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We provide an explicit construction for Gazeau-Klauder coherent states related to non-Hermitian

Hamiltonians with discrete bounded below and nondegenerate eigenspectrum. The underlying spacetime

structure is taken to be of a noncommutative type with associated uncertainty relations implying minimal

lengths. The uncertainty relations for the constructed states are shown to be saturated in a Hermitian as

well as a non-Hermitian setting for a perturbed harmonic oscillator. The computed value of the Mandel

parameter dictates that the coherent wave packets are assembled according to sub-Poissonian statistics.

Fractional revival times, indicating the superposition of classical-like sub-wave packets, are clearly

identified.
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I. INTRODUCTION

Noncommutative spacetime structures are suggested by
gravitational stability [1] in almost all promising ap-
proaches to quantum gravity, such as string theory [2–4]
or loop quantum gravity [5,6] as well as black hole physics
[7]. Besides the numerous possible structures, we focus
here on a particularly interesting one giving rise to minimal
measurable distance beyond which the entire concept of
length becomes meaningless. Such type of cutoff in our
possible knowledge of space results from generalized
versions of Heisenberg’s uncertainty relations, i.e. from
modifying standard spacetime to certain noncommutative
versions in a specific way. These types of spaces have
attracted considerable attention in recent years in the
mathematical and physical literature [8–21].

So far, most of the attention has been paid to the algebras
but fairly little, in comparison to standard systems, to the
actual nature and properties of the states they act on. Here,
we focus on the explicit construction of coherent states
respecting these modified uncertainty relations. Generic
expressions for coherent states were proposed by Gazeau
and Klauder (GK) [22,23]. By construction the states are
expected to be stable when evolved in time, in the sense
that they remain coherent during the evolution process. For
a one-dimensional harmonic oscillator on a noncommuta-
tive space, we present here a computation of these states in
first-order perturbation theory. When dealing with non-
commutative spacetime structures of the aforementioned
type, one also encounters an additional complication due to
the fact that the associated canonical variables are, in
general, no longer Hermitian with regard to standard inner
products [10]. Consequently, Hamiltonians formulated in
terms of these variables are also no longer Hermitian. We
adopt here a recent approach to non-Hermitian systems

[24–28] which renders them self-consistent and physically
meaningful.
A striking feature of the coherent states presented here is

the well-known fact that in a certain parameter regime, the
original wave packet can be fully reconstructed after a
specific time and can be interpreted as a superposition of
classical-like sub-wave packets. In the system considered
here, the existence of these structures is a signature of the
spacetime deformation and disappears in a standard set-
ting. This indicates the interesting possibility that the
structures of noncommutative spaces could actually be
probed experimentally.
Many of the computations presented here have been

attempted previously by Ghosh and Roy in Ref. [29], but
almost all our results disagree with their findings and
conclusions, which we believe to be conceptually and
computationally incorrect as we will point in the course
of our presentation.
Our paper is organized as follows: In Sec. II we as-

semble various generalities on GK-coherent states and
show how the construction needs to be altered for a
non-Hermitian setting. We also set up our notation for a
standard perturbative treatment. In Sec. III we construct
GK states and evaluate various expectation values for a
Hermitian as well as non-Hermitian setting, which we use
to test the Ehrenfest theorem and the equivalence principle.
In Sec. IV we present our analysis for the revival times
structure. Our conclusions are stated in Sec. V.

II. PERTURBATIVE GK-COHERENT STATES FOR
NON-HERMITIAN HAMILTONIANS

We commence by establishing our notations through
collecting some well-known facts about GK-coherent
states and indicate the necessary modifications needed
for a non-Hermitian setting. The GK-coherent states
[22,23] for a Hermitian Hamiltonian h with discrete
bounded below and nondegenerate eigenspectrum are
defined as a two-parameter set
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jJ; �;�i ¼ 1

N ðJÞ
X1
n¼0

Jn=2 expð�i�enÞffiffiffiffiffiffi
�n

p j�ni;

J 2 Rþ
0 ; � 2 R: (2.1)

The states j�ni are the orthonormal eigenstates of h, that is
hj�ni ¼ ℏ!enj�ni. The probability distribution and nor-
malization constant are

�n :¼
Yn
k¼1

ek and N 2ðJÞ :¼ X1
k¼0

Jk

�k

; (2.2)

respectively, where the latter results from the requirement
hJ; �;�jJ; �;�i ¼ 1.

