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The purpose of this paper is to study quasinormal modes (QNM) of the Bardeen black hole due to scalar

perturbations. We have done a thorough analysis of the QNM frequencies by varying the charge q, massM

and the spherical harmonic index l. The unstable null geodesics are used to compute the QNM’s in the

eikonal limit. Furthermore, massive scalar field modes are also studied by varying the mass of the field.

Comparisons are done with the QNM frequencies of the Reissner-Nordstrom black hole.
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I. INTRODUCTION

In general, black hole space-times are expected to have
horizons as well as singularities covered by the horizons.
Contrary to this notion, a ‘‘regular’’ space-time without a
singularity and with a horizon was proposed by Bardeen
[1]. This particular paper is not readily available. However,
a discussion of this model is given by Borde in Refs. [2,3].
There were other regular black holes other than the one
proposed by Bardeen and they were all referred to as
‘‘Bardeen black holes’’ by Borde [2]. In this paper, we
will focus on the space-time proposed by Bardeen [1].

Ayón-Beato and Garcı́a [4] proposed a model of
nonlinear electrodynamics coupled to Einstein gravity to
obtain a Bardeen black hole as an exact solution. Hence, the
Bardeen black hole can be interpreted as the solution to a
nonlinear magnetic monopole with a mass M and a charge
q [4]. Ayón-Beato and Garcı́a [4] have presented several
other interesting regular solutions with nonlinear electro-
dynamics coupled to General Relativity in Refs. [5–8].

There are several works in the literature related to the
Bardeen black hole. Gravitational lensing of the regular
black hole was studied by Eiroa and Sendra [9]. The geo-
desic structure of the test particles around theBardeen black
hole was studied by Zhou et al. [10]. Gravitational and
electromagnetic stability were discussed by Moreno and
Sarbach [11]. Quantum corrections for the Bardeen black
hole was presented by Sharif and Javed [12].

In this paper, our focus is on studying the scalar field
perturbations of the Bardeen black hole and to compute the
quasinormal modes of the perturbations.

When a black hole undergoes perturbations, the result-
ing behavior can be described in three stages. The first
stage corresponds to radiation due to the initial conditions
of the perturbations. The second stage corresponds to
damped oscillations with complex frequencies. These fre-
quencies are independent of the initial conditions and are
only dependent on the black hole properties such as the
mass, charge and the angular momentum. These modes are

called quasinormal modes (QNM). The third stage in gen-
eral corresponds to a power law decay of the fields.
QNM’s have attracted lot of attention from the research

community. First of all, there is interest from the experi-
mental point of view, since, there is hope that the QNM’s
may be detected by the gravitational antennas such as
LIGO, VIRGO and LISA in the future. Since the QNM’s
only depend on the properties of the black holes, such
detections would give clues to identify the physical prop-
erties of the black holes. On the other hand, due to the
famous relation between AdS/CFT duality, many works
have focused on studying QNM’s of black holes with a
negative cosmological constant [13]. Another reason to
create interest on QNM’s was the conjecture by Hod [14]
relating quantum properties of a Schwarzschild black hole
and asymptotic QNM’s. There are many works aimed at
computing asymptotic QNM frequencies along those lines.
An excellent review on QNM’s is written by Konoplya and
Zhidenko [15]. It is fascinating to see some new work
relating QNM to various aspects of black hole physics.
For example, some recent works have addressed relation
between QNM’s and hidden conformal symmetry [16,17].
Another interesting paper was written on the connection
between gravitational lensing andQNM’s by Stefanov et al.
[18]. Not only black holes, even the naked singularities have
been studied from theQNMpoint of view [19]. Given all the
above, it is worthwhile to seek answers how nonlinear
sources modify the QNM properties of a black hole.
The paper is presented as follows: In Sec. II, the Bardeen

black hole solutions are introduced. In Sec. III, the pertur-
bations by a massless scalar filed is given. In Sec. IV, we
will compute the QNM’s using the sixth-order WKB ap-
proach and discuss the results. In Sec. V, a relation between
the null geodesics and the QNM’s are presented. In
Sec. VI, the perturbations by a massive scalar field is
studied. The summary is given in Sec. VII. Directions for
further studies are given in Sec. VIII.

