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The inspiral and merger of a binary neutron star (NSNS) can lead to the formation of a hypermassive

neutron star (HMNS). As the HMNS loses thermal pressure due to neutrino cooling and/or centrifugal

support due to gravitational wave emission, and/or magnetic breaking of differential rotation, it will

collapse to a black hole. To assess the importance of shock-induced thermal pressure and cooling, we

adopt an idealized equation of state and perform NSNS simulations in full general relativity through late

inspiral, merger, and HMNS formation, accounting for cooling. We show that thermal pressure contributes

significantly to the support of the HMNS against collapse and that thermal cooling accelerates its

‘‘delayed’’ collapse. Our simulations demonstrate explicitly that cooling can induce the catastrophic

collapse of a hot hypermassive neutron star formed following the merger of binary neutron stars. Thus,

cooling physics is important to include in NSNS merger calculations to accurately determine the lifetime

of the HMNS remnant and to extract information about the neutron star equation of state, cooling

mechanisms, bar instabilities and B-fields from the gravitational waves emitted during the transient phase

prior to black hole formation.
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I. INTRODUCTION

The inspiral and merger of compact binaries has at-
tracted considerable attention in recent years for two
main reasons. First, such systems emit a large flux of
gravitational waves (GWs), making them among the
most promising sources for GWs detectable by ground-
based laser interferometers, such as LIGO [1,2], VIRGO
[3,4], GEO [5], and KAGRA [6], as well as by proposed
space-based interferometers, such as eLISA/NGO [7] and
DECIGO [8]. Second, black hole-neutron star (BHNS) and
neutron star-neutron star (NSNS) mergers are candidates
for the central engines that power the observed short-hard
gamma ray bursts (sGRBs).

Extracting physical information about these binaries
from their GWs and their accompanying electromagnetic
signalsmay reveal critical details about the equation of state
of neutron star matter and may unveil the nature of the
sGRBphenomenon.However, interpreting the data requires
careful modeling of these systems in full general relativity
(see Ref. [9] for a comprehensive review and references).
Most effort in general relativity to date has focused on
modeling black hole-black hole (BHBH) binaries (see
also Ref. [10]), and NSNS binaries (see also Ref. [11]),
with some recent work on BHNS binaries (see also
Ref. [12]), and white dwarf-neutron star binaries [13–15].

NSNSs are known to exist, which makes NSNS systems
particularly attractive to study. Theoretical calculations
show that NSNS mergers can lead to the formation of a
hypermassive neutron star. A HMNS [16] is a differentially
rotating neutron star (NS) whose mass exceeds the

maximum mass of a uniformly rotating star [17,18]. The
latter is about 20% larger than the maximum mass of a
nonrotating (spherical) equilibrium star [the Tolman-
Oppenheimer-Volkoff (TOV) limit] [16]. Typically a
HMNS forms following the merger of a NSNS, when the
system’s total mass is smaller than some threshold mass
Mth. According to Ref. [19] this threshold mass is Mth �
1:3–1:35Msph, where Msph is the TOV limit for the same

equation of state (EOS).
A HMNS is a transient, quasiequilibrium configuration. It

will eventually undergo ‘‘delayed collapse’’ on a secular (dis-
sipative) time scale, which may power a sGRB. There are two
distinct routes by which this collapse might be triggered:
(1) If the HMNS is primarily centrifugally supported,

redistribution of angular momentum by viscosity or
magnetic fields [20,21], and/or loss of angular mo-
mentum by GW emission [22] destroys the support
provided, leading to catastrophic collapse.

(2) If the HMNS is primarily supported by thermal
pressure generated by shocks during merger, de-
layed collapse may be triggered by the loss via
neutrino cooling of thermal energy [23].

While catastrophic collapse of a cold HMNS via viscos-
ity or magnetic fields has been demonstrated using fully
general relativistic calculations [20,21], there are no fully
general relativistic calculations to date that demonstrate
explicitly that cooling can induce collapse of a hot HMNS
produced following the merger of binary neutron stars.
HMNSs formed in NSNS mergers will always be hot

due to shock heating. A priori it is not clear which mecha-
nism is most important for holding up a HMNS against
collapse: centrifugal forces or thermal pressure. The an-
swer to this question is still open and may depend on the
nature of the companions (e.g., masses, EOS etc.).
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Recent simulations of binary NS mergers that form
hypermassive NSs seem to point in different directions.
For example, in Refs. [25,26] an equal-mass NSNS is
evolved assuming a � ¼ 2 EOS. It is shown that angular
momentum carried away by gravitational waves alone can
induce the collapse. Reference [27] also evolves an equal-
mass NSNS, but with a more realistic, finite temperature,
nuclear EOS. They find that the deviation of their HMNSs
from axisymmetry is so small that GW emission is signifi-
cantly reduced. The authors argue that shock heating is
sufficiently important that their HMNSs are supported by
the excess thermal pressure.

Determining which mechanism controls the lifetime of
the remnant is important because it determines the time
interval between the NSNS merger and the delayed col-
lapse—a time interval that can in principle be measured by
Advanced LIGO/VIRGO. It is the time interval between
the end of the gravitational wave signal due to the inspiral
and the beginning of the burst signal due to the delayed
collapse. If differential rotation support is most important,
then the time interval is governed by, e.g., the Alfvén time
scale, assuming magnetic braking of differential rotation is
most important, or the GW time scale, in the case of a
rapidly spinning remnant that develops a bar. By contrast,
if thermal pressure is dominant, then the time scale is
governed by thermal cooling. Therefore, knowing the
mechanism driving collapse may place constraints on
seed magnetic field magnitudes, or the existence of bar
modes, or the relevant cooling mechanisms. It could even
place constraints on the temperature of matter, as well as
the nuclear EOS.