Here we will consider Hamiltonians H on noncommu-
tative spaces that are non-Hermitian with regard to the
standard inner product. The construction for the coherent
states is then easily adoptable when we assume that the
Hamiltonian H is pseudo or quasi Hermitian, i.e., the non-
Hermitian Hamiltonian H and the Hermitian Hamiltonian
h are related by a similarity transformation h ¼ �H��1,
with�y� being a positive definite operator playing the role
of the metric. The corresponding eigenstates j�i and j�i
of H and h, respectively, are then simply related as j�i ¼
��1j�i. As observables are expected to be Hermitian, we
need to change the metric when computing expectation
values for operators associated to the non-Hermitian
system [24–28]. The same reasoning has to be adopted for
the evaluation of expectation values with regard to the
coherent states. Therefore, the expectation value for a non-
Hermitian operatorO related to a Hermitian operator o by a
similarity transformation o ¼ �O��1 is computed as

hJ; �;�jOjJ; �;�i� :¼ hJ; �;�j�y�OjJ; �;�i
¼ hJ; �;�jojJ; �;�i: (2.3)

Our notation is to be understood in the sense that in the state
jJ; �;�i and jJ; �;�i we sum over the eigenstates of the
Hermitian Hamiltonian h and non-Hermitian Hamiltonian
H, respectively. These states are continuous in the two
variables ðJ; �Þ, provide a resolution of the identity, are
temporarily stable, in the sense that they remain coherent
states under time evolution, and satisfy the action identity

hJ; �;�jHjJ; �;�i� ¼ hJ; �;�jhjJ; �;�i ¼ ℏ!J: (2.4)

This identity ensures that ðJ; �Þ are action angle variables
[22,23].

The main purpose here is to consider a model on a
noncommutative space with nontrivial commutation rela-
tions for their canonical variables giving rise to minimal
uncertainties. It is then interesting to investigate how close
the GK states approach the minimum uncertainty product
and whether they might even become squeezed states.
Thus, for a simultaneous measurement of two observables
A and B in this system, we need to evaluate the left- and
right- hand side of the generalized version of Heisenberg’s
uncertainty relation

�A�B � 1

2
jhJ; �;�j½A; B�jJ; �;�i�j: (2.5)

The uncertainties for the operator A are computed as�A ¼
hJ; �;�jA2jJ; �;�i� � hJ; �;�jAjJ; �;�i2� and analo-

gously for �B. In order to test the quality of the coherent
states, i.e., to see how closely they resemble classical
mechanics, we may also test Ehrenfest’s theorem for an
operator A

iℏ
d

dt
hJ; �þ t!;�jAjJ; �þ t!;�i�

¼ hJ; �þ t!;�j½A;H�jJ; �þ t!;�i�: (2.6)

We used in (2.6) the fact that the time evolution for the states
jJ; �;�i is simply implemented as expð�iHt=ℏÞjJ;�;�i¼
jJ;�þt!;�i, see Refs. [22,23]. Specifying the operators A
and B, we will also test below the correspondence principle.
Here, we present a perturbative treatment of the

above considerations around h0 for a Hamiltonian decom-

posable as h ¼ h0 þ h1, with h0jni ¼ eð0Þn jni. According
to standard Rayleigh-Schrödinger perturbation theory, the
first-order expansions of the eigenenergies and the eigen-
states are

en ¼ eð0Þn þ hnjh1jni þOð�2Þ and

j�ni ¼ jni þ X
k�n

hkjh1jni
eð0Þn � eð0Þk

jki þOð�2Þ; (2.7)

respectively. Wherever appropriate, we then simply use
these expressions in (2.1) for our computations.

