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We examine an Unruh-DeWitt particle detector coupled to a scalar field in three-dimensional curved

spacetime. We first obtain a regulator-free expression for the transition probability in an arbitrary

Hadamard state, working within first-order perturbation theory and assuming smooth switching, and

we show that both the transition probability and the instantaneous transition rate remain well defined in

the sharp switching limit. We then analyze a detector coupled to a massless conformally coupled field in

the Hartle-Hawking vacua on the Bañados-Teitelboim-Zanelli black hole, under both transparent and

reflective boundary conditions at the infinity. A selection of stationary and freely falling detector

trajectories are examined, including the corotating trajectories, for which the response is shown to be

thermal. Analytic results in a number of asymptotic regimes, including those of large and small mass, are

complemented by numerical results in the interpolating regimes. The boundary condition at infinity is

seen to have a significant effect on the transition rate.
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I. INTRODUCTION

The Unruh-DeWitt model for a particle detector [1,2] is
an important tool for probing the physics of quantum fields
wherever noninertial observers or curved backgrounds are
present. In such cases there is often no distinguished notion
of a ‘‘particle,’’ analogous to the plane-wave modes in
Minkowski space, but an operational meaning can be
attached to the particle concept by analyzing the transitions
between the energy levels of a detector coupled to the field:
upwards (respectively downwards) transitions can be in-
terpreted as due to absorption (emission) of field quanta, or
particles. The best-known applications of this procedure
are those for which the spectrum of transitions is thermal,
which is the case for uniformly linearly accelerated detec-
tors in Minkowski space [1–4], detectors at rest in the
exterior Schwarzschild black hole spacetime [5–7], and
inertial detectors in de Sitter space [8].

With the Unruh-DeWitt detector, the fundamental quan-
tity of interest is the probability of a transition between
the energy eigenstates. In the framework of first-order
perturbation theory this probability is proportional to the
response function, given by a Fourier transform of the
Wightman distribution of the quantum field over the de-
tector’s worldline, weighted by a switching function that
specifies how the interaction is turned on and off [9,10].
The response function is mathematically well defined pro-
vided the state of the quantum field is regular in the
Hadamard sense [11,12] and the detector is switched on
and off smoothly [13–16]. Physically, the response func-
tion then gives the probability for the detector to have

completed a quantum jump by the time the interaction
with the field has ceased.
A related quantity of interest is the transition rate, which

can be defined as the derivative of the transition probability
with respect to the total detection time, and is observatio-
nally meaningful in terms of consequent measurements in
identical ensembles of detectors [17]. There are technical
subtleties in isolating in the transition rate the effects that
are merely due to the switch-on and switch-off and the
effects that are genuinely due to the acceleration and to the
quantum state of the field [18–23]; however, a satisfactory
treatment within first-order perturbation theory is to start
with a smoothly switched detector and take a controlled
sharp switching limit [17,24,25]. In particular, in three-
dimensional Minkowski space, with a massless scalar field
in the Minkowski vacuum, this procedure yields a finite
result both for the transition probability and the transition
rate even in the sharp switching limit [25].
In this paper we consider a detector in three-dimensional

curved spacetime. In the first part of the paper we inves-
tigate a detector that is coupled to a scalar field in an
arbitrary Hadamard state in an arbitrary spacetime. We
give for the transition probability an expression that in-
volves no distributional integrals, and we show that both
the transition probability and the transition rate remain
finite in the sharp switching limit. In the special case of a
massless scalar field in the Minkowski vacuum of
Minkowski spacetime, we recover the results of Ref. [25].
In the second part of the paper we apply the transition