To disentangle the effects of thermal support from those
of rotational support, previous studies compared results
from NSNS simulations that suppress shocks (by enforcing
a strictly cold EOS) to those that allow shocks. If the
HMNS remnant lives longer with shocks than without,
then it is tempting to infer that thermal pressure due to
shock heating is chiefly responsible for supporting the
remnant. However, it is not possible to draw such a firm
conclusion because shocks, which act on a hydrodynamical
time scale, not only heat the gas, thereby increasing the
total pressure support, but also affect the matter and angu-
lar momentum profiles. Different profiles can themselves
increase the lifetime of a HMNS.

The goal of this paper is to study the relative importance
of thermal pressure in supporting HMNSs from collapse
and demonstrate that cooling can induce the catastrophic
collapse of a HMNS formed following the merger of binary
neutron stars. We accomplish this by performing a limited
set of NSNS simulations in full GR through late inspiral,
merger, (hot) HMNS formation, and collapse. We account
for cooling in the HMNS remnant via a covariant cooling
scheme we developed in Ref. [14]. We then compare this
HMNS evolution to a control simulation, in which the
cooling mechanism is disabled.

Our simulations model the initial NSNS binary as equal-
mass, irrotational, quasiequilibrium n ¼ 1 polytropes in a
quasicircular orbit, corresponding to case 1:46–45–� of
Ref. [25].
Following the NSNS merger, a quasiequilibrium HMNS

forms. We then continue the evolution of the remnant with
and without cooling, which we model via an effective local
emissivity. For the runs with cooling, we choose two
cooling time scales. We find that, independent of the
cooling time scale chosen, the HMNS collapses and forms
a black hole (BH) within a few cooling time scales.
Our simulations suggest that shock-induced thermal

pressure is a significant source of support against gravita-
tional collapse, even in the case of polytropic NSs and
demonstrate explicitly that cooling can induce the cata-
strophic collapse of a HMNS. Estimating the temperature
of the remnant, we find that a realistic neutrino cooling
time scale is of order a few 100 ms. Given that our
estimated cooling time scale is comparable to the angular
momentum redistribution/loss time scales due to either
magnetic braking or GWs, our results suggest that account-
ing for cooling is a critical ingredient in predicting the
lifetime of a HMNS. Accordingly, cooling physics must be
incorporated in models of binary NS simulations.
The paper is structured as follows. In Sec. II we review

the time scales relevant to HMNSs formed in binary NSNS
mergers. Sections III and IV summarize the initial data,
basic evolution equations, numerical methods, and cooling
formalism. The basic results are presented in Sec. V and
summarized in Sec. VI. Throughout this work, geome-
trized units are adopted, where G ¼ c ¼ 1, unless other-
wise specified.

II. TIME SCALES

The relevant time scales in the evolution of a typical
HMNS formed in NSNS mergers are its rotation period T,
the gravitational wave time scale tGW, the cooling time
scale tcool, and Alfvén time scale tA. We provide rough
estimates of these time scales in this section.

A. Rotation period

We express the HMNS angular frequency � as some
fraction � of the break-up angular frequency �ms

� � �

ffiffiffiffiffiffi
M

R3

s
; (1)

where M is the HMNS mass and R its radius. The rotation
period of the HMNS can then be written as

T � 2�

�
¼ 2�R3=2

�M1=2

� 2

�
�

0:5

��1
�

R

20 km

�
3=2

�
M

2:8M�

��1=2
ms: (2)
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For the numerical estimate we have used the values for the
mass and radius of a typical HMNS remnant.

B. Gravitational wave time scale

GW emission sets the time scale of angular momentum
loss from the system. The gravitational wave time scale
for a triaxial, incompressible, spinning ellipsoid with
ellipticity e can be estimated as [28]

tGW � J

dJ=dt
� 1

MR2�4e2
¼ R4

�4e2M3

� 200

�
�

0:5

��4
�

e

0:75

��2
�

R

20 km

�
4
�

M

2:8M�

��3
ms;

(3)

where J � MR2� is the HMNS angular momentum and
the ellipticity is defined as

e ¼ a� b

R
; (4)

where a is the semimajor axis of the HMNS, b the semi-
minor axis, and R is ðaþ bÞ=2. To estimate the time scale,
we assumed a value for the ellipticity that corresponds to a
plausible bar. Note also that our estimated tGW is compa-
rable to the GW time scale inferred by direct numerical
simulations in Ref. [26].

C. Cooling Time Scale

HMNSs are cooled predominantly by emission of neu-
trinos. At densities * 1011 g=cm3 neutrinos become
trapped [28]. Therefore, the cooling time scale is set by
the time it takes for the neutrinos to diffuse out of the hot
HMNS remnant. The main sources of opacity are free
nucleon scattering and neutrino absorption by nucleons
(since protons and neutrons comprise the bulk of the
HMNS). The diffusion time scale can be estimated as [29]

tcool � 3
R2

�nc
; (5)

where �n is the mean free path of the neutrinos given by

��1
n ¼ n�n; (6)

where n is the neutron number density [30], �n is the total
interaction cross section �n ¼ �scat þ �abs, where the
elastic scattering and absorption cross sections are respec-
tively given by [28,29]

�scat � 1

4
�0

�
E�

mec
2

�
2
; �abs � 1:42�0

�
E�

mec
2

�
2
; (7)

where �0 ¼ 1:76� 10�44 cm2, me is the electron mass,
and E� the neutrino energy. Substituting Eqs. (6) and (7) in
Eq. (5) we find

tcool � 15M�0ðE�=mec
2Þ2

4�mnRc

� 400

�
M

2:8M�

��
R

20 km

��1
�

E�

10 MeV

�
2
ms; (8)

where n ¼ ��=mn, with �� ¼ 3M=4�R3 the mean HMNS
density, and mn the mass of a neutron. For the numerical
estimates above we used typical rms values for the neutrino
energy of order 10 MeV, as found in the simulations of
Ref. [29]. Note that for typical neutrino energies of
20 MeV found in Ref. [27], the neutrino cooling timescale
is �2 s. Both of these works used approximate neutrino
transfer schemes. We see that obtaining a neutrino cooling
time scale depends on identifying the energy(ies) of typical
neutrino(s), which in turn requires accurate modeling of
not only bulk motion but also the microphysics.

