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We investigate the configuration resulting after a collision of gravitational sources in a higher

dimensional space with extra dimensions. Evidence is found that as the energy increases, there is a

phase transition in the topology of the black object that is being formed: from the black hole to the black

string topology. An intuitive mechanism for the way the transition takes place is proposed. The transition

occurs at a finite value of the energy where an upper and a lower bound is found. Furthermore, at low

energies the compact dimension behaves as an extended one while at high energies the extra dimension

seems to decouple. Finally, the implications about the Gregory-Laflamme instability, the implications to

the accelerators as well as holographic implications are discussed.
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I. CONTEXT

We analyze the problem of a black object formation in
the presence of compact-extra dimensions in flat back-
grounds when shock waves collide. In particular, we
attempt to follow the evolution of the topology [1–11]
of the resulting (black) object as the energy involved in
the collision, changes. We also estimate the entropy as-
sociated with the corresponding trapped surface in the
spirit of Refs. [12–25]. For concreteness we consider five
extended and one compact dimensions where an analytic
shock wave solution in closed form is possible. The
literature is rich regarding the investigation of shock
waves in gravity. For instance, in flat spaces they have
been studied from Refs. [12,26–38] while for more gen-
eralized backgrounds they have been studied in
Refs. [16,17,19,33,39–55].

In this work it is argued that the there exists a finite
energy of the shock where the trapped surface and as a
consequence the produced black hole (BH) that will result
immediately after, occupies all of the compact space. At
that energy, a phase transition should appear: the localized
apparent horizons should cover the compact dimension and
merge yielding to a black-string (BS) transition; that is the
system seems to yield to a BH ! BS phase transition
[4–11,56–62]. The energy E where this occurs, in the
5þ 1 (compact) dimensions that we work, should be found
numerically. The analytical investigation of this work,
provides the bound

0:8 & �mer � 16�G6

L3
Emer & 29 ¼ finite; L ¼ 2�R;

(1)

where G6 and R are the Newton constants in six
dimensions and the radius of the compact dimension re-
spectively. The dimensionless parameter �mer corresponds

to the merging energy Emer where the topology transition
takes place: the BH covers the whole compact dimension
and becomes an (initially nonuniform) BS. The bound of
(1) respects the numerical works of Refs. [63–65] for five
space-time plus one compact dimensions. A detailed and
pedagogical review on these topics is the work [66] which
provides additional references while Ref. [67] examines
the problem from a microscopical point of view (see also
the related reviews [68,69]).

II. SETTING UP THE PROBLEM

Trapped surfaces are created when two shocks collide.
The one shock moves along x� and we call it �þ to
distinguish it from the second that moves along xþ and
which we call ��. In our case the shocks will be taken
identical and hence the subscripts will be soon dropped.1 In
terms of metrics before the collision, one then has

ds2 ¼ �2dxþdx� þ dxidxi þ ðRd�Þ2
þ f�þðR�; rÞ�ðxþÞðdxþÞ2 þ ðþ $ �Þg;

x� < 0; (2)

where i ¼ 1, 2, 3, r ¼ ffiffiffiffiffiffiffiffiffiffiðxiÞ2p
, x� ¼ ðx0 � x4Þ= ffiffiffi

2
p

,
� 2 ½��;�� and

�þ ¼ 23=2EG6

�R

1

r

�
1þ 1

eðr=RÞþi� � 1
þ 1

eðr=RÞ�i� � 1

�

¼ 23=2EG6

�R

1

r

sinhðrÞ
coshðrÞ � cosð�Þ : (3)

A few remarks on �þ of (3) follow:
(i) It is periodic with respect to the compact dimension

� as should and has � $ �� symmetry.
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1A more complete set of notes on the theory of trapped
surfaces may be found in the appendices of Ref. [14].