rate formula to a detector in the (2þ 1)-dimensional
Bañados-Teitelboim-Zanelli (BTZ) black hole spacetime
[26,27], for a massless conformally coupled scalar field in
a Hartle-Hawking vacuum state [6,7,28,29] with transpar-
ent, Dirichlet or Neumann boundary conditions at the
asymptotically anti-de Sitter infinity. We first consider a
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stationary detector outside the hole, switched on in the
asymptotic past. When the detector is corotating with the
black hole horizon, we verify that the transition rate is
thermal in the corotating local Hawking temperature, in
the sense of the Kubo-Martin-Schwinger (KMS) property
[30,31], as is to be expected from general properties of the
Hartle-Hawking state [6,7,28,32] and also from global
embedding space (GEMS) considerations [33–36]. We
obtain analytic results in a number of asymptotic regimes,
including those of large and small mass, and we provide
numerical results in the interpolating regimes. A static
detector outside a nonrotating black hole is included as a
special case. When the detector is stationary but its angular
velocity differs from that of the horizon, we find that the
transition rate breaks the KMS property already to qua-
dratic order in the difference of the angular velocities of the
horizon and the detector.

We also consider a detector that falls into a nonrotating
BTZ hole along a radial geodesic. We analyze the time
evolution of the transition rate, obtaining analytic results
for large black hole mass and large detector energy gap
and numerical results in other regimes. We find no evi-
dence of thermality in the transition rate, not even near the
moment of maximum distance from the black hole, and we
trace this phenomenon to the nonthermal response of an
inertial detector in the corresponding vacuum state in pure
anti-de Sitter space, as predicted from GEMS considera-
tions [33–36].

We find that the boundary condition at the infinity has a
significant effect on the transition rate for all of our detec-
tor trajectories. Typically, the Dirichlet condition gives a
transition rate that varies least rapidly as a function of the
detector’s energy gap and the total detection time, owing
to partial cancellations between terms in the Dirichlet
Wightman function. Similar cancellations do not occur
for the Neumann or transparent boundary condition.

We begin in Sec. II with a brief review of the Unruh-
DeWitt detector model, recalling, in particular, how the
distributional character of the Wightman function needs to
be addressed prior to taking a sharp switching limit. In
Sec. III we consider an arbitrary Hadamard state in an
arbitrary three-dimensional spacetime, writing the transi-
tion probability without distributional integrals and obtain-
ing the formulas for the transition probability and the
transition rate in the sharp switching limit. Section IV
briefly reviews relevant properties of the BTZ black hole
and the Hartle-Hawking vacua for a massless conformally
coupled scalar field. A stationary detector is considered in
Sec. V and a freely falling detector in Sec. VI. Section VII
presents concluding remarks. Technical steps in contour
integral analyses and asymptotic expansions are delegated
to six appendices.

Our metric signature is ð� þþÞ, and we use units in
which c ¼ ℏ ¼ 1. Spacetime points are denoted by sans
serif letters. OðxÞ denotes a quantity for which OðxÞ=x is

bounded as x ! 0, oðxÞ denotes a quantity for which
oðxÞ=x ! 0 as x ! 0, Oð1Þ denotes a quantity that is
bounded in the limit under consideration, and oð1Þ denotes
a quantity that vanishes in the limit under consideration.

II. UNRUH-DEWITT DETECTOR

In this section we briefly review the Unruh-DeWitt
detector coupled to a scalar field, treated in first-order
perturbation theory in the coupling [1,2].
The detector is an idealized atom with two energy levels,

denoted by j0id and jEid, with the respective energy ei-
genvalues 0 and E, where E may be positive or negative.
The detector is spatially pointlike and moves on a timelike
worldline xð�Þ, parametrized by the detector’s proper time
�, in a spacetime of dimension two or higher. The detector
interacts with a free real scalar field �, of arbitrary mass
and curvature coupling, by the interaction Hamiltonian

Hint ¼ c�ð�Þ�ð�Þ�ðxð�ÞÞ; (2.1)

where c is a small coupling constant and�ð�Þ is the atom’s
monopole moment operator. � is the switching function,
positive during the interaction and vanishing elsewhere;
this function specifies how the detector is switched on
and off. We assume � to be smooth and of compact
support, and we assume the trajectory to be smooth on
the support of �.
Before the interaction begins, we assume the detector to

be in the state j0id and the field to be in a state j�i, and we
assume j�i to be regular in the sense that it satisfies the
Hadamard property [12]. The detector-field system is
hence initially in the composite state j0id � j�i. We are
interested in the probability for the detector to be found in
the state jEid after the interaction has ceased, regardless of
the final state of the field. Working in first-order perturba-
tion theory, this probability factorizes as [9,10]