D. Alfvén time scale

Magnetic fields set the time scale for the braking of
differential rotation in typical HMNSs. This occurs on
the Alfvén time scale [21], given by

tA � R

vA

� R
ffiffiffiffiffiffiffiffiffiffi
4��

p
B

� 100

�
R

20 km

��1=2
�

M

2:8M�

�
1=2

�
B

1015 G

��1
ms; (9)

where vA is the Alfvén velocity, and where a strong but
dynamically unimportant interior magnetic field has been
assumed for the numerical estimate. While little is known
about the strength of NS interior magnetic fields, the value
appearing in (9) is consistent with magnetars models [31].
In addition, NSNS simulations indicate that magnetic in-
stabilities can amplify interior B-fields from �1012 G to
�1015 G during merger [32].

E. Time scale summary

These time scale estimates indicate that the neutrino
cooling time scale can be comparable to the magnetic
braking/angular momentum loss time scales in typical
HMNSs. If thermal pressure is the dominant source of
support in an HMNS against catastrophic collapse to a
BH, then the cooling time scale will determine the time
interval between the GW signals at merger and collapse.
Even if thermal pressure contributes only partially to the
support of the HMNS, the remnant will collapse faster with
cooling than without. These considerations necessitate the
modeling of neutrino cooling in simulations of NSNS
mergers that form HMNSs, not only to predict the neutrino
signature but also to determine what mechanism drives the
remnant to its final configuration. Knowing the results from
such simulations, it may be possible to extract useful
information about the temperature of the matter, neutrino
cooling mechanisms, the existence of bar modes, and the
magnetic field strength and possibly place constraints on
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the nuclear EOS from the GW observations. We perform
preliminary simulations to probe this issue below.

III. BASIC EQUATIONS

This section introduces our notation, summarizes our
methods and numerical techniques as described in
Refs. [33–36]. Greek indices denote all four spacetime
dimensions (0, 1, 2, and 3), and Latin indices label spatial
parts only (1, 2, and 3).

We use the 3þ 1 formulation of general relativity and
decompose the metric into the following form:

ds2 ¼ ��2dt2 þ �ijðdxi þ 	idtÞðdxj þ 	jdtÞ: (10)

The fundamental variables for metric evolution are the
spatial three-metric �ij and extrinsic curvature Kij. We

adopt the Baumgarte-Shapiro-Shibata-Nakamura (BSSN)
formalism [37,38] in which the evolution variables are the
conformal exponent 
 � lnð�Þ=12, the conformal

3-metric ~�ij ¼ e�4
�ij, three auxiliary functions ~�i �
�~�ij

;j, the trace of the extrinsic curvature K, and the

trace-free part of the conformal extrinsic curvature ~Aij �
e�4
ðKij � �ijK=3Þ. Here, � ¼ detð�ijÞ. The full space-

time metric g�� is related to the three-metric ��� by

��� ¼ g�� þ n�n�, where the future-directed, timelike

unit vector n� normal to the time slice can be written in
terms of the lapse � and shift 	i as n� ¼ ��1ð1;�	iÞ.
Evolution equations for these BSSN variables are given by
Eqs. (9)–(13) in Ref. [33]. We adopt the standard puncture
gauge conditions: an advective ‘‘1þ log’’ slicing condition
for the lapse and a ‘‘�-freezing’’ condition for the shift
[39]. The evolution equations for � and 	i are given by
Eqs. (2)–(4) in Ref. [34], with the � parameter set to
0:2=M, where M is the Arnowitt-Deser-Misner (ADM)
mass of the NSNS binary. We add a fifth-order Kreiss-
Oliger dissipation term to all evolved BSSN, lapse and shift
variables to reduce high-frequency numerical noise asso-
ciated with adaptive-mesh-refinement (AMR) interfaces.

The fundamental hydrodynamic variables are the rest-
mass density �0, specific internal energy �, pressure P, and
four-velocity u�. We adopt a �-law EOS P ¼ ð�� 1Þ�0�
with � ¼ 2, which reduces to an n ¼ 1 polytropic law

½P ¼ �ð1þ1=nÞ
0 � for the initial (cold) neutron star matter.

The fluid stress-energy tensor is given by

T�� ¼ �0hu�u� þ Pg��; (11)

where h ¼ 1þ �þ P=�0 is the specific enthalpy.
In the standard numerical implementation of the general

relativistic hydrodynamic (GRHD) equations using a con-
servative scheme, it is useful to introduce the ‘‘conservative’’

variables ��, ~Si, ~�. They are defined as

�� � � ffiffiffiffi
�

p
�0n�u

�; (12)

~S i � � ffiffiffiffi
�

p
T��n

���
i ; (13)

~� � ffiffiffiffi
�

p
T��n

�n� � ��: (14)

The evolution equations for ��, ~Si and ~� can be derived from
the conservation of rest mass r�ð��u�Þ ¼ 0 and the con-

servation of energy-momentum r�T
�� ¼ 0, giving rise to

Eqs. (27)–(30) in Ref. [35].

IV. NUMERICAL METHODS

A. Initial data

For initial data we choose an irrotational NSNS system
in a quasiequilibrium circular orbit that consists of equal-
mass, n ¼ 1 polytropic NSs. The initial data satisfy the
conformal thin sandwich equations [9], have been calcu-
lated using the LORENE spectral methods numerical libra-
ries [40] and are publicly available. These data apply to a
configuration with arbitrary , compaction (in isolation)
M=R ¼ 0:12, where the compaction of the maximummass
configuration is M=R ¼ 0:216. Each star has a rest mass
that is 72% of the maximum allowable TOV rest mass for
this EOS. The initial cold configuration has a coordinate
separation of 11:31M, where M is the ADM mass of
system, with M� ¼ 0:024, where � is the angular fre-
quency of the system. The ADM angular momentum of the
system is J=M2 ¼ 1:02. We note here that our initial data
correspond to case 1:46–45–� of Ref. [25] and that they can
be considered as the polytropic counterpart of case H
studied in Ref. [27]. If we set  ¼ 393:9 km2, the ADM
mass of our stars in isolation becomes 1:59M�, which is
very close to the ADMmass (1:6M�) in isolation of case H
in Ref. [27], where a finite temperature EOS was adopted
that yields for zero-temperature matter a maximum TOV
mass of 2:2M�.

