives of ¢ in addition to the usual terms
quadratic in its first derivatives.
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APPENDIX: RICCI SCALAR

The expression of the Ricci scalar is
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Since a > 1 the Ricci scalar diverges as ¢ — 7. Using Eq. (9), it is seen that this value of the isotropic radius corresponds
to 7 = 2m/a and [using Eq. (12)] to the areal radius r = 0. Therefore, r — 0 denotes a central singularity, which is a
strong one in the sense of Tipler’s classification [51] because the area of the 2-spheres orbits of symmetry vanishes as
r — 0: an object falling onto » = 0 will be crushed to zero volume.
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