PðEÞ ¼ c2jdh0j�ð0ÞjEidj2F ðEÞ; (2.2)

where the response functionF ðEÞ encodes the information
about the detector’s trajectory, the initial state of the field,
and the way the detector has been switched on and off.
F ðEÞ can be expressed as [19]

F ðEÞ ¼ 2 lim
�!0þ

Re
Z 1

�1
du�ðuÞ

�
Z 1

0
ds�ðu� sÞe�iEsW�ðu; u� sÞ; (2.3)

whereW�ðu; u� sÞ is a one-parameter family of functions
that converge to the pullback of the Wightman distribution
to the detector’s worldline [11,13,14,17]. The factors in
front of F ðEÞ in (2.2) depend only on the internal structure
of the detector and we shall from now on drop them,
referring to F ðEÞ as the transition probability.
In summary, the response function F ðEÞ answers the

question, ‘‘What is the probability of the detector to be
observed in the state jEid after the interaction has ceased?’’
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GivenF ðEÞ, we may define the detector’s ‘‘transition rate’’
as the derivative ofF ðEÞ with respect to the total detection
time [19,23]. Both F ðEÞ and the transition rate depend not
only on the initial state of the field and the detector’s
trajectory but also on the switching, and their behavior in
the sharp switching limit depends sensitively on the space-
time dimension [25].

Working directly with the expression (2.3) for F ðEÞ is
cumbersome because the limit � ! 0þ may not necessarily
be taken pointwise under the integral [17,19–25]. In Sec. III
we shall address this issue in three spacetime dimensions.

III. TRANSITION PROBABILITY
AND TRANSITION RATE IN THREE

SPACETIME DIMENSIONS

In this section we specialize to three spacetime dimen-
sions. We first rewrite the response function (2.3) in a form
in which the regulator � does not appear. We then take the
sharp switching limit and show that both the transition
probability and the transition rate remain well defined in
this limit. We follow closely the procedure developed in
Refs. [17,23–25].

A. Hadamard form of W�

In a three-dimensional spacetime, the Wightman distri-
bution Wðx; x0Þ of a real scalar field in a Hadamard state
can be represented by a family of functions with the short
distance form [12]

W�ðx; x0Þ ¼ 1

4�

2
4 Uðx; x0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~��ðx; x0Þ
p þHðx; x0Þffiffiffi

2
p

3
5; (3.1)

where � is a positive parameter, ~�ðx; x0Þ is the squared
geodesic distance between x and x0, ~��ðx; x0Þ :¼
~�ðx; x0Þ þ 2i�½TðxÞ � Tðx0Þ� þ �2, and T is any globally
defined future-increasing C1 function. The branch of the
square root is such that the � ! 0þ limit of the square root
is positive when ~�ðx; x0Þ> 0 [11,12]. Here Uðx; x0Þ and
Hðx; x0Þ are symmetric biscalars that possess expansions
of the form

Uðx; x0Þ ¼ X1
n¼0

Unðx; x0Þ�nðx; x0Þ; (3.2a)

Hðx; x0Þ ¼ X1
n¼0

Hnðx; x0Þ�nðx; x0Þ; (3.2b)

where the coefficients Unðx; x0Þ satisfy the recursion rela-
tions

ðnþ 1Þð2nþ 1ÞUnþ1 þ ð2nþ 1ÞUnþ1;��
;�

� ð2nþ 1ÞUnþ1�
�1=2�1=2

;��
;�

þ ðhx �m2 � �RÞUn ¼ 0;

n ¼ 0; 1; 2; . . . ; (3.3)

with the boundary condition

U0 ¼ �1=2; (3.4)

and the coefficientsHnðx; x0Þ satisfy the recursion relations
ðnþ 1Þð2nþ 3ÞHnþ1 þ 2ðnþ 1ÞHnþ1;��

;�

� 2ðnþ 1ÞHnþ1�
�1=2�1=2

;��
;�

þ ðhx �m2 � �RÞHn ¼ 0;

n ¼ 0; 1; 2; . . . ; (3.5)

where � ¼ 1
2 ~�, �ðx; x0Þ is the Van Vleck determinant, m is

the mass, and � is the curvature coupling parameter [12].
The i� prescription in (3.1) defines the singular part

of Wðx; x0Þ: the action of the Wightman distribution is
obtained by integratingW�ðx; x0Þ against test functions and
taking the limit � ! 0þ as in (2.3). This limit can be shown
to be independent of the choice of global time function T
[13–16].