III. GK-COHERENT STATES FOR THE
NONCOMMUTATIVE HARMONIC OSCILLATOR

We will now construct the GK-coherent states and vari-
ous expectation values for the one-dimensional harmonic
oscillator [8,10,13]

H ¼ P2

2m
þm!2

2
X2 � ℏ!

�
1

2
þ �

4

�
(3.1)

defined on the noncommutative space satisfying

½X; P� ¼ iℏð1þ ��P2Þ; X ¼ ð1þ ��p2Þx; P ¼ p:

(3.2)

Here �� :¼ �=ðm!ℏÞ has the dimension of an inverse
squared momentum with � being dimensionless. We also
provided in (3.2) a representation for the noncommutative
variables in terms of the standard canonical variables x, p
satisfying ½x; p� ¼ iℏ. The ground state energy is conven-
iently shifted to allow for a factorization of the energy. The
Hamiltonian in (3.1) in terms of x, p differs from the one
treated recently in Ref. [29] as we take a different repre-
sentation for X and P, which we believe to be incorrect
in Ref. [29] even up to Oð�Þ. The so-called Dyson
map �, whose adjoint action relates the non-Hermitian
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Hamiltonian in (3.1) to its isospectral Hermitian counter-

part h, is easily found to be � ¼ ð1þ ��p2Þ�1=2. With the
help of this expression, we evaluate

h ¼ �H��1

¼ p2

2m
þm!2

2
x2 þ!�

4ℏ
ðp2x2 þ x2p2 þ 2xp2xÞ

� ℏ!
�
1

2
þ �

4

�
þOð�2Þ: (3.3)

Taking now h0 to be the standard harmonic oscillator, the
energy eigenvalues for H and h were computed to lowest
order in perturbation theory [8,13] to

En ¼ ℏ!en ¼ ℏ!n

�
1þ �

2
ð1þ nÞ

�
þOð�2Þ: (3.4)

According to (2.7), we now calculate the first-order
expression for the wave functions to

j�ni ¼ jni � �

16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 3Þ4

q
jn� 4i

þ �

16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þ4

q
jnþ 4i þOð�2Þ; (3.5)

where ðxÞn :¼ �ðxþ nÞ=�ðxÞ denotes the Pochhammer
symbol. We stress that it is vital to include the second
and third term in j�ni in order to achieve an accuracy of
order � for expectation values. In Ref. [29], where a similar
computation was attempted, these terms were incorrectly
ignored. The expression for En coincides with the one
found in Ref. [29] for � ! 2�, as this computation only
involves hkjh1jni. Given en as defined by the relation (3.4),
we compute the probability density and the expansions of
its inverse

�n ¼ 1

2n
�nn!

�
2þ 2

�

�
n

and

1

�n

¼ 1

n!
� 3þ n

4ðn� 1Þ! �þOð�2Þ: (3.6)

We use the latter expression to evaluate the normalization
constant in (2.2)

N 2ðJÞ ¼ eJ
�
1� �J � �

4
J2
�
þOð�2Þ: (3.7)

We have now assembled all the necessary quantities to
define the GK-coherent states jJ; �;�i in (2.1) and are in
the position to verify the validity of some of the crucial
requirements on them, test their behavior, and compute
expectation values.

As is well known [24–28], in a non-Hermitian setting the
observables are not dictated by the Hamiltonian, and it
becomes a matter of choice to select them or equivalently
the metric [24]. In fact, this is also true for a Hermitian
system, where, however, the choice of the standard metric
seems to be the most natural one. Here, we are mainly
interested in the Hamiltonian H of (3.1) with X and P as
observables, but it will also be instructive to consider first

the Hermitian system described by hwith x and p being the
observables of choice.