B. Evolution of the metric and matter

We evolve the BSSN equations with fourth-order accu-
rate, centered finite-differencing stencils, except on shift
advection terms, where we use fourth-order accurate up-
wind stencils. We apply Sommerfeld outgoing wave
boundary conditions to all BSSN fields. Our code is em-
bedded in the CACTUS parallelization framework [41], and
our fourth-order Runge-Kutta time stepping is managed by
the MOL (Method of Lines) thorn, with a Courant-
Friedrichs-Lewy factor set to 0.45. We use the CARPET

[42] infrastructure to implement the moving-box adaptive
mesh refinement. In all AMR simulations presented here,
we use second-order temporal prolongation, coupled with
fifth-order spatial prolongation.
The GRHD equations are evolved via a high-resolution

shock-capturing technique [43] that employs piecewise
parabolic method (PPM) [44] coupled to the Harten, Lax,
and van Leer approximate Riemann solver [45]. The
adopted GRHD scheme is second-order accurate for
smooth flows, and first-order accurate when discontinuities
(e.g., shocks) arise. To stabilize our scheme in regions
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where there is no matter, we maintain a tenuous atmo-
sphere on our grid, with a density floor �atm set equal to
10�10 times the initial maximum density on our grid. The
initial atmospheric pressure Patm is set equal to the cold
polytropic value Patm ¼ ��

atm. Throughout the evolution,
we impose limits on the atmospheric pressure to prevent
spurious heating and negative values of the internal energy
� due to numerical errors. Specifically, we require Pmin 	
P 	 Pmax, where Pmax ¼ 10��

0 and Pmin ¼ ��
0=2.

Whenever P exceeds Pmax or drops below Pmin, we reset
P to Pmax or Pmin, respectively. We impose these pressure
limits only in regions where the rest-mass density remains
very low (�0 < 100�atm), as in Ref. [34].

C. Radiative cooling

We now briefly describe our method for implementing
cooling in our simulations. For a derivation and details
regarding this covariant cooling method, see Ref. [14].

The dynamics of radiation is governed by [46–48]

r�R
�	 ¼ �G	; (15)

where R�	 is the radiation stress-energy tensor given by

R�	 ¼
Z

d�d�I�N
�N	; (16)

and G� is the radiation four-force density given by

G� ¼
Z

d�d�ð��I� � j�ÞN�: (17)

In the equations above, d� is the solid angle, � and I� ¼
I�ðx�; Ni; �Þ are the radiation frequency and specific inten-
sity of radiation at x� moving in direction N� ¼ p�=h�,
respectively. All quantities are measured in the local
Lorentz frame of a fiducial observer with four-velocity
u�fid, i.e.,

h� ¼ �p�u
�
fid; (18)

where p� is the photon four-momentum and h denotes
Planck’s constant. The energy-momentum conservation
equation then becomes

r�ðT�	 þ R�	Þ ¼ 0 (19)

or after using Eq. (15),

r�T
�	 ¼ G	: (20)

Our artificial cooling prescription amounts to finding a
functional form for G	 such that thermal energy and
pressure are drained from the system. Choosing

G� ¼ �u��; (21)

and setting

� ¼ �0

�c
�th; (22)

where �c is some prescribed cooling time scale, it can be
shown that in a frame comoving with the fluid, the specific
thermal energy of a fluid parcel evolves as follows [14]

d

d�
�th ¼

�ð�th � 1Þ
�0

d�0

d�
� 1

�c

�
�th; (23)

where � is the proper time of a comoving observer.
The first term in brackets on the rhs of Eq. (23) arises

from adiabatic compression or expansion. The second term
corresponds to cooling and radiates away thermal energy
exponentially.
Projecting Eq. (20) using the timelike unit vector n�

normal to spacelike hypersurfaces and the projection op-
erator h�	 ¼ ��

	 þ n�n	, we find that the 3þ 1 GRHD

equations become

@t ~Si þ @jð� ffiffiffiffi
�

p
Tj

iÞ ¼
1

2
�

ffiffiffiffi
�

p
T�	g�	;i � �

ffiffiffiffi
�

p
ui�; (24)

and

@t~�þ @ið�2 ffiffiffiffi
�

p
T0i � ��viÞ ¼ s� �2 ffiffiffiffi

�
p

u0�; (25)

where we have used Eq. (21). Thus cooling enters as a
source term in the GRHD equations.

D. Recovery of primitive variables

At each time step, we need to recover the ‘‘primitive
variables’’ �0, P, and v

i from the ‘‘conservative’’ variables

��, ~�, and ~Si. We perform the inversion by numerically
solving two nonlinear equations via the Newton-Raphson
method as described in Ref. [49], using the code developed
in Ref. [50].
Sometimes the ‘‘conservative’’ variables may assume

values which are out of physical range, resulting in un-
physical primitive variables after inversion (e.g., negative
pressure or even complex solutions). This usually happens
in the low-density ‘‘atmosphere’’ or deep inside the BH
interior (when a BH is present) where high-accuracy evo-
lution is difficult to maintain. Various techniques have been
suggested to handle the inversion failure (see, e.g.,
Ref. [51]). Our approach is mainly to impose constraints
on the conservative variables to reduce the inversion fail-
ure. For a summary of our latest techniques, see Ref. [52].