B. Transition probability without i� regulator

To evaluate the � ! 0þ limit in (2.3), the main issue
is at s ¼ 0, where the Hadamard expansion (3.1) shows
that the integrand develops a nonintegrable singularity
as � ! 0þ. We shall work under the assumption that
any other singularities that the integrand develops as
� ! 0þ are integrable. This will be the case in our
applications in Secs. V and VI. We note in passing that
similar integrable singularities can occur in any space-
time dimension, and the four-dimensional results in
Ref. [17] should hence be understood to involve a
similar assumption.
We first split the s integral in (2.3) into the subintervals

ð0; 	Þ and ð	;1Þ where 	 ¼ ffiffiffi
�

p
. We then find the small �

expansions of each integral and finally combine the results.
Let I> denote the s 2 ð	;1Þ portion of the s integral in

(2.3), including the taking of the real part. Let W0 denote
the pointwise limit of W� as � ! 0þ. ReplacingW� byW0

creates in I> the error

2Re
Z 1

	
ds�ðu� sÞe�iEs½W�ðu; u� sÞ �W0ðu; u� sÞ�

¼ 1

2�
Re

Z 1

	
ds�ðu� sÞe�iEsUðu; u� sÞ

�
"

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�þ 2i��T þ �2

p þ iffiffiffiffiffiffiffiffi�~�
p

#
; (3.6)

where ~� is evaluated at the pair ðx; x0Þ ¼ ðxðuÞ; xðu� sÞÞ,
�T :¼ TðxðuÞÞ � Tðxðu� sÞÞ, and we recall that ~�< 0 as
the trajectory is timelike. The square brackets in (3.6) have
the same form as in the Minkowski analysis in Ref. [25]
and obey similar estimates. The function U has the small s
expansion

Uðu; u� sÞ ¼ 1þOðs2Þ; (3.7)
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by virtue of (3.2a), (3.4), and the expansions ~�¼�s2þOðs4Þ
and � ¼ 1þOðs2Þ. These observations show that the
contribution from (3.6) to I> is Oð	Þ. We hence have

I> ¼ 2
Z 1

0
ds�ðu� sÞRe½e�iEsW0ðu; u� sÞ� þOð	Þ;

(3.8)

where we have extended the lower limit to 0 at the expense
of an error that is contained in the Oð	Þ term since (3.1)
shows that taking the real part under the integral makes the
integrand regular at s ¼ 0.

Let then I< denote the s 2 ð0; 	Þ portion of the s
integral in (2.3), including the taking of the real part. We
have

I< ¼ 2Re
Z 	

0
ds�ðu� sÞe�iEsW�ðu; u� sÞ

¼ 1

2�
Re

Z 	

0
ds�ðu� sÞe�iEs

�
"

Uðu; u� sÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�þ 2i��T þ �2

p þHðu; u� sÞffiffiffi
2

p
#
: (3.9)

Since Hðu; u� sÞ is a regular function, its contribution to
I< is Oð	Þ. The contribution of the term involving U can
be found using the estimates of [25] and the expansion
(3.7). We find

I< ¼ �ðuÞ=4þOð	Þ: (3.10)

Combining (3.8) and (3.10), and noting that their error
estimates hold uniformly in u, it is immediate to take the
� ! 0þ limit in (2.3). We find

F ðEÞ¼1

4

Z 1

�1
du½�ðuÞ�2þ2

Z 1

�1
du�ðuÞ

�
Z 1

0
ds�ðu�sÞRe½e�iEsW0ðu;u�sÞ�: (3.11)

Note that the integrals in (3.11) are regular, at s ¼ 0 by the
Hadamard short-distance behavior of W0, and at s > 0 by
our assumptions about the singularity structure of W0 at
timelike-separated points.