A. Observables in the Hermitian system

At first we consider the Hamiltonian h in (3.3) as fun-
damental and treat the variables x and p as observables in
that system. Expectation values are then most easily
computed by taking the states jni to be the normalized
standard Fock space eigenstates of the harmonic oscillator

with usual properties ayjni ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p jnþ 1i and ajni ¼ffiffiffi
n

p jn� 1i. To first order in �, we then compute the expec-
tation values of the creation and annihilation operators

hJ;�;�jajJ;�;�i ¼ ffiffiffi
J

p
e�i�

�
1� �

4
ð2þ Jþ 4i�ð1þ JÞÞ

�

þ �

4
J3=2e3i� þOð�2Þ; (3.8)

hJ;�;�jayjJ;�;�i ¼ ffiffiffi
J

p
ei�

�
1� �

4
ð2þ J� 4i�ð1þ JÞÞ

�

þ �

4
J3=2e�3i� þOð�2Þ: (3.9)

For the details of the computation, we refer the reader to
the Appendix. In what follows, we will often drop the
explicit mentioning of the order in �, understanding
that all our computations are carried out to first order.

Using the fact that x ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ð2m!Þp ðay þ aÞ and p ¼

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏm!=2

p ðay � aÞ, the expectation values

hJ; �;�jxjJ; �;�i ¼
ffiffiffiffiffiffiffiffiffi
2Jℏ
m!

s �
cos�� �

�
� sin�þ cos�

2

þ J sin�

�
�þ sin2�

2

���
;

hJ; �;�jpjJ; �;�i ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jm!ℏ

p �
sin�þ �

�
� cos�

� sin�

2
þ J cos�

�
�� sin2�

2

���
;

(3.10)

then follow trivially from (3.8) and (3.9). Expanding x2 and
p2 in terms of ay and a, a similar, albeit more lengthy,
computation yields

hJ; �;�jx2jJ; �;�i ¼ ℏ
2m!

½1þ 4Jcos2�� �Jð6� sin2�

þ cos2�þ 2Þ � �J2ð4� sin2�

� cos4�þ 1Þ�; (3.11)

hJ; �;�jp2jJ; �;�i ¼ ℏm!

2
½1þ 4Jsin2�þ �Jð6� sin2�

þ cos2�� 2Þ þ �J2ð4� sin2�

þ cos4�� 1Þ�: (3.12)
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These two expressions may be used to compute the
expectation value of h, as defined in (3.3), with regard to
the GK-coherent states. The remaining term in h only
needs to be computed to zeroth order to achieve an overall
accuracy of order �. We therefore calculate

hJ; �;�jp2x2 þ x2p2 þ 2xp2xjJ; �;�i
¼ ℏ2ð1þ 4J þ 2J2 � 2J2 cos4�Þ þOð�Þ: (3.13)

Summing the contributions from (3.10), (3.11), and (3.12),
together with the required prefactors to make up the
Hamiltonian h, yields the action identity (2.4) as expected.
We remark that this crucial identity was violated in
Ref. [29].

Employing the above quantities, we can also investigate
how close the coherent states approach the minimum un-
certainty product. Assembling the required expectation
values we then obtain

�x2 ¼ hJ; �;�jx2jJ; �;�i � hJ; �;�jxjJ; �;�i2

¼ ℏ
2m!

½1þ �Jðcos2�� 2� sin2�Þ�; (3.14)

�p2 ¼ hJ; �;�jp2jJ; �;�i � hJ; �;�jpjJ; �;�i2

¼ ℏm!

2
½1� �Jðcos2�� 2� sin2�Þ�; (3.15)

and therefore

�x�p ¼ ℏ
2
þOð�2Þ: (3.16)

Thus, the states jJ; �;�i saturate the minimal uncertainty
in a simultaneous measurement of x and p and, therefore,
constitute squeezed states for all values of J and � up to
first order in perturbation theory.
Using (3.10) we also verify Ehrenfest’s theorem (2.6) for

the operators x

iℏ
d

dt
hJ; �þ t!;�jxjJ; �þ t!;�i ¼ hJ; �þ t!;�j½x; h�jJ; �þ t!;�i;

¼ hJ; �þ t!;�j iℏ
m
pþ i�!