PHYSICAL REVIEW D 86, 064034 (2012)

1550-7998=2012=86(6)=064034(9) 064034-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.86.064034


(ii) It satisfies r2
?�þ�ðr2

i þ1=R2@2�Þ�þ¼
�16

ffiffiffi
2

p
�G6E=R�

ð3ÞðrÞ�ðxþÞ�ð�Þ.2. Taking into ac-
count that Rþþ ¼ � 1

2r2
?�þ ¼ 8�G6Tþþ it is de-

duced that the shock �þ is associated with a point-

like stress tensor Tþþ ¼ E
ffiffiffi
2

p
=R�ð3ÞðrÞ�ðxþÞ�ð�Þ

which moves with the speed of light along�x4 axis.
(iii) It happens that�þ satisfies the Poisson equation of

gravity in 3 ðnoncompactÞ þ 1ðcompactÞ dimen-
sions. At large distances r � R it behaves as
�1=r, that is as in Newton’s law in 3D. On the
other hand, all small distances r � R and assuming
that the measurement of the gravitational potential
is restricted on some brane with � ¼ 0 in the
spirit of Ref. [70], then (3) behaves as �R=r2.
This behavior, coincides with the ideas of
Refs. [71–73]. However, �þ here will be used in
a different context.

(iv) The ordering of limits limr!0 and lim�!0 does not
commute.

Associated with the shock wave �� in (2), we parame-
trize (half of the) trapped surface S� by

x� ¼ 0 x� þ 1

2
c�ð�; rÞ ¼ 0; (4)

where cþ remains to be determined. The function cþ
satisfies the following differential equation

r2
?ðc� ���Þ ¼ 0: (5)

It is pointed out that ðr2
?Þ�� provides a source term for

ðr2
?Þc�. The missing ingredient is the boundary condi-

tions and are given by

c�jC ¼ 0
X

i¼R�;r

½ricþric��jC ¼ 8; (6)

for some curve C which defines the boundary of the
trapped surface and where both, Sþ and S� end. The
produced entropy is then bounded below by the area of
the surface obtained by adjoining the two pieces of the
trapped surface associated with each of the shocks. It is
given by

Sprod 	 Strap ¼ 2
 R

4G6

Z
C
d�d3x¼ 2�R

3G6

Z �2

�1

r3ð�;EÞd�;

(7)

where the (generalized) curve C defines the boundary of
the trapped surface Sþ and S� which are identical; thus the
overall factor of 2. The integral with respect to the non-
compact direction gives r3 when considering a head-on
collision. Typically, �1, �2 and r carry the information of
the shock �.3

The boundary conditions define a curve C

rð�; EÞ; (8)

which is explicitly given below, in Eq. (11) in two extreme
limits. Evidently, the dimensionless quantity EG6=R

3 sets
the high and the low energy limit of the process. The last
step would be to (numerically) solve Eq. (8) for r and
integrate for several (but fixed) values of the parameter

x � R3�=EG6: (9)

In what follows, we will derive analytical results for the
two extreme cases of high and low energies.

III. ANALYSIS AND RESULTS

A. BH ! BS phase transition

In this section it is argued that the resulting system
covers the whole compact dimension at a finite energy
and passes from a BH phase to a BS phase. This is done
by analyzing the low and the high energy asymptotics. In
the low energy asymptotics we find a trapped horizon with
topology4 D4. After the horizon will obtain rapidity de-
pendence,5 it will presumably evolve to an S4 horizon
(likely to a Schwarzschild BH). At high energies on the
other hand, we find D3 
 S1 to be evolved to S3 
 S1;
hence the BH ! BS phase transition. These limiting ge-
ometries that we find below after the shock waves collide,
agree with the expected behavior in the literature [4].
The starting point is the general solution to (5) which has

the form

c ¼ �þ�h; where r2
?�h ¼ 0; (10)

and where all the three functions generally depend on the
energy E. For the two extreme cases that we are interested,
the solutions �h of the homogeneous degenerate to two
(different) constants respectively. In this case, the second
(nonlinear) boundary condition of (6), becomes

ð�2uþ 2u cosð�Þ coshðuÞ � 2 cosð�Þ sinhðuÞ
þ sinh2ð2uÞÞ2 � 4x2u4ðcosð�Þ � coshðuÞÞ4
þ 4u2sin2ð�Þsinh2ðuÞ ¼ 0; u ¼ r=R: (11)

2In order to verify it one has to note that the fraction that
involves the trigonometric quantities, in the limit where r ! 0
results to 2��ð�Þ.