E. Diagnostics

1. Constraints and rest-mass conservation

During the evolution, we monitor the Hamiltonian and
momentum constraints, calculated by Eqs. (40)–(43) of
Ref. [33].
When hydrodynamic matter is evolved on a fixed uni-

form grid, our hydrodynamic scheme guarantees that the
rest mass M0 is conserved to machine roundoff error. This
strict conservation is no longer maintained in an AMR grid,
where spatial and temporal prolongation is performed at
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the refinement boundaries. Hence, we also monitor the
total rest mass,

M0 ¼
Z

��d3x; (26)

during the evolution. Rest-mass conservation is also vio-
lated whenever �0 spuriously drops below and is then reset
to the atmosphere value. This usually happens only in the
very low-density atmosphere or deep inside the BH hori-
zon where high accuracy is difficult to maintain. In the
simulations presented in this paper the violation of rest-
mass conservation is less than 1%.

2. Temperature

We measure the thermal energy generated by shocks via
the entropy parameter K � P=Pcold, where Pcold ¼ ��

0 is

the pressure associated with the cold EOS. The specific
internal energy can be decomposed into a cold part and a
thermal part: � ¼ �cold þ �th with

�cold ¼ �
Z

Pcolddð1=�0Þ ¼ 

�� 1
���1
0 : (27)

Hence, the relationship between K and �th is

�th ¼ �� �cold ¼ 1

�� 1

P

�0

� 

�� 1
���1
0

¼ ðK � 1Þ�cold: (28)

For shock-heated gas, we always have K > 1 (see
Appendix B of Ref. [34].

To estimate the temperature of the remnant we model the
specific thermal energy as

�th ¼ 3kT

2mn

þ f
aT4

�0

; (29)

where mn is the mass of a nucleon, k is Boltzmann’s
constant and a is the radiation constant. The first term
represents the approximate thermal energy of the nucleons,
and the second term accounts for the thermal energy due to
relativistic particles. The factor f reflects the number of
species of relativistic particles that contribute to the ther-
mal energy and is determined self-consistently as outlined
in Ref. [14].

Note that the value of T depends on the adopted mass of
the initial configuration and breaks the scale invariance
with respect to . For this purpose we set  ¼ 269:6 km2,
for which M ¼ 2:69M�.

3. GW extraction, energy and angular
momentum conservation

Gravitational waves are extracted using the Newman-
Penrose Weyl scalar c 4 at various extraction radii between
40 and 150M. We decompose c 4 into s ¼ �2 spin-
weighted spherical harmonics up to and including l ¼ 4
modes. At each extraction radius, the retarded time is

computed using the technique described in Sec. IIB of
Ref. [53] to reduce the near-field effect.
We compute the radiated energy�EGW and z-component

of angular momentum �JGW using expressions equivalent
to Eqs. (33), (39), (40) and (49) of Ref. [54].
We also monitor the massMint and (z component of) the

total angular momentum Jint interior to the simulation
domain. These quantities are defined as integrals over the
surface of the outer boundary @V) of the computational
domain:

Mint ¼ 1

2�

I
@V

�
1

8
~�i � ~�ij@jc

�
d�i; (30)

Jint ¼ 1

8�
~�kzj

I
@V

xjðKm
k � �m

k KÞd�m; (31)

where ~�ijk is the flat-space Levi-Civita tensor. As pointed

out in Ref. [34], the integrals can be evaluated more accu-
rately by alternative expressions that use Gauss’s law [9]:

Mint ¼
Z
V
d3x

�
c 5�þ 1

16�
c 5 ~Aij

~Aij

� 1

16�
~�ijk~�jik þ 1� c

16�
~R� 1

24�
c 5K2

�

þ 1

2�

I
S

�
1

8
~�i � ~�ij@jc

�
d�i; (32)

Jint ¼ 1

8�
~�zj

n
Z
V
d3xc 6

�
~Aj

n þ 2

3
xj@nK � 1

2
xj ~Akm@n ~�

km

þ 8�xj ~Sn

�
þ 1

8�
~�zj

n
I
S
c 6xj ~Am

nd�m; (33)

where S is a surface surrounding the BH horizon (when a
BH is present), V is the volume between S and the outer
boundary, � ¼ n�n�T

��, and ~R is the Ricci scalar associ-

ated with the conformal 3-metric ~�ij.

To check the violation of energy and angular momentum
conservation, we monitor the quantities

�E ¼ jM�MintðtÞ ��EGWðtÞj=M; (34)

�J ¼ jJ � JintðtÞ � �JGWðtÞj=J; (35)

where J andM are the ADM angular momentum and mass
of the binary, respectively, and MintðtÞ and JintðtÞ are the
total mass and angular momentum of the system at time t
as calculated by Eqs. (32) and (33). Note that Jintð0Þ ¼ J,
Mintð0Þ ¼ M, and �Eð0Þ ¼ �Jð0Þ ¼ 0 at t ¼ 0. The maxi-
mum violation of energy conservation in the simulations
we present in this paper is �E ¼ 2% and the maximum
angular momentum violation is �J ¼ 3:4%.

V. RESULTS

This section presents the results from our fully relativ-
istic binary NS simulations with cooling. Following the
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merger and formation of a HMNS remnant, which were
carried out without cooling, we perform three subsequent
calculations. In one calculation cooling is never turned on
(case A). In the other two calculations, cooling is triggered
at t � 1600M, at which point the HMNS remnant has
relaxed to a quasiequilibrium state—the rest-mass density
has settled and is changing on a secular (GW) time scale.
We continue the simulations with cooling, choosing either
a short or a long cooling time scale, corresponding to case
B1 and B2, respectively. Table I summarizes these different
cases.

In addition, we performed all simulations at both mod-
erate and high resolutions. The grid configurations are
outlined in Table II. The results we obtained are insensitive
to resolution, and for this reason all plots that follow
correspond to data from our high-resolution runs.