II. INTRODUCTION TO THE REGULAR
BARDEEN BLACK HOLE

In this section, we will give an introduction to the
regular static-charged black hole named the Bardeen black
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hole [1]. Ayón-Beato and Garcı́a [4] interpreted the
Bardeen black hole as the gravitational field of a magnetic
monopole arising from nonlinear electrodynamics. The
proposed action to include the nonlinear electrodynamic
term is

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
R

16�G
� 1

4�
LðFÞ

�
: (1)

Here, R is the scalar curvature, and LðFÞ is a function of
F ¼ 1

4F��F
��. Here, F�� ¼ 2ð5�A� �5�A�Þ is the

electromagnetic field strength. In Ref. [4] the authors
derived the function LðFÞ in order to obtain the Bardeen
black hole as

L ðFÞ ¼ 3

2sq2

� ffiffiffiffiffiffiffiffiffiffiffi
2q2F

p
1þ ffiffiffiffiffiffiffiffiffiffiffi

2q2F
p �5

2
: (2)

Here, q andM are the magnetic charge and the mass of the

magnetic monopole. Also, s ¼ jqj
2M . The equations of mo-

tion derived from the action in Eq. (1) are given by

G�
� ¼ 2

�
@L
@F

F��F
�� � ��

�L
�
; (3)

5�

�
@L
@F

F��

�
¼ 0: (4)

Static spherically symmetric solution for the above equa-
tions were proved to be the Bardeen black hole solution
given by the metric

ds2¼�fðrÞdt2þfðrÞ�1dr2þr2ðd�2þsin2ð�Þd’2Þ; (5)

where

fðrÞ ¼ 1� 2Mr2

ðr2 þ q2Þ3=2 : (6)

The magnetic field is given by

F�’ ¼ 2q sin�: (7)

For q � 0, the space-time in Eq. (5) has horizons only if
jqj � 4M

3
ffiffi
3

p . This was shown by Borde [2,3]. For q > 4M
3
ffiffi
3

p ,

there are no horizons. For q ¼ 4M
3
ffiffi
3

p , there are degenerate

horizons. The function fðrÞ is plotted in Fig. 1 for varying
magnetic charge q.

Asymptotically, the metric function fðrÞ behaves as

fðrÞ � 1� 2M

r
þ 3Mq2

r3
þO

�
1

r5

�
: (8)

The metric for the black hole in Einstein-Maxwell grav-
ity, given by the well-known Reissner-Nordstrom black
hole, with a magnetic charge is

ds2 ¼ �fðrÞRNdt2 þ fðrÞ�1
RNdr

2 þ r2ðd�2 þ sin2ð�Þd’2Þ;
(9)

where

fðrÞRN ¼ 1� 2M

r
þ q2

r2
: (10)

In Fig. 2, the two metric functions for the Bardeen
black hole and the Reissner-Nordstrom black hole are
plotted for comparison. It is clear from Fig. 2, that both
black holes have two horizons. For small r, the behavior is
somewhat different even though asymptotically both
functions are similar. The nonsingular nature of the func-
tion fðrÞ for the Bardeen black hole is observed from
Fig. 2. As discussed in Ref. [4], the space-time is regular
everywhere since all the scalar curvatures, R, R��R

��

and R����R
���� are regular everywhere. However, the

electromagnetic invariant F ¼ g2

2r4
has singular behavior.

The Bardeen black hole satisfies the weak-energy
condition.
The Hawking temperature of the Bardeen black hole is

given by

T ¼ � 1

4�

dgtt
dr

��������r¼rþ
¼ 1

4�

�
2Mrþðr2þ � 2q2Þ
ðq2 þ r2þÞ5=2Þ

�
: (11)
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FIG. 1 (color online). The figure shows the function fðrÞ for
M ¼ 1 and varying values of q.
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FIG. 2 (color online). The figure shows the function fðrÞ for
the Bardeen black hole (dark line) and the Reissner-Nordstrom
black hole (dashed line). Here, M ¼ 1 and q ¼ 0:5.

SHARMANTHIE FERNANDO AND JUAN CORREA PHYSICAL REVIEW D 86, 064039 (2012)

064039-2



Here, rþ is the event horizon of the black hole which is a
solution of fðrÞ ¼ 0. In comparison, the Hawking tempera-
ture for the Reissner-Nordstrom black hole is

TRN ¼ 1

4�

�
2M

r2þ
� 2q2

r3þ

�
: (12)

The temperature for both black holes for the same mass is
plotted in Fig. 3. The Reissner-Nordstrom black hole is
‘‘hotter’’ than the Bardeen black hole.