3We drop the subscripts þ, � from �’s and c ’s from now on.

4In what follows, we use the symbolD4 (andD3) for the 4-disk
(and 3-disk) imbedded in (ignoring time) R4þ1 where plus one
refers to the compact dimension. We prefer the symbol Dn

instead of the more traditional Bn (unit ball) in order to highlight
that these disks are imbedded in a higher dimensional space. For
instanceD4 can be thought as the intersection of a 5-ball with the
x1, x2, x3 hyperplane.

5That is after the horizon will expand along x4; the direction
where the shocks are moving initially.
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B. Limiting behaviors

1. Low energy asymptotics: x � 1

The claim is that the choice �h � Cx ¼ �27=6Rx�1=3

and the boundary C: u2 þ �2 ¼ 24=3x�2=3 satisfy both
of the conditions of (6). Indeed, the second boundary

condition for large x yields C: x2ðu2 þ �2Þ3 ¼ 16 while

the first one yields u2 þ �2 ¼ �25=2R=xCx from where

one identifies that�h � Cx ¼ �27=6Rx�1=3. This configu-
ration (BH) is shown in the top plot of Figs. 1 and 2.
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FIG. 2 (color online). Trapped boundary for the two distinct
boundary conditions (8); dashed and solid curves correspond to
the first and second boundary condition respectively. Top panel:
�x�1

h ¼ Cx�1 ¼ �27=6Rx�1=3 and x ¼ 1, 8, 102,103. The pairs
of curves shrink as x increases and soon they merge (third pair of
curves for x ¼ 8; low energy limit that results to a BH). Bottom
panel: �x�1

h ¼ Cx�1 ¼ �23=2Rx�1=2 and x ¼ 0:1, 0.035, 0.02.
The pairs of curves move upwards as x decreases and soon they
merge (top pair of curves with x ¼ 0:02; high energy limit that
results to a BS).
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FIG. 1 (color online). Plot of the boundary C of the trapped
surface in the two extreme limits as found from analytical
considerations. Horizontal axis: �, vertical axis: u ¼ r=R (the
same applies for the plots of the figures that follow). Top plot
refers to low energies and yields to a D4 topology (BH). As x
increases in the range x ¼ 102, 103, 103, 105 the circles become
smaller. Bottom plot refers to high energies (BS) with topology
D3 
 S1. As x decreases in the range x ¼ 10�2, 10�2:6, 10�3:2,
10�4, the lines move upwards.
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The (lower) entropy bound may now be found. Using (7)
immediately yields

Strap¼2�R4

3G6

2
Z 22=3x�1=3

0
ð24=3x�2=3��2Þ3=2d�

¼22=3�2R
4

G6

x�4=3¼ð2�Þ2=3ðE4G6Þ1=3:
(12)

There are two related observations about this result. The
first one is that the Sprodjx�1 is independent from the radius

of the compact dimension R. The second observation is
that the result agrees exactly with the result of Eardley
and Giddings [12] for D ¼ 6 extended space-time dimen-
sions and which states that in D dimensions the trapped
entropy is

SDprod �
1

GD

�
EGD

�D

�ððD�2Þ=ðD�3ÞÞ
; (13)

with �D the solid angle. The physics behind this result is
that at low energies, the dynamics are not capable to
resolve the finiteness of the compact dimension.
Therefore, the extra dimension behaves as being (also)
extended. In other words, the resulting BH has size much
smaller than R. This statement, according to (9), is
consistent with x � 1 and the fact that the final BH
will have a small (presumably) Schwarzschild horizon
rh �G6E=R

2 � R (see Ref. [4]).