C. Sharp switching limit and the transition rate

Up to now we have assumed the switching function � to
be smooth. When � approaches the characteristic function
of the interval ½�0; �0 þ �� in a sufficiently controlled
fashion [17,24,25], the integrands in (3.11) remain regular
and taking the sharp switching limit under the integral can
be justified by dominated convergence. The transition
probability takes the form

F �ðEÞ ¼ ��

4
þ 2

Z �

�0

du
Z u��0

0
dsRe½e�iEsW0ðu; u� sÞ�;

(3.12)

where �� :¼ �� �0 and the subscript � is included as a
reminder of the dependence on the switch-off moment.
Differentiation with respect to � shows that the transition
rate is given by

_F �ðEÞ ¼ 1

4
þ 2

Z ��

0
dsRe½e�iEsW0ð�; �� sÞ�: (3.13)

Note that both (3.12) and (3.13) are well defined under
our assumptions, and in the special case of a massless
scalar field in the Minkowski vacuum they reduce to
what was found in Ref. [25]. Spacetime curvature has
hence not introduced new singularities in the sharp switch-
ing limit.
Note also that the preintegral term 1

4 in (3.13) would have

been missed if the limit � ! 0þ had been taken naı̈vely
under the integral in (2.3). Yet this term is essential: it was
observed in Ref. [25] that without this term one would not
recover the standard thermal response for a uniformly
linearly accelerated detector in Minkowski vacuum
[3,37], and we shall see in Sec. V that without this term
we would not recover thermality for a corotating detector
in the BTZ spacetime.

IV. DETECTOR IN THE BTZ SPACETIME

We now turn to a detector in the BTZ black hole space-
time [26,27], specializing to a massless conformally
coupled scalar field in the Hartle-Hawking vacuum with
transparent or reflective boundary conditions. In this sec-
tion we briefly recall relevant properties of the spacetime
and the Wightman function. More detail can be found in
the review in Ref. [29].
Recall first that three-dimensional anti-de Sitter space-

time AdS3 may be defined as the submanifold

� ‘2 ¼ �T2
1 � T2

2 þ X2
1 þ X2

2 ; (4.1)

in R2;2 with coordinates ðT1; T2; X1; X2Þ and metric

dS2 ¼ �dT2
1 � dT2

2 þ dX2
1 þ dX2

2 ; (4.2)

where ‘ is a positive parameter of dimension length. The
BTZ black hole is obtained as a quotient of an open region
in AdS3 under a discrete isometry group ’ Z. Specializing
to a nonextremal black hole, a set of coordinates that are
adapted to the relevant isometries and cover the exterior
region of the black hole are the BTZ coordinates ðt; r; �Þ,
defined in AdS3 by

X1 ¼ ‘
ffiffiffiffi



p
sinh

�
rþ
‘
�� r�

‘2
t

�
;

X2 ¼ ‘
ffiffiffiffiffiffiffiffiffiffiffiffiffi

� 1

p
cosh

�
rþ
‘2

t� r�
‘
�

�
;

T1 ¼ ‘
ffiffiffiffi



p
cosh

�
rþ
‘
�� r�

‘2
t

�
;

T2 ¼ ‘
ffiffiffiffiffiffiffiffiffiffiffiffiffi

� 1

p
sinh

�
rþ
‘2

t� r�
‘
�

�
;