A. Inspiral and merger

During inspiral and merger in case A, no cooling takes
place. The evolution of the rest-mass density contours in
the orbital plane are shown in Fig. 1. As gravitational
waves carry angular momentum away from the system,
the orbits become tighter, and the stars become strongly
tidally distorted (top row, middle panel of Fig. 1). Shortly
after the second orbit the stars collide (top row, right panel
of Fig. 1), marking the onset of the merger phase. Half an
orbit later, the shock-heated stars become strongly sheared
(bottom row, left panel of Fig. 1) and eventually merge and
settle in a quasiequilibrium configuration that consists of
two cold cores, separated by hot, dense material and sur-
rounded by a hot, dense mantle (bottom row, middle and
right panels of Fig. 1). The upper panel of Fig. 2 shows the

meridional rest-mass density contours at the same time as
the final panel of Fig. 1. No mass outflows from the system
are observed, so the HMNS has a rest mass approximately
equal to the initial rest mass of the system. This mass now
exists within an equatorial radius of about 20 km and a
polar radius of about 12 km.
Figure 3 shows the evolution of the orbital-plane K ¼

P=Pcold contours for case A at merger and following
HMNS formation. The left panel in Fig. 3 shows how the
collision of the two stars begins to shock heat the matter. In
the middle and right panels in Fig. 3 the total pressure in
the HMNS is clearly greater than the cold pressure every-
where except inside the two cores. Notice the existence of a
hot area between the two cores of the remnant. In this area
K � 1:5, indicating that the thermal pressure adds a total
of 50% additional support to the cold pressure. In the outer
layers of the remnant the thermal pressure provides up to
�80% of the total pressure. The lower panel of Fig. 2
shows the meridional K contours. Notice that K ap-
proaches 1.8 in both the outer HMNS layers and the hot
region between the double core. These results demonstrate
that shock heating has enhanced the total pressure, which,
along with centrifugal forces, contributes to the support of
the remnant against gravitational collapse.
Following HMNS formation at about t � 500M ¼

6:6ðM=2:69M�Þ ms, the remnant survives for a long quasi-
stationary epoch, during which the maximum density in-
creases almost linearly with time (see left panel of Fig. 4).
Similar behavior is reported in Ref. [25] when using the
same �-law EOS adopted here and no cooling.
In addition, Ref. [25] performed a simulation of the

same system, but with a strict polytropic EOS (P ¼
��

0 ), in which shocks are artificially suppressed. In this

case, it is found that the resulting HMNS collapsed when
�0;max � 2�0;max;initial at which point t � 21 ms. Applying
this same density criterion to the �-law EOS, they extra-
polate that the HMNS would collapse at t �
110ðM=2:69M�Þ ms. Our simulations show that �0;max �
2�0;max;initial at t � 105ðM=2:69M�Þ ms, in good agree-

ment with Ref. [25]’s result. In a follow-up calculation
[26], the same authors demonstrate that the HMNS rem-
nant collapses to a BH at t � 130ðM=2:69M�Þ ms.
In the polytropic EOS simulation (shocks disallowed),

centrifugal forces provide the only source of support
against collapse and tcoll � tGW. However, in the �-law

TABLE I. Summary of cases. The second column indicates
whether cooling is applied. Here M ¼ 1:32�
10�5ðM0=1:45M�Þ s ¼ 3:98ðM0=1:45M�Þ km is the ADMmass.

Case Namea Cooling On Cooling time scale, �=M

A No 1
B1 Yes 150.82

B2 Yes 301.64

aThe inspiral and merger calculation is part of case A. In cases
B1 and B2 cooling is turned on at t � 1600M, at which point the
HMNS remnant of case A has relaxed to a quasiequilibrium
state.

TABLE II. Grid configurations. Here, NNS denotes the number of grid points covering the smallest diameter of the neutron star
initially (13:54 km ¼ 3:4M). ‘‘Moderate’’ indicates the moderate resolution runs, and ‘‘High’’ the high resolution ones.

Grid Hierarchy (in units of M)a Max. resolution NNS

Moderate (181.98, 90.488, 45.244, 22.622, 15.081, 11.311, 7.541, 5.302) M=16:97 116

High (181.98, 90.488, 45.244, 22.622, 15.081, 11.311, 7.541, 5.043) M=21:22 144

aThere are two sets of nested refinement boxes centered on each of the NSs. This column specifies the half side length of the refinement
boxes centered on each star.
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EOS simulation (shocks allowed), additional pressure from
thermal support is also present, so tcoll can be larger. In fact,
in the absence of cooling, a sufficiently hot remnant may
never collapse. This is what [27] conclude from their case
M simulation, as they demonstrated that a hot TOV star
could support in equilibrium a mass greater than the total
mass of their merged remnant.

Given that the �-law EOS remnant collapses about
100 ms later than the polytropic one, it is clear that shocks
play a key dynamical role. However, shocks, which occur
on a hydrodynamical time scale, give rise to at least three
effects:

(1) they heat the gas, increasing the total pressure
support;

(2) they affect the matter profile;
(3) and they redistribute the angular momentum.
A priori it is not clear which of these effects is respon-

sible for prolonging the HMNS lifetime, and the answer
cannot be determined by comparing simulations that do not
allow for shocks to those that do.

To investigate the importance of the shock-induced ther-
mal pressure support against collapse, cooling the hot

HMNS remnant is crucial. But what is the neutrino cooling
time scale?
Analyzing the nascent HMNS in case A, we can now

estimate a realistic cooling time scale directly from our
simulation data. In Fig. 5 we show the case A orbital-plane
temperature contours of the HMNS remnant. The maxi-
mum and rms temperatures are �22 and �5:5 MeV, re-
spectively. Using these values for the neutrino energy, and
setting M ¼ 2:7M� and R ¼ 16 km, Eq. (5) yields a neu-
trino diffusion time scale of �165 ms–2:64 s. Note that
this range is consistent with our discussion in Sec. II, where
the neutrino diffusion time scale was estimated to be
comparable to the gravitational wave time scale of
�120 ms.
Therefore, as the additional thermal pressure is a dy-

namically important source of support, then cooling must
be incorporated in numerical simulations to accurately
determine the time interval between merger and delayed
collapse. Low energy neutrinos (E� & 10 MeV), that es-
cape the HMNS on a time scale & tGW, can remove a
sufficiently large amount of thermal energy to accelerate
the collapse. This is the main point we want to emphasize

FIG. 1 (color online). Case A orbital-plane rest-mass density contours at selected times. Contours are plotted according to
�0 ¼ �0;maxð10�0:375j�0:131Þ, (j ¼ 0; 1; . . . 8). The color sequence dark red, red, orange, yellow, green, light green, blue and light

blue implies a sequence from higher to lower values. This roughly corresponds to darker grey-scaling for higher values. The maximum
initial NS density is �0;max ¼ 0:0917, or �0;max ¼ 4:58� 1014 gcm�3ð1:45M�=M0Þ2. Here M ¼ 1:32� 10�5ðM0=1:45M�Þ s ¼
3:98ðM0=1:45M�Þ km is the ADM mass, and M0 denotes the rest mass of each star.
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in this paper. Our conclusion may even be more important
when a stiff EOS is employed, as the HMNS will be less
compact resulting in less effective GW emission.