III. MASSLESSS SCALAR PERTURBATION
OF BARDEEN BLACK HOLES

In this section, we will introduce scalar perturbation
by a massless field around the Bardeen black hole. The
Klein-Gordon equation for a massless scalar field � in
curved space-time can be written as

52 � ¼ 0; (13)

which is equal to

1ffiffiffiffiffiffiffi�g
p @�ð ffiffiffiffiffiffiffi�g

p
g��@��Þ ¼ 0: (14)

Using the ansatz for the scalar field �,

� ¼ e�i!tYð�;	Þ
ðrÞ
r

: (15)

Equation (14) simplifies to the Schrödinger-type equation
given by

d2
ðrÞ
dr2�

þ ð!2 � Vðr�ÞÞ
ðrÞ ¼ 0; (16)

where

VðrÞ ¼ lðlþ 1ÞfðrÞ
r2

þ fðrÞf0ðrÞ
r

: (17)

Here, r� is the well-known ‘‘tortoise’’ coordinate given by

dr� ¼ dr

fðrÞ : (18)

Note that l is the spherical harmonic index. Here, r� cannot
be evaluated explicitly due to the nature of the function
fðrÞ. When r ! 1, r� ! 1 and when r ! rþ, r� ! �1.
The effective potential VðrÞ for the Bardeen black hole is

plotted to display how it changes with charge q, the mass
M, and the spherical harmonic index l in Fig. 4–6,
respectively.
We have also plotted the scalar effective potential for the

Reissner-Nordstrom black hole with the one for the
Bardeen black hole in Fig. 7 for comparison.

A. Remarks on the stability of the black hole

The potentials are real and positive outside the event
horizon for all the figures. Hence, following the arguments
by Chandrasekhar [20] the Bardeen black holes can be
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FIG. 3 (color online). The figure shows the temperature T for
the Bardeen black hole (dark line) and the Reissner-Nordstrom
black hole (dashed line) as a function of the magnetic charge q.
Here, M ¼ 1.
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FIG. 4 (color online). The behavior of the effective potential
VðrÞ with the charge for the Bardeen black hole. Here, M ¼ 1
and l ¼ 2. The height of the potential decreases when the charge
decreases.
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FIG. 5 (color online). The behavior of the effective potential
VðrÞ with the mass M. Here, q ¼ 0:5 and l ¼ 2. The maximum
height of the potential increases as M decreases.
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considered stable classically under perturbations by a
massless scalar field.

IV. QUASINORMAL MODES OF BARDEEN
BLACK HOLE

Quasinormal modes (QNM) for perturbed black hole
space-times are the solutions to the wave equation given
in Eq. (16). In order to obtain solutions, one has to impose
boundary conditions. At the horizons, the boundary con-
dition is such that the wave has to be purely ingoing. In
asymptotically flat space-times, such as the Bardeen space-
time, the second boundary condition is for the solution to
be purely outgoing at spatial infinity.

Usually, the wave equation for black hole perturbations
cannot be solved exactly. There are few cases of exactly
solved models known to the authors which are mentioned
here. In 2þ 1 dimensions, the wave equations of the well-
known BTZ black hole [21], the charged dilaton black hole
[22,23], the Lifshitz black hole [24] and the Godel black

hole [25] have been solved to obtain exact QNM values. In
two dimensions, an asymptotically anti-de-Sitter black
hole has been solved exactly [26]. In five dimensions,
Nunez and Starinets have obtained exact values for vector
perturbations [27].
There are many methods developed to compute QNM’s

in the literature. In this paper, a semianalytical technique
developed by Iyer and Will [28] is followed. The method is
based on theWKB approximation. Iyer andWill developed
it up to third order and later, Konoplya developed it up to
sixth order [29]. Konoplya computed QNM frequencies of
D-dimensional Schwarzschild black holes in that paper
which also includes a comparison WKB method with
varying orders. Examples of the application of the third-
order WKB to compute QNM’ are given in Refs. [30,31]
and of the sixth-order WKB is given in Ref. [32].
We will follow the formalism presented in the paper by

Konoplya [29]. In theWKB formula, the QNM frequencies
are related to the effective potential in Eq. (17) as

!2 � V0ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2V 00

0

q � L2 � L3 � L4 � L5 � L6 ¼ nþ 1

2
: (19)