(4.3)
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where


ðrÞ ¼
�
r2 � r2�
r2þ � r2�

�
; (4.4)

and the parameters r� satisfy jr�j< rþ. The coordinate
ranges covering the black hole exterior are rþ < r <1,
�1< t <1, and �1<�<1, and the Z quotient is
realized as the identification ðt; r; �Þ � ðt; r; �þ 2�Þ. The
outer horizon is at r ! rþ, and the asymptotically AdS3
infinity is at r ! 1. The metric takes the form

ds2¼�ðN?Þ2dt2þf�2dr2þr2ðd�þN�dtÞ2; (4.5)

with

N?¼f¼
�
�Mþ r2

‘2
þ J2

4r2

�
1=2

; N�¼� J

2r2
; (4.6)

where the mass M and the angular momentum J are
given by

M ¼ ðr2þ þ r2�Þ=‘2; J ¼ 2rþr�=‘; (4.7)

and they satisfy jJj<M‘.
In a quantum state invariant under @�, the Wightman

function on the black hole spacetime can be expressed as
an image sum of the corresponding AdS3 Wightman func-
tion. If GAðx; x0Þ denotes the AdS3 Wightman function, the
BTZ Wightman function reads [29]

GBTZðx; x0Þ ¼
X
n

GAðx;�nx0Þ; (4.8)

where �x0 denotes the action on x0 of the group element
ðt; r; �Þ � ðt; r; �þ 2�Þ, and the notation suppresses the
distinction between points on AdS3 and points on the
quotient spacetime. The scalar field is assumed untwisted
so that no additional phase factors appear in (4.8).

We consider a massless, conformally coupled field, and
the family of AdS3 Wightman functions [29]

Gð�Þ
A ðx; x0Þ ¼ 1

4�

 
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�X2ðx; x0Þp � �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�X2ðx; x0Þ þ 4‘2

p
!
;

(4.9)

where the parameter � 2 f0; 1;�1g specifies whether the
boundary condition at infinity is respectively transparent,
Dirichlet or Neumann. Here �X2ðx; x0Þ is the squared
geodesic distance between x and x0 in the flat embedding
spacetime R2;2, given by

�X2ðx; x0Þ :¼ �ðT1 � T0
1Þ2 � ðT2 � T0

2Þ2
þ ðX1 � X0

1Þ2 þ ðX2 � X0
2Þ2; (4.10)

and we have momentarily suppressed the i� prescription
in (4.9).

With (4.8) and (4.9), the transition rate (3.13) takes the
form

_F �ðEÞ ¼ 1

4
þ 1

2�
ffiffiffi
2

p X1
n¼�1

Z ��=‘

0
d~s

� Re

2
64e�iE‘~s

0
@ 1ffiffiffiffiffiffiffiffiffiffi

�~X2
n

q � �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�~X2

n þ 2
q

1
A
3
75; (4.11)

where we have introduced the dimensionless integration
variable ~s :¼ s=‘ and written

�~X2
n :¼ �X2ðxð�Þ;�nxð�� ‘~sÞÞ=ð2‘2Þ
¼ �1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi


ðrÞ
ðr0Þp
cosh½ðrþ=‘Þð���0 � 2�nÞ

� ðr�=‘2Þðt� t0Þ� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
ðrÞ � 1Þð
ðr0Þ � 1

p
� cosh½ðrþ=‘2Þðt� t0Þ � ðr�=‘Þð���0 � 2�nÞ�;

(4.12)

where the unprimed coordinates are evaluated at xð�Þ and
the primed coordinates at xð�� ‘~sÞ.
What remains is to specify the branches of the square

roots in (4.11). As s extends to a global time function in the
relevant part ofAdS3, the prescription (3.1) implies that the
square roots in (4.11) are positive when the arguments are
positive, and the square roots are analytically continued
to negative values of the arguments by giving s a small
negative imaginary part.

V. COROTATING DETECTOR IN BTZ

In this section we investigate the transition rate of a
detector that is in the exterior region of the BTZ black
hole and corotating with the horizon. As the detector is
stationary, we take the switch-on to be in the asymptotic
past. When the black hole is spinless, the detector is static.