B. Cooling study

To assess the impact of the shock-induced thermal pres-
sure in the HMNS remnant, we slowly remove the thermal

pressure using our covariant cooling technique. We chose
two cooling time scales for our study. The short one is
�c;1 ¼ 6:5td for case B1 and the long one is �c;2 ¼ 2�c;1 ¼
13td for case B2, where

td � 1ffiffiffiffi
��

p � 23M (36)

is the dynamical time scale of the HMNS, where �� is the
mean HMNS density. This choice is arbitrary, but it is set
so that the cooling time scale is significantly longer than
the dynamical time scale of the remnant, as in physically
realistic stars, but short enough for our simulations to be
completed within a reasonable time.
Our runs with cooling lead to BH formation within a few

cooling time scales. This can be seen in the left two panels of
Fig. 4 where we plot the maximum rest-mass density �0;max

and the minimum of the lapse function �min vs time, respec-
tively. From these plots it becomes clear that case A does not
collapsewithin the integration time, while both cases B1 and
B2 form a BH. Notice that in cases B1 and B2, when �0;max

roughly equals two times its initial value, the lapse function
collapses and aBH forms.Note that this is consistentwith the
polytropic runs of Ref. [25], in which shocks were sup-
pressed. Therefore, in all cases with the adopted EOS, col-
lapse takes place when �0;max � 2�0;max;initial, when thermal

energy is drained from the system.
If the collapse is driven by cooling, then we naturally

expect that a longer cooling time scale will increase the
lifetime of the HMNS. This is precisely what we find: the
collapse in case B2 occurs later than in case B1. Further
evidence of cooling-induced collapse is shown in the right
panel of Fig. 4. There the tracks of �0;max against the total

angular momentum of the remnant Jint are plotted using
Eq. (33). This plot demonstrates that during the post-
merger evolution for the same Jint, �0;max is always larger

FIG. 2 (color online). Case A meridional (XZ) plane rest-mass
density (upper panel) and K contours (lower panel). Density
contours are plotted according to �0 ¼ �0;maxð10�0:375j�0:131Þ,
(j ¼ 0; 1; . . . 8), where �0;max ¼ 0:0917, or �0;max ¼
4:58� 1014 gcm�3ð1:45M�=M0Þ2. K contours are plotted ac-
cording to K ¼ Kmax10

�0:031j, (j ¼ 0; 1; . . . 8). Here Kmax ¼
1:77. The color coding is the same as used in Fig. 1. In the lower
panel light blue indicatesK � 1 and dark redK � 1:6. HereM ¼
1:32� 10�5ðM0=1:45M�Þ s ¼ 3:98ðM0=1:45M�Þ km is the
ADM mass, andM0 denotes the rest mass of each star.

FIG. 3 (color online). Case A orbital-plane K contours at selected times. Contours are plotted according to K ¼ Kmax10
�0:028j,

(j ¼ 0; 1; . . . 8). Here Kmax ¼ 1:6. The color coding is the same as used in Figs. 1 and 2. A density cutoff of 10�1�0;max has been

imposed, where �0;max ¼ 0:0917, or �0;max ¼ 4:58� 1014 gcm�3ð1:45M�=M0Þ2. The dual cold core nature of the HMNS is visible

and it becomes clear that between the two cores a hot area has formed, where 40–50% of the total pressure is due to thermal pressure.
In the outer parts of the HMNS, the contribution of the thermal component is greater than 50% of the total pressure. Here
M ¼ 1:32� 10�5ðM0=1:45M�Þ s ¼ 3:98ðM0=1:45M�Þ km is the ADM mass, and M0 denotes the rest mass of each star.
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with cooling present (e.g., �0;max in cases B1, B2 is �30%
larger than in case A for the smallest Jint reached in case
A). Therefore, it is the reduction of thermal pressure that
leads to a more compact remnant and not angular momen-
tum loss driven by GWs.

In Fig. 6 we show the evolution of the rest-mass density
(upper row) and K contours (lower row) for case B2. The
selected times correspond to 1, 8, and 11 cooling time
scales after cooling was turned on [55]. The right panel
corresponds to a time shortly before an apparent horizon

forms. These plots indicate that as thermal pressure is
removed, the double cores approach one another and the
HMNS becomes more compact (notice the density increase
and the shrinking size of the remnant with increasing time).
We find that when the hot area between the two cores is
cooled to K � 1:05, the two cores merge and form a
single-core HMNS. Shortly after this occurs (at t �
3000M), the remnant undergoes catastrophic collapse.
Based on these results we conclude that thermal pressure

contributes significantly to support against collapse.

C. Angular momentum conservation

Figure 7 plots the evolution of total angular momentum
(Jint) and angular momentum carried off by GWs (�JGW),
normalized by the ADM angular momentum of the binary
(J) for cases A and B2. We find that ðJint þ�JGWÞ=J,
which should be equal to unity at all times, is the same
and close to unity for all three cases A, B1 and B2. This
implies that cooling carries off negligible amounts of
angular momentum which is consistent with earlier esti-
mates [24]. The maximum violation of angular momentum
conservation is �J � 3:4%. Notice that Jint is smaller in
case B2 than in case A, while �JGW is larger in case B2
than in case A. The distinction is due to the fact that as
thermal energy is radiated away, the remnant becomes
more compact, enabling GWs to remove angular momen-
tum faster. We conclude that cooling accelerates the col-
lapse of the HMNS by the combined action of two effects:
(1) Cooling removes thermal pressure support, yielding

a more compact remnant.
(2) As the remnant becomesmore compact, GWs are able

to carry away angular momentum more efficiently.