Here, V0 and V
00
0 are the maximum potential and the second

derivative of the potential where the maximum occurs. The
expressions for L2 and L3 are given in Ref. [28] and L3, L4,
L5 and L6 are given in Ref. [29]. Here, n is the overtone
number. The computed ! values are complex and are as
! ¼ !R � i!I.
First, we have computed QNM frequencies by varying the

charge of the black hole. We have also computed the QNM’s
for the Reissner-Nordstrom black hole with the same mass
and the charge in order to compare. Here, n ¼ 0.

q

!R

(RN BH)

!I

(RN BH)

!R

(Bardeen BH)

!I

(Bardeen BH)

0.1 0.484455 0.0968185 0.484470 0.0966541

0.2 0.486929 0.0969738 0.486999 0.0963019

0.3 0.491179 0.0972258 0.491380 0.0956563

0.4 0.497411 0.0975605 0.497895 0.0946064

0.5 0.505966 0.0979492 0.507037 0.0929337

0.6 0.517386 0.0983318 0.519668 0.0901727

0.7 0.532561 0.0985743 0.537388 0.0851340

0.76 0.544071 0.0985311 0.551623 0.0796005

0.8 0.553052 0.0983443 ** **

0.85 0.566148 0.0977987 ** **

From Figs. 8 and 9, it is clear that real value of the QNM
frequency ! increases when q increases for both black
holes. However, the imaginary part of ! decreases for a
Bardeen black hole with charge, while for the Reissner-
Nordstrom black hole, there is a maximum before it starts
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FIG. 6 (color online). The behavior of the effective potential
VðrÞ with the spherical harmonic index l. Here, M ¼ 1 and
q ¼ 0:5. The height of the potential increases when l increases.
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FIG. 7 (color online). The behavior of the effective potential
VðrÞ for the Bardeen black hole (dark line) in comparison with
the potential for the Reissner-Nordstrom black hole (dashed
line). Here, M ¼ 1, q ¼ 0:2 and l ¼ 2. The potential for the
Bardeen black hole is slightly higher in the small r range.
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to decrease. We like to mention here that QNM frequencies
for Reissner-Nordstrom black hole were studied by
Anderson [33] and Leaver [34]. There is a discussion on
some of the earlier work on this subject by Frolov and
Novikov [35].

Next, the QNM values are computed for the Bardeen
black hole for various values of the mass M as shown in
Figs. 10 and 11. Here, n ¼ 0.

M !R !I

1 0.5070370 0.0929337

2 0.2444720 0.0480105

3 0.1619870 0.0321495

4 0.1212350 0.0241475

5 0.0968939 0.0193308

6 0.0807027 0.0161148

7 0.0691519 0.0138156

8 0.0604955 0.0120903

When mass M is increases, both !R and !I decrease.

Next, the QNM values are computed for the Bardeen
black hole for various values of the spherical harmonic
index l as shown in Figs. 12–15. Note that the WKB work
only for l > n. Hence, we have chosen l ¼ 2 and computed
! of the fundamental mode with n ¼ 0 and the first over-
tone with n ¼ 1.
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FIG. 9 (color online). The behavior of Im ! with the magnetic
charge q for M ¼ 1, and l ¼ 2.
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FIG. 8 (color online). The behavior of Re ! with the magnetic
charge q for M ¼ 1, and l ¼ 2.
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FIG. 10 (color online). The behavior of Re ! with the mass M
for l ¼ 2, and q ¼ 0:5.
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FIG. 11 (color online). The behavior of Im ! with the mass M
for l ¼ 2, and q ¼ 0:5.
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FIG. 12 (color online). The behavior of Re ! with the spheri-
cal harmonic index l for M ¼ 1, and q ¼ 0:5. Here, n ¼ 0.
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For both n ¼ 0 and n ¼ 1, !R increases linearly with l.
On the other hand, !I decreases and becomes stable for
large l.