2. High energy asymptotics: x � 1

The claim is that the choice �h � Cx ¼ �23=2Rx�1=2

and the boundary C: u ¼ x�1=2 satisfy both of the condi-
tions of (6). Indeed, the second boundary condition for
large x and yields C: x2u4 ¼ 1 while the first one

23=2x�1Ruþ Cx ¼ 0 from where one identifies that �h �
Cx ¼ �23=2Rx�1=2. The trapped boundary is evidently
independent on � and yields to the BS configuration.
This is depicted on the bottom plot of Figs. 1 and 2 for
several large values of E. The Sprod is then trivial to find

and yields

Strap ¼ 2�R3

3G6

ðx�1=2Þ3 
 R
Z �

��
�

¼ 2�

3

R3

G6

x�3=2L

¼ 8

3
ffiffiffi
2

p �ðE3G5Þ1=2;

G5 � G6

L
:

(14)

The result agrees with the result of Ref. [12], Eq. (13), with
D ¼ 5 and an effective Newton’s constantG5 ¼ G6=L and
also the expectations of Refs. [4,74].6

The physics behind this result becomes clear once we
make the logical hypothesis that the final state will be a
Schwarzschild object in the sense that its size (rh) will
increase with the energy and occupy the whole compact
dimension. In fact, for high enough energies, it will be true
that rh � R and hence Rmay be neglected and can appear
in the expression of the entropy only trivially. Indeed the
compact dimension appears as a product space; this is the
BS solution. The only trace of the compact dimension is in
the effective Newton’s constant which changes from G6 to

G5 � G6

2�R .

IV. POSSIBLE PATHS: BH ! BS

The solution�h ¼ Cx ¼ constant [see (5)] yields to two
generally distinct families (that are indexed by x) of
trapped boundaries. The one family is given by the curves
defined by the first and the other by the second boundary
condition of (6). The two families coincide at large x (small
E; see top plots of Fig. 2) and also at small x (large E; see
bottom plots of Fig. 2); only in these two cases the trapped
surfaces of Fig. 1 are the desired solutions to the boundary
value problem defined by Eqs. (5) and (6).
On the other hand, as x decreases, the homogenous

solution �x
h which we explicitly index by x, traces a path

in the space of functions. It begins from �x�1
h ¼ Cx�1 ¼

�27=6Rx�1=3 (low energies) and ends to �x�1
h ¼ Cx�1 ¼

�23=2Rx�1=2 (high energies) corresponding to the top and
bottom plots of Fig. 1 respectively. It is instructive, to plot
the curve C resulting from the first boundary condition for
�x�1

h ¼ Cx�1 (see Fig. 5) and the second boundary
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4

FIG. 3 (color online). As the energy increases, it is expected
that the ‘‘nearby’’ BHs will grow and approach each other.

6This work deals with 4 extended and one compact
dimensions.
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condition for �x
h ¼ Cx�1 [see (11) and Figs. 3 and 4] as x

varies. Although strictly speaking, this is correct only in
the two extreme cases, we still may gain some intuition
about the transition from BH to BS assuming is valid for all
values of x (energies). In both, Fig. 4 and 5 the transition
from BH ! BS is depicted and looks similar: the BH
increases in size and merges with the nearby BHs and
becomes a BS warping around the compact dimension.
In both cases, it seems that there is a singularity on the
topology of the trapped horizon which appears as a cusp
(see Ref. [4]) at � ¼ ��. Certainly, the information we
have here is incomplete. It is likely that the truth should lay
somewhere between these two possibilities. However, it is
notable that in both cases, a cusp on the trapped horizon at
the merging point seems to appear.
Regarding the convexity or nonconvexity of the trapped