2
ðpx2 þ x2pþ 2xpxÞjJ; �þ t!;�i

¼ �iℏ3=2

ffiffiffiffiffiffiffiffiffiffi
2J!

m

s �
sin�̂þ �

�
1

2
sin�̂þ cos�̂

�
ðJ þ 1Þ�̂þ 3

2
J sin2�̂

���
(3.17)

and p

iℏ
d

dt
hJ; �þ t!;�jpjJ; �þ t!;�i ¼ hJ; �þ t!;�j½p; h�jJ; �þ t!;�i;

¼ hJ; �þ t!;�j � iℏm!2x� i�!ðpx2 þ x2pÞjJ; �þ t!;�i
¼ �i

ffiffiffiffiffiffiffiffiffiffi
2Jm

p
ℏ3=2!3=2

�
cos�̂þ �

4
½ð3J þ 2Þ cos�̂� 4ðJ þ 1Þ�̂ sin�̂� 3J cos3�̂�

�
:

(3.18)

For convenience, we abbreviated here �̂ :¼ �þ t!.

B. Observables in the non-Hermitian system

As stated, the system we actually wish to investigate is
described by the non-Hermitian Hamiltonian (3.1) with a
nontrivial commutation relation (3.2) for its associated
observables X and P. In order to test the inequality (2.5),
we need to compute

hJ; �;�jXjJ; �;�i� ¼
ffiffiffiffiffiffiffiffiffi
2Jℏ
m!

s �
cos�þ �

2
sin�ðJ sin2�

� 2�ð1þ JÞÞ
�
; (3.19)

hJ; �;�jX2jJ; �;�i�
¼ ℏ

2m!
½1þ 4Jcos2�þ �½1þ Jð2� 2 cos2�

� 6� sin2�Þ þ 2J2 sin2�ðsin2�� 2�Þ��: (3.20)

We note here that the actual computation has been carried
out by translating first all quantities to a Hermitian setting
and then following the same reasoning as in the previous
subsection. Combining (3.19) and (3.20) then yields

�X2 ¼ hJ; �;�jX2jJ; �;�i� � hJ; �;�jXjJ; �;�i2�
¼ ℏ

2m!
½1þ �ð1þ Jð2� 2� sin2�� cos2�ÞÞ�:

(3.21)

The computation for the expectation values of P is simpler,
since the metric commutes with p, such that

hJ; �;�jPjJ; �;�i� ¼ hJ; �;�jpjJ; �;�i; and

hJ; �;�jP2jJ; �;�i� ¼ hJ; �;�jp2jJ; �;�i; (3.22)

and therefore

�P2 ¼ �p2: (3.23)
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Expanding finally (3.21) and (3.23) we obtain

�X�P ¼ ℏ
2

�
1þ �

2
ð1þ 4Jsin2�Þ

�

¼ ℏ
2
ð1þ �̂hJ; �;�jP2jJ; �;�iÞ: (3.24)

This means that also in the non-Hermitian setting the
minimal uncertainty product for the observables X and P,
commuting as specified in (3.2), is saturated. Thus, to first
order in perturbation theory also the GK-coherent states
jJ; �;�i are squeezed states; remarkably, this holds irre-
spective of the values for J and �.

Apparently, this result was also obtained in Ref. [29], but
our disagreement with the results presented in there is at least
fourfold. Firstly, the authors used the incorrect representation
for the canonical variables X and P as mentioned earlier.
Secondly, the authors computed conceptually the wrong
expectation values even when using their representation.
Thirdly, the authors only took the first order in (3.5) into
account and, therefore, missed out on various terms contrib-
uting to the first-order calculation in �. Finally, even ignoring
the previous three points and adopting all thewrong concepts
used in Ref. [29], we disagree on a purely computational
level with many of the expressions presented in there.