V. QNM’S OF THE MASSLESS BLACK HOLES IN
THE EIKONAL LIMIT FROM THE NULL

GEODESICS OF THE BLACK HOLE

A. ! to the lowest order via null geodesics

Cardoso et al. [36] presented an important result to
compute the QNM frequencies at the eikonal limit via
the unstable null geodesics of the black hole for asymptoti-
cally flat black holes. This method was based on some
earlier work done along these lines by Mashhon et al.
[37,38]. This approach has been applied to the Kerr black
hole by Dolan [39], the near extreme Kerr black hole by
Hod [40] and to the black holes in anti-de-Sitter space by
Morgan et al. [41].
First, let us give an introduction to the null geodesics of

the Bardeen black hole. The geodesics of the Bardeen
black hole were studied in detail by Zhou et al. [10].
Hence referring to further details to that paper, we
will only present the final equation of motion of the
photons as

_r 2 þ Vnull ¼ E2; (20)

with

Vnull ¼
�
L2

r2

�
fðrÞ: (21)

Here, L is the angular momentum of the photons. For
r ¼ rh, Vnull ¼ 0 and for r ! 1, Vnull ! 0. In Fig. 16,
the Vnull is given for various values of the magnetic
charge q. The height is higher for higher charge q.
Referring to the effective potential for the massless

scalar field Vscalar in Eq. (17), one can see that in the
eikonal limit (l ! 1),

Vscalar � fðrÞl
r2

: (22)

Hence, one can conclude that the maximum of Vscalar

occurs at r ¼ rm given by

2fðrmÞ � rmf
0ðrmÞ ¼ 0: (23)

Since the effective potential for the null geodesics is given

by Vnull ¼ L2f
r2

, the maximum of Vnull occurs at V
0
null ¼ 0

leading to

2fðrcÞ � rcf
0ðrcÞ ¼ 0: (24)

Hence the maximum of Vscalar and the location of the
maximum of the null geodesics coincide at rm ¼ rc.
Cardoso et al. [36] presented the QNM frequencies in the
eikonal limit as

!QNM ¼ �cl� i

�
nþ 1

2

�
j�j: (25)

Here, �c is the coordinate angular velocity given as
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FIG. 13 (color online). The behavior of Im ! with the spheri-
cal harmonic index l for M ¼ 1, and q ¼ 0:5. Here, n ¼ 0.
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FIG. 14 (color online). The behavior of Re ! with the spheri-
cal harmonic index l for M ¼ 1, and q ¼ 0:5. Here, n ¼ 1.
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FIG. 15 (color online). The behavior of Im ! with the spheri-
cal harmonic index l for M ¼ 1, and q ¼ 0:5. Here, n ¼ 1.
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�c ¼
_	

_t
; (26)

and � is the Lyapunov exponent which is interpreted
as the decay rate of the unstable circular null geodesics.
The derivation of the above results is clearly given in
Cardoso et al. [36]. For the Bardeen black hole, �c and �
are given as

�c ¼
_	ðrcÞ

_tðrcÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
fðrcÞ
r2c

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2c þ q2Þ3=2 � 2Mr2c

r2cðr2c þ q2Þ3=2

vuut ; (27)

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�V00

nullðrcÞ
2 _tðrcÞ2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�V00

nullðrcÞr2cfðrcÞ
2L2

s
: (28)

From the values of �c and �, one can extract the real
and the imaginary part of ! from Eq. (25) easily. In
Figs. 17 and 18, � and � are given for the Bardeen
black hole. One can conclude that the behavior is very
similar when ! was computed using the WKB approach
in Sec. IV.

One can compare the ! in the eikonal limit for the
Reissner-Nordstrom black hole with the Bardeen black
hole. First let us compute the rc for the maximum of the
effective potential for the photons of the Reissner-
Nordstrom black hole as

rc ¼ 1

2

�
3Mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 � 8Q2

q �
: (29)

Hence, �RN and �RN can be computed with the Eqs. (27)
and (28) with the corresponding metric function fRNðrÞ.
In Figs. 19 and 20 �RN and �RN are plotted. Note that
�RN has a maximum at q ¼ 0:7M. For the Reissner-
Nordstrom black hole, the oscillation frequency, !R,
increases with the charge q. The damping rate, !I, in-
creases and reaches a maximum at q ¼ 0:7M to decrease
rapidly to zero at M ¼ q. Ferrari and Mashhoon [38]
presented QNM’s of the Reissner-Nordstrom black hole.
In that paper, the QNM’s were presented in the eikonal
limit (l � 1) and showed similar behavior. We like to
note that the Lyapunov coefficients for the Reissner-
Nordstrom black hole has been studied in detail in a
recent paper by Pradhan [42].
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FIG. 16 (color online). The graph shows the relation of Vnull

with r for various values of the magnetic charge q. Here, M ¼ 1
and L ¼ 1. When q increases, Vnull increases.
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FIG. 17 (color online). The graph shows�c as a function of q.
Here, M ¼ 1 and L ¼ 1.
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FIG. 18 (color online). The graph shows the Lyapunov expo-
nent � as a function of q. Here, M ¼ 1 and L ¼ 1.
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FIG. 19 (color online). The graph shows �c as a function of q
for the Reissner-Nordstrom black hole. Here, M ¼ 1 and L ¼ 1.
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B. On the expansion method to compute the
QNM’s at the eikonal limit