surface Fig. 5 shows convexity for the intermediate ener-
gies and seems to agree with the current intuition in the
literature (see for instance Fig. 6 in Ref. [4]) about the way
the transition to the BS takes place. Figure 4 on the other
hand, shows nonconvexity. In fact, after the BS stage, there
seem to appear holes inside the surface (see shaded regions
in Fig. 4); most likely due to the image charges (see
Sec. V). These holes are external to the trapped surface.
We argue in the next section that most likely the transition
has the (nonconvex with holes) form of Fig. 4.
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FIG. 4 (color online). The curves result from Eq. (11). The
value of x decreases from the top to the bottom plot. In the top
plot, the trapped horizon which is not convex, covers the whole
compact dimension because it extends up to values of � ¼ ��.
Increasing the energy further (two bottom plots), seems to yield
to a phase transition: the resulting BH begins to wind the
compact dimension changing the topology from D4 to
D3 
 S1. This is a nonuniform BS topology. As the energy
increases further (x decreases), the curves move upwards ending
up to straight lines independent on � and matching those of
Fig. 1 (uniform BS configuration). It is pointed out that the
shaded areas consisting of the two (half) ellipses left and right of
r ¼ 0 are not a part of the trapped surface. There presence is to
shield the image charges (see Sec. V).
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FIG. 5 (color online). Trapped boundary resulting from first
condition of (6) with �x�1

h ¼ Cx�1 ¼ �23=2Rx�1=2. As energy

increases (x decreases), the curves move upwards ending up to
straight lines and matching those of Fig. 1 (uniform BS con-
figuration). During the x evolution, the trapped area remains
convex (in each subinterval: ½ð2n� 1Þ�; ð2nþ 1Þ��, n 2 Z)
unlike the plots of Fig. 4.
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V. TOWARDS THE TRAPPED BOUNDARY FOR
ALL ENERGIES: FINDING �h

The complete solution, if exists, should respect the r,
� $ �� and � $ 2�þ � symmetries. Thus, the only
possible solution for r2

?�h ¼ 0 is �h ¼ constant which,

according to the discussion of the previous section, does
not work. Hence, we are forced to relax the condition
r2

?�h ¼ 0 to r2
?�h ¼ ‘‘image charge,’’ provided that

the ‘‘charge(s),’’ lies outside the trapped surface and
(also) respects the symmetries. In this case, the only
possible solution consistent with the symmetries of the
problem has the form

c ¼ �þ Cx þ 1

xu

X
i

fi

fi �
�

CiðxÞ sinhðuÞ
coshðuÞ � cosð�� �iðxÞÞ þ ð� $ ��Þ

�
;

u ¼ r=R;

(15)

where all the �i’s should lay outside C. Two addi-
tional conditions are: (a) limx!1½Cxþ2=x

P
ifi=

ð1�cosð�iðxÞÞ�!Cx�1 (low energies; small trapped sur-
face) and (b) limu;!1;x!0½Cxþ1=ðxuÞPifi�!Cx�1 (high

energies; large trapped surface). A few remarks about the
possible form of the trapped surface follow.

(i) Let us consider the range � in ½��;�� and take into
account that the image charges are located at r ¼ 0
and � ¼ ��i. As x decreases, the image charges
should move to the right (left) if at a given x, the
charges are already located right (left) of the r axis.
In the extreme limit where x ! 0, the sources should
move at ��; that is at �i ! �. For instance, in
Fig. 3, the image charges at positive angles should
lay (approximately) in the interval � 2 ð2:25; �Þ.

(ii) Conditions (a) and (b) reproduce the low and the
high energy limit behavior.

(iii) Since Cx�1 < 0 and Cx�1 < 0, conditions (a) and
(b) imply that a subset of the image charges CiðxÞ
(see Ref. [15]) is possibly negative (a similar situ-
ation appears in Ref. [12]); i.e., the images corre-
spond to negative energies. From an electrostatic
analogy point of view, this is not a surprise as
typically the image charges usually appear with
opposite sign.