Next we also verify Ehrenfest’s theorem (2.6) for the
operators X

iℏ
d

dt
hJ; �þ t!;�jXjJ; �þ t!;�i�

¼ hJ; �þ t!;�j½X;H�jJ; �þ t!;�i�;
¼ hJ; �þ t!;�j iℏ

m
ðPþ ��P3ÞjJ; �þ t!;�i�

¼ �iℏ3=2

ffiffiffiffiffiffiffiffiffiffi
2J!

m

s
½sin�̂þ �½ðJ þ 1Þ�̂ cos�̂

þ 1

2
sin�̂ð2þ J � 3J cos2�̂Þ�� (3.25)

and the operator P

iℏ
d

dt
hJ; �þ t!;�jPjJ; �þ t!;�i�

¼ hJ; �þ t!;�j½P;H�jJ; �þ t!;�i�;
¼ hJ; �þ t!;�j � imℏ!2

�
X þ ��

2
XP2

þ ��

2
P2X

�
jJ; �þ t!;�i�

¼ �i
ffiffiffiffiffiffiffiffiffiffi
2Jm

p
ℏ3=2!3=2

�
cos�̂þ �

4
½ð3J þ 2Þ cos�̂

� 4ðJ þ 1Þ�̂ sin�̂� 3J cos3�̂�
�
: (3.26)

Taking now for simplicity � ¼ 0, differentiating (3.25)
once again and combining it with (3.26), we obtain the
corresponding identity to Newton’s equation of motion

hJ; t!;�j €XjJ; t!;�i� ¼ �!2hJ; t!;�jXþ ��

2
ð3XP2

þ 3P2Xþ 2PXPÞjJ; t!;�i�:
(3.27)

The relations (3.25) and (3.26) were not recovered
in Ref. [29], where the comparison between the left-
and right-hand sides mismatched. Instead of (3.27), the
authors proposed a ‘‘correspondence principle with twist.’’
According to our argumentation this is incorrect, and there
is in fact no reason to assume the Newton’s equation is
simply the same as the one for the standard harmonic
oscillator. The reasons for the discrepancy are the afore-
mentioned conceptual and computational mistakes in
Ref. [29].

IV. FRACTIONAL REVIVAL STRUCTURE

Further insights into the comparison between the clas-
sical and quantum description can be obtained from the
revival time for wave packets. For a general wave packet of
the form c ¼ P

cn�n sufficiently well localized, i.e.,
being governed by sub-Poissonian statistics, near a sub-
mode n ¼ �nwith energy E �n, it was argued in Ref. [30] that
beside the revival of the classical-like wave packet after the
classical period Tcl ¼ 2�ℏ=jE0

�n; j one may also encounter
so-called fractional revivals. These partial revivals of
the original wave packet occur at times p=qðTrevÞ, with
coprime integers p, q, and the revival time given by Trev ¼
4�ℏ=jE00

�nj. Depending on the values of p and q, one can
interpret the emerging features as different types of super-
positions of classical-like wave packets.
For the case at hand we may follow Ref. [23] and expand

the energy En in the expression for the wave packets (2.1)

jJ;!t; �i ¼ X1
n¼0

cnðJÞ expð�itEn=ℏÞj�ni; (4.1)

with weighting function cnðJÞ ¼ Jn=2=N ðJÞ ffiffiffiffiffiffi
�n

p
, about

�n :¼ hni ¼ Jd lnN 2ðJÞ=dJ. To first order in perturbation
theory, we then easily compute

hni ¼ J � �

�
J þ J2

2

�
þOð�2Þ; and

hn2i ¼ J þ J2 � �ðJ þ 3J2 þ J3Þ þOð�2Þ; (4.2)

such that

�n2 ¼ hn2i � hni2 ¼ J � �ðJ þ J2Þ þOð�2Þ: (4.3)

Consequently, the Mandel parameterQ [31] turns out to be
negative

Q :¼ �n2

hni � 1 ¼ � J�

2
þOð�2Þ< 0; (4.4)

suggesting a sub-Poissonian statistics. This implies that
we have a strong localization around �n required for the
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possibility of the revival of the classical-like sub-wave
packet. According to the above expressions, we compute
the classical period and the revival time to

Tcl ¼ 2�

!
� �

!
ð1þ 2JÞ�; and Trev ¼ 4�

!�
: (4.5)

We now use these quantities to analyze the behavior of the
autocorrelation function

AðtÞ :¼ jhJ; �;�jJ; �þ t!;�ij2
¼ jhJ; �;�jJ; �þ t!;�i�j2: (4.6)

In order to find a set of meaningful values for our free
parameters J, � and also to find an appropriate upper limit
cutoff in the sum (4.1), let us first investigate the weighting
function cnðJÞ.