Dolan and Ottewill [43] developed an expansion
method to compute QNM’s at the eikonal limit to higher
orders. Here, the basis for their approach is basically the
same as given in Sec. VAwhere the null geodesics and the
unstable circular orbits are the key to the computation.
Other references where this method is applied are given
in Refs. [39,44,45].

In this approach, the QNM’s were expanded in inverse
powers of L ¼ lþ 1=2. Let us first outline the formalism
so that later we can apply it to the Bardeen black hole. We
shall start with the master equation for the scalar perturba-
tion given in Eq. (16),

d2
ðrÞ
dr2�

þ ð!2 � Vscalarðr�ÞÞ
ðrÞ ¼ 0; (30)

where

VscalarðrÞ ¼ lðlþ 1ÞfðrÞ
r2

þ fðrÞf0ðrÞ
r

: (31)

Now, redefine 
ðrÞ as


ðrÞ ¼ expð
R

�ðrÞ
fðrÞdrÞ: (32)

Here,

�ðrÞ ¼ ibckcðrÞ!: (33)

The parameter b is called the ‘‘impact parameter’’ given by
L=E and bc is the value at r ¼ rc which is the radius of the
unstable circular orbit. L and E of the null geodesics are
conserved quantities of the orbits given by

L ¼ r2	; E ¼ fðrÞt: (34)

More information about the geodesics are given in
Refs. [10,43] if one needs more details of the origin of
these quantities.

Now, to define what kcðrÞ is, a new function k2ðr; bÞ is
defined as

k2ðr; bÞ ¼ 1

b2
� fðrÞ

r2
: (35)

The origin of the function is in the equation for null geo-
desics given in Eq. (20) which also could be written as�

dr

d	

�
2 1

r2
¼ 1

b2
� fðrÞ

r2
: (36)

In Dolan and Ottewill’s paper [43], the assumption is made
that there exists a critical impact parameter bc, such that
k2ðr; bcÞ has degenerated roots. Since at r ¼ rc,dr=d	 ¼ 0,
this leads to

k2ðrc; bcÞ ¼ 0;
@k2ðr; bcÞ

@r

��������r¼rc
¼ 0: (37)

If the assumption is made that the repeated root is a double
root, a new function kcðrÞ is defined as

kcðrÞ ¼ Signðr� rcÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðr; bcÞ

q
¼ ðr� rcÞKðrÞ: (38)

Here, KðrÞ becomes

KðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðr; bcÞ
ðr� rcÞ2

s
: (39)

Hence, the function kcðrÞ is positive for r > rc and negative

for r < rc. If just
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðr; bcÞ

p
is considered to be kcðrÞ, then it

would have lead to a function which is not differentiable at
r ¼ rc. On the other hand, the definition given in Eq. (38)
leads to a smooth function at r ¼ rc. To clarify these issues,

we have plotted the graphs k2ðr; bcÞ,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðr; bcÞ

p
, kcðrÞ and

dkcðrÞ=dr in Figs. 21 and 22.
Now that kcðrÞ is well established, on can substitute 
ðrÞ

into Eq. (30) which simplifies to be

d

dr

�
fðrÞdvðrÞ

dr

�
þ 2�ðrÞ dfðrÞ

dr
þ ð!2 þ �ðrÞ2 � VscalarðrÞ

þ fðrÞ�0ðrÞÞvðrÞ
fðrÞ

¼ 0: (40)

Following the approach in Ref. [43], ! and vðrÞ are
expanded in inverse powers of L as

!n¼0 ¼ La�1 þ a0 þ L�1a1 þ L�2a2 þ . . . :; (41)

and

vn¼0 ¼ expðS0ðrÞ þ L�1S1ðrÞ þ L�2S2ðrÞ þ . . . :Þ; (42)