(iv) Previous point, implies that at small r there will be a
repulsive force between the image charges and the
actual charge (located left and right of say � ¼ 0)
causing the nonconvexity of the trapped surface
(see Fig. 4). At the same time, the image charges
located left and right of (say) � ¼ �, will attract
each other (being both negative). These would cre-
ate an external surface (a hole) inside the trapped
surface. This hole is due to the image charges and it
isolates them from the trapped surface once (see top
plot of Fig. 4) the trapped surface reaches the whole

compact dimension (see two bottom plots of Fig. 4
and in particular the shaded areas). The surface that
shields the image charges, is centered at � ¼ ��
and shrinks to zero (see last plot of Fig. 4) as the
energy tends to infinity.

In other words, according to this scenario, there seem to
exist holes inside the black holes.
Concluding, we have argued that the topology should

qualitatively change as in Fig. 4 contrary to the current
intuition which is more compatible with Fig. 5. The trapped
boundary is certainly continuous but it appears a kink
(cusp) at � ¼ �, r � 0 and at the transition energy, it
appears as not convex. The nonconvexity is due to the
repulsive action of the image charges. Certainly, a more
thorough investigation is required to confirm or not our
current intuition.

VI. CONCLUSIONS

(i) In this work, we study the evolution of the topology
of the black object that will be formed during a shock
wave collision in the presence of extra dimensions
following the Penrose method of trapped surfaces. It
is emphasized that this method provides a lower
bound on the extend of the actual horizon (apparent
horizon). This implies that the black objects that we
have studied are at least as large as the Penrose
method predicts. Consequently, our conclusions
(see below) might apply for lower but certainly not
higher energies.

(ii) We find evidence that there will be a transition from
the BH to the BS configuration as the energy in-
creases. The transition occurs at a finite energy
while the topology, based on our preliminary inves-
tigation, seems to exhibit a (cusp) singularity at the
transition point. A mechanism of this transition is
being proposed (see Fig. 4). In particular, we argue
about the possibility that the nonuniform BS7 will
contain a cavity around � ¼ �; that is as far as
possible from the position of the (localized) energy
of the colliding shocks (at r ¼ � ¼ 0). This cavity
surrounds the image charges and shrinks to zero as
the energy increases; that is as the nonuniform BS
tends to become a uniform BS.

(iii) The entropy8 of the black object (BS) at high
enough energies behaves as if the extra dimensions
are absent. In other words the entropy depends only
on the extended dimensions in this limit. This
agrees with the expectations of Ref. [74].9

7Nonuniform BS implies that the BS has energy greater but
comparable with the one of the merging point.

8And possibly all the rest thermodynamical quantities.
9We would like to thank S. Giddings for his correspondence

and for pointing out this particular issue.
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(iv) A BH is being created at lower energies while a BS
is created at higher energies while there exists a
merger point at some critical value of the energy
corresponding to some x, called xm. According to
the two top (coinciding) curves of the lower panel
of Fig. 2, xm > 0:02. According to (9) xm > 0:02
implies that 16G6Em=L

3 & 29 is a lower bound for
the merging energy (see Ref. [1]). Similarly, using
the upper panel of Fig. 2, one observes that xh < 8
is a satisfactory bound where our analysis is (ap-
proximately) correct. This provides the higher
bound on the energy that corresponds to the BH
configuration. For x ¼ xh ¼ 8, Eq. (9) implies
16G6Em=L

3 * 0:8. These two (crude) bounds are
the ones appearing in Eq. (1). This result is consis-
tent with [10,63–66,75].

(v) On the other hand, according to the Gregory-
Laflamme analysis [76–78] there is an energy EGL

where for lower energies, the uniform BS becomes
unstable (Gregory-Laflamme instability). In five
extended plus one compact dimensions, the corre-
sponding (defined analogously to Ref. [1]) dimen-
sionless parameter �GL, results to an unstable
‘‘uniform’’ BS when �GL & 3. We argue that in
physical processes10 this instability might not ap-
pear: a black object (BH or BS) will be generally
formed through some scattering. Now, according to
the present investigation, a ‘‘uniform’’ BS is being
formed for energies that saturate the upper bound of
(1) or even higher (�> 29). For smaller energies,
either a nonuniform BS or a BH is being formed.
But this implies that there is no meaning in perturb-
ing a ‘‘uniform’’ BS at energies (corresponding to)
�GL ¼ 3 or lower as this geometry can never be
created (through a scattering) at this low energy; the
perturbation of a ‘‘uniform’’ BS at �GL ¼ 3 thus
seems to be meaningless11 in this setup.