For the chosen values we observe in Fig. 1 that the wave
packets are well localized around �n resulting from (4.2),
such that the prerequisite for the validity of the analysis in
Ref. [30] is given. Increasing the values of J for fixed �, we

observe negative values for jcðJÞj2 for large values of n,
which clearly indicates that our perturbative expressions
are no longer valid in that regime. We also note that n � 50
will be a sufficiently good value to terminate the sum in the
expression for the autocorrelation function (4.1) analyzed
in Fig. 2.
In panel (a) of Fig. 2, we clearly observe local maxima at

multiples of the classical period Tcl. As explained in
Ref. [30], the first full reconstruction of the original wave
packet is obtained at Trev=2, which is clearly visible in
panel (a). The fractional revivals are better observed for
smaller values of � as depicted in panel (b). In that scenario
the classical periods are so small as compared to the revival
time that they are no longer resolved. We clearly observe a
number of fractional revivals, such as, for instance, Trev=4
corresponding to the superposition of two classical-like
sub-wave packets and others as indicated in the figure.
Notice that our expression and our analysis presented

here differ, once again, from the one in Ref. [29], where for
instance the mandatory revival at Trev=2 was not observed.

FIG. 1 (color online). Weighting function for � ¼ 0:1 with hni ¼ 1:24, 2.25, 3.04 for J ¼ 1:5, 3, 4.5, respectively, and (b) � ¼ 0:01
with hni ¼ 2:93, 5.76, 13.72 for J ¼ 3, 6, 15, respectively.

FIG. 2 (color online). (a) Autocorrelation function as a function of time for J ¼ 1:5, � ¼ 0:1, ! ¼ 0:5, ℏ ¼ 1, � ¼ 0, Tcl ¼ 10:05,
and Trev ¼ 251:32; (b) Autocorrelation function as a function of time for J ¼ 6, � ¼ 0:01, ! ¼ 0:5, ℏ ¼ 1, � ¼ 0, Tcl ¼ 11:74, and
Trev ¼ 2513:27.
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V. CONCLUSIONS

Our central result is the construction of explicit expres-
sions for the GK-coherent states for a non-Hermitian sys-
tem on a noncommutative space leading to a generalized
version of Heisenberg’s uncertainty relation. We showed
that these states are squeezed for all values of J and � as
they saturate the minimal uncertainty. Crucially, we estab-
lished that two of the nontrivial GK axioms are satisfied.
First of all, the states are shown to be temporarily stable,
i.e., they remain coherent under time evolution, and sec-
ond, the states satisfy the action identity (2.4), allowing for
a close relation to a classical description in terms of action
angle variables. We also demonstrated that when using
the appropriate metric, Ehrenfest’s theorem is satisfied
for the observables X and P. The desired resemblance of
the coherent states with a classical description was further
underpinned by an analysis of the revival structure exhib-
iting the typical quasiclassical evolution of the original
wave packet. It should be noted that in the considered
case, the wave- packet revival time (4.5) depends explicitly
on the deformation parameter �, such that a possible mea-
surement could distinguish between a noncommutative and
a standard commutative space. For instance, in the order of
femtoseconds, half and quarter revivals have been ob-
served experimentally [32] for molecular wave packets
described by anharmonic oscillator potentials with eigene-
nergies similar to (3.4). Our analysis holds to first-order
perturbation theory in � and, of course, it would be very
interesting to extend this to higher order or eventually to
the exact case.