A. Transition rate and the KMS property

The angular velocity of the horizon is given by
[26,27,29]

�H ¼ r�=ðrþ‘Þ; (5.1)

and it has an operational meaning as the value that d�=dt
takes on any timelike worldline that crosses the horizon.
The worldline of a detector that is in the exterior region and
rigidly corotating with the horizon reads

r ¼ constant; t ¼ ‘rþ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r2þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ � r2�

q ;

� ¼ r��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r2þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ � r2�

q ; (5.2)

where the value of r specifies the radial location and � is
the proper time. We have set the additive constants in t and
� to zero without loss of generality.
Substituting (5.2) into (4.12) and taking the switch-on to

be in the asymptotic past, the transition rate (4.11) takes the
form
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_F ðEÞ¼1

4
þ 1

4�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðrÞ�1

p X1
n¼�1

Z 1

0
d~sRe

�
e�iE‘~s

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Kn�sinh2ð�~sþn�r�=‘Þ
p � �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Qn�sinh2ð�~sþn�r�=‘Þ
p ��

; (5.3)

where

Kn :¼ ð1� 
�1Þ�1sinh2ðn�rþ=‘Þ; (5.4a)

Qn :¼ Kn þ ð
� 1Þ�1; (5.4b)

� :¼ ð2 ffiffiffiffiffiffiffiffiffiffiffiffiffi

� 1

p Þ�1; (5.4c)


 is given by (4.4), and we have dropped the subscript
� from _F as the situation is stationary and the tran-
sition rate is independent of �. The square roots in (5.3)
are positive for positive values of the argument, and
they are analytically continued to negative values of the
argument by giving ~s a small negative imaginary part.
Note that the integrand in (5.3) has singularities at
~s > 0, at places where the quantity under a square
root changes sign, but all of these singularities are
integrable.

We show in Appendix A that (5.3) can be written as

_F ðEÞ ¼ e��E‘=2

2�

X1
n¼�1

cosðn�Er�Þ
Z 1

0
dy cosðy�E‘=�Þ

�
 

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kn þ cosh2y

p � �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qn þ cosh2y

p
!
; (5.5)

or alternatively as

_F ðEÞ ¼ 1

2ðe�E‘ þ 1Þ �
�e��E‘=2

2�

Z 1

0
dy

cosðy�E‘=�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q0 þ cosh2y

p
þ e��E‘=2

�

X1
n¼1

cosðn�Er�Þ
Z 1

0
dy cosðy�E‘=�Þ

�
 

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kn þ cosh2y

p � �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qn þ cosh2y

p
!
; (5.6)

where

� :¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

� 1

p
: (5.7)

It is evident from (5.5) or (5.6) that _F depends on E only
via the dimensionless combination ‘�E. It is further evi-

dent that _F has the KMS property [30,31]

_F ðEÞ ¼ e�‘�E _F ð�EÞ: (5.8)

The transition rate is hence thermal in the tempera-
ture ð‘�Þ�1.

It can be verified that ð‘�Þ�1 ¼ ð�g00Þ�1=2T0, where
T0 ¼ 
0=ð2�Þ, 
0 is the surface gravity of the black hole
with respect to the horizon-generating Killing vector @t þ
�H@�, and g00 is the time-time component of the metric in

coordinates adapted to the corotating observers. This
means that the temperature ð‘�Þ�1 of the detector response
is the local Hawking temperature, obtained by renormaliz-
ing the conventional Hawking temperature T0 by the

Tolman redshift factor at the detector’s location. This is
the temperature one would have expected by general
properties of the Hartle-Hawking state [6,7,28], including
the periodicity of an appropriately defined imaginary
time coordinate [32], and also by GEMS considerations
[33–36].
Note that the expressions (5.5) and (5.6) contain both

terms of (3.13), as shown in Appendix A. The prein-
tegral term 1

4 in (3.13) is hence essential for recovering

thermality: in (5.6) it can be regarded as having been
grouped in the term 1

2 ðe�E‘ þ 1Þ�1, which gives the

transition rate in pure AdS3 with the transparent bound-
ary condition. The superficial Fermi-Dirac appearance
of this pure AdS3 term is a general feature of linearly
coupled scalar fields in odd spacetime dimensions
[3,28,37,38].

B. Asymptotic regimes

We consider the behavior of the transition rate (5.6) in
three asymptotic regimes.
First, suppose rþ ! 1 so that r�=rþ and r=rþ are fixed.