(vi) The BS configuration obviously is larger and hence
SBS > SBH. There is no meaning to compare the
two for fixed energies E as they are created and
exist for different collision energy 2E

(vii) Figures 4 and 5 suggest that there exist an inter-
mediate region. This corresponds to a nonuniform
BS creation. Once the energy is increased further,
it becomes uniform. Hence, the entropy inequal-
ities become SBS > Snonun > SBH.

(viii) Maybe a ðUniformBSÞ ! ðNonuniformBSÞ !
ðBHÞ transition is possible after the BS radiates
enough energy but not the other way around.
This does not contradict the maximum entropy

principle as the total entropy, taking into account
the entropy carried by the radiation, should in-
crease in a BS ! BH process.

(ix) If extra dimensions are present, then the pro-
duced entropy bound Strap will generally be differ-

ent from Strap � ð ffiffiffi
s

p Þ2 [
ffiffiffi
s

p
is the c.m. energy;

see (13)] which applies for the real world, that is
for R1;3 space-time. Equation Strap � ð ffiffiffi

s
p Þ2 applies

only in the extreme (high energy) limit where
GDE=ðRiÞD�3 � 1 for all i ¼ 1; 2; . . .D� 4 and
hence all the extra dimensions decouple. For lower
energies, more extra dimensions will contribute to
the energy dependence of Strap and hence to the

produced entropy Sprod.
12 Hence, if the final en-

tropy in a collision as a function of
ffiffiffi
s

p
is estimated,

it could yield to information about the presence of
extra dimensions [79]. The same reasoning applies
to the AdS/CFT calculations which estimate total
multiplicities at the LHC [14,19–22]. Taking into
account that the full string theory is ten dimensional
as there exists a compact five-dimensional compact
manifold that surrounds the AdS5 space, implies a
possible change in the results of these works de-
pending on the energy range of interest.

(x) It would be interesting to find the full �x
h even

numerically and trace the trajectory of the topology
as the energy changes. In fact, the authors of
Refs. [23,24] which apply the numerical methods
devised in Ref. [80], have already developed tech-
niques that may solve the boundary value problem
of finding the trapped surface. Then, with the full
(trapped) solution at hand, one could investigate the
proposals of this work and also search for any
possible discontinuities in the thermodynamical
quantities. In particular one could search for a third
order phase transition in the entropy analogously
to Refs. [4,81,82]. We leave this for a future
investigation.
It would be interesting to repeat the analysis of this
work in three extended space-time plus one compact
dimensions. For small energies one would expect a
BH as in [12]. Consequently, at higher energies a
black object should also be formed. The question is,
what happens when the energy is extremely large?
The most probable scenario is that there will be a
transition to the (practically) uniform BS as in the
problem we have studied above. But a 4D uniform
BS geometry in this set-up implies a 3D BH geome-
try times an internal circle. Such a result would
contradict the BTZ analysis [83] that asserts that a
3D non-rotating BH cannot exist in the absence of
electric charges and a cosmological constant. This

10Real life does not involve five extended dimensions but the
argument still applies.
11Formally, one may write a uniform BS solution for any small
energy but it seems that dynamically, a low energy (almost)
uniform BS cannot be created.

12That is D in (13) equals 4þ n where n the number of
compact dimensions that satisfy GDE=ðRiÞD�3 � 1; i¼1; . . . ;n.
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work [84], whose results look surprising, is in the
final stages.
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[23] Á. Duenas-Vidal and M.A. Vázquez-Mozo, Phys. Lett. B

713, 500 (2012).
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