Note that in this paper, we are only interested in the
fundamental modes corresponding to n ¼ 0. The expan-
sion could be done for higher modes with n > 0 as given in
Ref. [43]. Now, the ! and vðrÞ are substituted to Eq. (40)
and similar powers of L are collected together as
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0.192
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FIG. 20 (color online). The graph shows the Lyapunov expo-
nent � as a function of q for the Reissner-Nordstrom black hole.
Here, M ¼ 1 and L ¼ 1.
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L2: a1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
fðrcÞ
r2c

s
¼ 1

bc
; (43)

L1:
2a�1a0
fðrÞ � 2b2ckcðrÞ2a�1a0

fðrÞ þ ibca�1k
0
cðrÞ

þ 2ibckcðrÞa�1S
0
0ðrÞ

¼ 0; (44)

L2:

�
1

4r2
� f0ðrÞ

r

�
þ ða20 þ 2a�1a1Þ ð1� b2ckcðrÞ2Þ

fðrÞ
þ ða0S00ðrÞ þ a�1S

0
1ðrÞÞð2ibckcðrÞÞ þ ia0bck

0
cðrÞ

þ f0ðrÞS00ðrÞ þ fðrÞðS00ðrÞ2 þ S000 ðrÞÞ
¼ 0: (45)

Here 00000 denotes differentiation with respect to r. The
coefficients ai are found by imposing continuity condition
at r ¼ rc. Once ai are found, S0iðrÞ could be found. For
example, from L2 terms, a�1 is evaluated at r ¼ rc as

a�1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
fðrcÞ
r2c

s
: (46)

Note that this is same as �c computed in Eq. (27).
From L2 term, a0 is evaluated at r ¼ rc as

a0 ¼ �ibc
2

fðrcÞk0cðrcÞ: (47)

By substituting a0 and a�1 back into Eq. (44), one obtains
S00ðrÞ. One can differentiate S00ðrÞ to obtain S000 ðrÞ and

substitute to Eq. (45). Then, a1 can be evaluated r ¼ rc.
This process can be continued to find all ai values and all
S0iðrÞ functions. In this paper, we will only compute a�1, a0
and a1 for the Bardeen black hole. We have chosen,M ¼ 1
and q ¼ 0:76 leading to rc ¼ 2:3299 and bc ¼ 4:5484.
By the expansion method, the following ai values are
computed:

a�1 ¼ 0:219858; a0 ¼ �0:0792063i;

a1 ¼ 0:00499392: (48)

Finally, !n¼0 in powers of L is written as

!n¼0 ¼ 0:219858L� 0:0792063iþ 0:00499392L�1:

(49)

VI. MASSIVE SCALAR PERTURBATIONS

In this section, we will address how the massive scalar
field decays. For the Schwarzschild black hole, it has been
observed that the massive modes decay slower than the
massless field [46,47]. Hence it is interesting to see if such
behavior is possible in the Bardeen black hole, leading to
long-lived modes.
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FIG. 21 (color online). The behavior of kðr; bcÞ and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðr; bcÞ2

p
with r. Here, M ¼ 1, q ¼ 0:76, rc ¼ 2:3299 and bc ¼ 4:5484.
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FIG. 22 (color online). The behavior of kcðrÞ and dkcðrÞ
dr with r.

Here, M ¼ 1, q ¼ 0:76, rc ¼ 2:3299 and bc ¼ 4:5484.
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Let us first present the equation for a massive scalar field
in curved space-time as

52 ��m2� ¼ 0: (50)

Using the ansatz similar to Eq. (15), one obtain the modi-
fied potential as

VmassiveðrÞ ¼ lðlþ 1ÞfðrÞ
r2

þ fðrÞf0ðrÞ
r

þm2fðrÞ: (51)

The effective potential Vmassive is plotted in Fig. 23 for
varying values of the mass m of the scalar field.

The QNM’s for the massive scalar field decay is com-
puted using the WKB approximation discussed in Sec. IV.
They are given in Figs. 24 and 25.

m !R (n ¼ 0) !I (n ¼ 1) !R (n ¼ 1) !I (n ¼ 1)