There are various other directions in which our analysis
might be taken forward. For instance, different types of
models might exhibit a varied behavior. More challenging
is a construction for such states in higher dimensions. A
systematic comparison with different types of coherent
states would be insightful, especially with rare construc-
tions related to non-Hermitian Hamiltonians [33].
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APPENDIX

We present here a sample computation in order to make
our results transparent and reproducible. In addition,
we highlight the differences compared to Ref. [29]. One
of the simplest computations in this context is to evaluate
the expectation value of the annihilation operator (3.8). The
evaluation of expectation values for different types of
operators is more involved, but goes along the same lines.
Using the expression for (2.1), we compute

hJ; �;�jajJ; �;�i ¼ 1

N 2

X1
n;m¼0

JðmþnÞ=2 exp½i�ðem � enÞ�ffiffiffiffiffiffiffiffiffiffiffiffi
�m�n

p

� h�mjaj�ni: (A1)

With the expansion of j�ni to first order in �, we obtain

h�mjaj�ni ¼
ffiffiffi
n

p
�m;n�1 þ �

16
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þ4

q ffiffiffi
n

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 3Þ4

q ffiffiffiffiffiffiffiffiffiffiffiffi
n� 4

p Þ�m;n�5

þ �

16
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þ4

q ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 4

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 3Þ4

q ffiffiffi
n

p Þ�m;nþ3;

¼ ffiffiffi
n

p
�m;n�1 þ �

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðnþ 1Þðnþ 2Þðnþ 3Þp
�m;nþ3; (A2)

such that

hJ; �;�jajJ; �;�i ¼ X1
n¼1

ffiffiffi
n

p
Jn�1=2ei�ðen�1�enÞ

N 2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�n�1�n

p

þ �
X1
n¼0

Jnþ3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðnþ 1Þ3

p
ei�ðenþ3�enÞ

4N 2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�nþ3�n

p

þOð�2Þ: (A3)

The last sum has been ignored in Ref. [29] but is an
important contribution to order �. Using en�1 � en ¼
�1� n� and �n ¼ �n�1en; the first sum in (A3) is eval-
uated as

e�i�

N 2

X1
n¼1

Jn�1=2e�i�n�

�n�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

2 ð1þ nÞ
q

¼ e�i�

N 2

X1
n¼1

Jn�1=2

�n�1

�
1� �

4
ð1þ nþ 4i�nÞ

�
þOð�2Þ;

(A4)

¼ e�i�ffiffiffi
J

p
��

1� �

4

�P1
n¼1

Jn

�n�1P1
n¼0

Jn

�n

� �

4
ð1þ 4i�Þ

P1
n¼1

nJn

�n�1P1
n¼0

Jn

�n

�

þOð�2Þ; (A5)

¼ ffiffiffi
J

p
e�i�

�
1� �

4
ð2þ J þ 4i�ð1þ JÞÞ

�
þOð�2Þ:

(A6)
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For the second sum in (A3), we use enþ3 � en ¼
3þ 3�ð2þ nÞ and �nþ3 ¼ �nenþ3enþ2enþ1, such that it
becomes

�
X1
n¼0

Jnþ3=2
ffiffiffiffiffiffiffiffiffiffiffi
ðnþ1Þ3

p
ei�ð3þ3�ð2þnÞÞ

4N 2�n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
enþ3enþ2enþ1

p þOð�2Þ

¼�J3=2e
3i�

4N 2

X1
n¼0

Jn

�n

þOð�2Þ¼�J3=2e
3i�

4
þOð�2Þ: (A7)

Collecting (A6) and (A7), we obtain (3.8). Similarly, we
compute the expectation values for x2, p2, x2p2, etc. by

converting them first into expressions involving the a and
ay and then using the arguments from above. For the
noncommutative scenario, we convert first to a setting
involving Hermitian operators. For instance, we use

hJ;�;�jXjJ;�;�i� ¼ hJ;�;�jxþ ��

2
ðp2xþ xp2ÞjJ;�;�i

þOð�2Þ (A8)

and compute the right-hand side as explained above.
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