VI. SUMMARYAND FUTURE WORK

A differentially rotating, quasiequilibrium HMNS is a
transient configuration that can arise following the merger

FIG. 4. Case A orbital-plane temperature contours. Contours are plotted according to T ¼ Tmax10
�0:136j, (j ¼ 0; 1; . . . 8), where

Tmax ¼ 2:57� 1011 K ¼ 22:18 MeV. The color coding here is the same as in Fig. 1. A density cutoff of 10�2�0;max has been imposed,

where �0;max is the maximum density on the grid. The maximum temperature is at the center of the HMNS remnant. The rms

temperature in the remnant is �T ¼ 6:35� 1010 K � 5:5 MeV. Here M ¼ 1:32� 10�5 s ¼ 3:98 km is the ADM mass.

FIG. 5 (color online). Left panel: Maximum rest-mass density
�0;maxðtÞ normalized by �0;maxðt ¼ 0Þ. Middle panel: Minimum

value of the lapse function vs time. Right panel: Maximum rest-
mass density vs total angular momentum for the different cool-
ing time scales considered. Here M ¼ 1:32�
10�5ðM0=1:45M�Þ s ¼ 3:98ðM0=1:45M�Þ km is the ADM
mass, and �0;maxð0Þ ¼ 0:0917, or �0;maxð0Þ ¼ 4:58�
1014 gcm�3ð1:45M�=M0Þ2. M0 here denotes the rest mass of
each star.
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of NSNS binaries. The mass of a HMNS is larger than the
maximum mass that can be supported by a cold EOS, even
with maximal uniform rotation. A HMNS will eventually
undergo ‘‘delayed collapse’’ on a secular (dissipative) time
scale and may power a sGRB.

When HMNSs are born in NSNS mergers, they are
rapidly differentially rotating and hot due to shock heating.
Therefore, HMNSs will collapse to a BH either on an
angular momentum loss/magnetic braking time scale or
on a cooling time scale. A priori it is not clear which of the
two above mechanisms is most important for holding up an
HMNS against collapse: centrifugal forces or thermal
pressure. The answer to this question is still open and
may depend on the stellar model, EOS, and initial mag-
netic fields.

Determining which mechanism drives a HMNS to col-
lapse has observational consequences; the time scale of
collapse will set the interval between the NSNS merger
chirp signal and the delayed collapse burst signal, which
may be measured by LIGO/VIRGO. Careful modeling of
HMNS physics will thus place constraints on magnetic
field magnitudes, the existence of bar modes, and/or the

relevant cooling mechanisms. In addition, such observa-
tions could place constraints on the temperature of matter
as well as the nuclear EOS.
To disentangle the effects of thermal support from those

of rotational support, previous studies compared results
from NSNS simulations that suppress shocks to those
that allow shocks. If the HMNS remnant lives longer in
the case with shocks than without, then it is tempting to
infer that thermal pressure due to shock heating is solely
responsible. However, it is not possible to draw such a firm
conclusion because shocks, which act on a hydrodynamical
time scale, not only heat the gas, thereby increasing the
total pressure support, but also affect the matter profile and
redistribute angular momentum. Different matter and an-
gular momentum profiles alone can increase the lifetime of
a HMNS via an increase of both the GW time scale and the
amount of differential rotational support.
To address this issue, we first performed long-term,

high-resolution GRHD NSNS simulations through inspi-
ral, merger, and HMNS formation, allowing for shocks.
Following HMNS formation, we continue the evolution
both with and without cooling. When cooling is turned

FIG. 6 (color online). Upper row: Case B2 orbital-plane rest-mass density contours at selected times. Contours are plotted according
to �0 ¼ �0;maxð10�0:2jþ0:568Þ, (j ¼ 0; 1; . . . 8), where �0;max ¼ 0:0917, or �0;max ¼ 4:58� 1014gcm�3ð1:45M�=M0Þ2. Lower row:
Case B2 orbital-plane K contours at selected times. Contours are plotted according to K ¼ Kmax10

�0:025j, (j ¼ 0; 1; . . . 8). Here
Kmax ¼ 1:6. The color coding is the same as used in Fig. 1, with light blue indicating to K � 1, yellow K � 1:2 and dark red K � 1:4.
Here M ¼ 1:32� 10�5ðM0=1:45M�Þ s ¼ 3:98ðM0=1:45M�Þ km is the ADM mass, and M0 denotes the rest mass of each star.
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off, the remnant collapses on the GW time scale. However,
when cooling is turned on, we find that the HMNS collap-
ses and forms a BH within a few cooling time scales.

Our simulations demonstrate that shock-induced ther-
mal pressure is a significant source of support against

gravitational collapse in the case of a stiff �-law EOS—a
result consistent with simulations that employ a more
realistic EOS [27]—and show explicitly that cooling can
induce the catastrophic collapse of a HMNS. Estimating
the temperature of the HMNS remnant, we find that a
realistic neutrino cooling time scale is of order a few
100 ms. Given that the estimated cooling and angular
momentum loss/magnetic braking time scales can be com-
parable, cooling should be accounted for to accurately
determine the lifetime of a HMNS. Therefore, simulations
that implement cooling will lead to earlier collapse than
simulations that ignore it; otherwise, the predicted GWand
electromagnetic signatures from these delayed collapse
events may be incorrect.
Therefore, to accurately determine the lifetime of

HMNS remnants, neutrino cooling physics should be in-
corporated in NSNS simulations. In the future we plan to
revisit the subject using a more realistic neutrino leakage
scheme, such as that used in Refs. [27,56], in conjunction
with a more realistic treatment of the microphysics
involved.
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