0 0.551623 0.0796005 0.534227 **

0.1 0.553910 0.0791170 0.536006 0.282895

0.2 0.560821 0.0776240 0.541304 0.280290

0.3 0.572499 0.0749856 0.550006 0.279202

0.4 0.589201 0.0709443 0.561865 0.278647

0.5 0.611305 0.0650541 0.576393 0.278327

0.6 0.639305 0.0565300 0.590768 0.278125

0.64 0.652259 0.0520869 0.586619 0.176782

0.67 0.662598 0.0482116 0.542126 0.162060

0.69 0.669602 0.0452134 0.377631 0.149858

From Fig. 24, the real part of the lowest QNM frequency
increases with mass of the field. However, for the first
overtone (n ¼ 1), the real part of QNM reaches a maxi-
mum and decreases rapidly with the mass of the field.
Ohashi and Sakagami did an analysis on the QNM’s for
the Reissner-Nordstrom black hole with the massive scalar

field in Ref. [48]. The real part of the ! shows similar
behavior as for the !R for n ¼ 0 for the Bardeen black
hole. The imaginary part of the ! decreases with the mass
for the Bardeen black hole for both values of n. This is
similar to the behavior shown for !I of the Reissner-
Nordstrom black hole [48].

VII. SUMMARY

We have studied the scalar perturbations of the Bardeen
black hole. The quasinormal mode spectrum of the mass-
less scalar field is computed for various values of the
charge q, mass M, and the spherical index l. The QNM
spectrum is also computed for the Reissner-Nordstrom
black hole by varying the charge along with the Bardeen
black hole and comparing the behavior.
We have also applied the unstable null geodesics of the

black hole to compute the QNM frequencies in the eikonal
limit (l � 1). Once again, a comparison is done with the
QNM frequencies of the Reissner-Nordstrom black hole in
the eikonal limit. We have also introduced the expansion
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FIG. 23 (color online). The behavior of Vmassive with the mass
m of the scalar field. Here M ¼ 1, q ¼ 0:5, and l ¼ 2. When the
mass decreases, the height of the effective potential also
decreases.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

m

r

n 0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.35
0.40
0.45
0.50
0.55
0.60

n 1

FIG. 24 (color online). The behavior of Re ! with the mass
of the scalar field m for M ¼ 1, q ¼ 0:76, and l ¼ 1. Plots for
n ¼ 0 and n ¼ 1 are given.
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FIG. 25 (color online). The behavior of Im ! with the mass of
the scalar field m for M ¼ 1, q ¼ 0:76, and l ¼ 1. Plots for
n ¼ 0 and n ¼ 1 are given.
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method to compute ! in inverse powers of L following the
approach by Ref. [43].

Finally, the QNM frequency spectrum is computed for
the massive scalar field. A discussion is also presented
comparing the spectrum to the massive modes of the
Reissner-Nordstrom black hole.

VIII. DIRECTIONS FOR FURTHER STUDY

There are several avenues to proceed from here to extend
this work. For the Reissner-Nordstrom black hole, in the
eikonal limit (l � 1), the effective potentials for scalar,
Dirac and gravitational perturbations are approximately
the same. This is clearly presented in the paper by Ferrari
and Mashhoon [38]. It would be interesting to do the
analysis on gravitational perturbations and Dirac perturba-
tions of the Bardeen black hole to see if similar behavior
persists.

Highly damped asymptotic QNM’s of the black hole is
not studied in this paper. As mentioned in the introduction,
that is a very active area of research on QNM’s. It would
be interesting to extend this work to study ! for large
n values. Motl and Neitzke [49], did an analytical study
to compute the asymptotic QNM’s for the Reissner-
Nordstrom black hole. It would be interesting to compare
the asymptotic values of the Bardeen black hole with such
values to understand how the nonlinear nature effects the
physical properties of the black holes.

It would be interesting to compute higher-order expan-
sions of ! in the eikonal limit using the approach in
Ref. [43].
An extension of the Bardeen blackhole with a nonlinear

electromagnetic source presented by Ayón-Beato and
Garcı́a [5] has been studied by Nomura and Tamaki [50].
The metric of this black hole is given by

ds2 ¼ �fðrÞdt2 þ fðrÞ�1dr2 þ r2ðd�2 þ sin2ð�Þd’2Þ;
(52)

where

fðrÞ ¼ 1� 2Mr2

ðr2 þ q2Þ3=2 þ
q2r2

ðr2 þ q2Þ2 : (53)

Nomura and Tamaki concluded that the QNM frequencies
become pure imaginary when n ! 1. It would be interest-
ing to see if such behavior persists in all nonlinear sources
such as the one presented in this paper.
With regard to the QNM’s for the massive scalar field, it

would be interesting to do an analytical study if possible, to
find a bound on the mass m when !I becomes zero.
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