Physically, this is the limit of a large black hole with fixed
J=M, and the detector is assumed not to be close to the
black hole horizon. Note that 
 and � remain fixed in this
limit. It follows from (4.4) and (5.4) that in (5.6) this is the
limit in which Kn and Qn with n � 1 are large. Assuming
that E is fixed and nonzero, and using formula (B2a) in
Appendix B, we find

_F ðEÞ ¼ 1

2ðe�E‘ þ 1Þ �
�e��E‘=2

2�

�
Z 1

0
dy

cosðy�E‘=�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q0 þ cosh2y

p þ e��E‘=2 cosð�Er�Þffiffiffiffi
�

p
�E‘

�
�
Im

��ð4K1Þi�E‘=ð2�Þffiffiffiffiffiffi
K1

p � �ð4Q1Þi�E‘=ð2�Þffiffiffiffiffiffi
Q1

p
�

� �

�
1þ i�E‘

2�

�
�

�
1

2
� i�E‘

2�

��
þOðe�2�rþ=‘Þ

�
;

(5.9)

where the displayed next-to-leading term comes from the

n ¼ 1 term in (5.6) and is of order e��rþ=‘. The corre-
sponding formula for E ¼ 0 can be obtained from formula
(B2b) in Appendix B and has a next-to-leading term of

order rþe��rþ=‘.
Next, suppose that rþ ! 0 so that r�=rþ and r=rþ are

again fixed. This is the limit of a small black hole. Note that

 and � are again fixed. The dominant behavior comes
now from the sum over n and can be estimated by the
Riemann sum technique of Appendix C. We find
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_F ðEÞ¼‘e��E‘=2

�2rþ

Z 1

0
dv
Z 1

0
dycos

�
v�E‘r�
�rþ

�

�cos

�
y�E‘

�

�
�
��


sinh2v

ð
�1Þ þcosh2y

��1=2

��

�
1þ
sinh2v

ð
�1Þ þcosh2y

��1=2
�
þoð1Þ

rþ
: (5.10)

The leading term is proportional to 1=rþ and it hence
diverges in the limit of a small black hole.

Finally, suppose that E ! �1 with the other quanti-
ties fixed. The analysis of Appendix D shows that each
integral term in (5.6) is oscillatory in E, with an enve-

lope that falls off as 1=
ffiffiffiffiffiffiffiffi�E

p
at E ! �1 but exponen-

tially at E ! þ1. Applying this estimate to the lowest
few values of n in (5.6) should be a good estimate to the
whole sum when rþ=‘ is large. We have not attempted
to estimate the whole sum at E ! �1 when rþ=‘ is
small.

C. Numerical results

We now turn to a numerical evaluation of the transi-
tion rate (5.6). We are particularly interested in the
interpolation between the asymptotic regimes identified
in Sec. VB.

_F (5.6) depends on five independent variables. Two of
these are the mass and the angular momentum of the black
hole, encoded in the dimensionless parameters rþ=‘ and

r�=‘. The third is the location of the detector, entering _F
only in the dimensionless combination 
 (4.4). The fourth

is the detector’s energy gap E, entering _F only in the
dimensionless combination �E‘ where � was given in
(5.7). The last one is the discrete parameter � 2
f0; 1;�1g, which specifies the boundary condition at
infinity.

We plot _F as a function of ‘�E, grouping the plots in
triplets where � runs over its three values and the other
three parameters are fixed. We proceed from large rþ=‘
towards small rþ=‘.
In the regime rþ=‘ * 3, numerics confirms that the

n � 1 terms in (5.6) are small. _F therefore depends on
rþ=‘ and r�=‘ significantly only through �, that is,
through the local temperature. The detector’s location

enters _F in part via � (5.7), but also via Q0 in (5.6), and
the latter affects only the boundary conditions � ¼ 1 and
� ¼ �1, in opposite directions. Plots for rþ=‘ ¼ 10 are
shown in Fig. 1.
As rþ=‘ decreases, the n ¼ 1 term in (5.6) starts to

become appreciable near rþ=‘ � 1. The dependence on
r�=‘ is then no longer exclusively through �, and the
effect is largest for � ¼ 0 and � ¼ �1 but smaller for
� ¼ 1, owing to a partial cancellation between the two
terms under the integral in (5.6) for � ¼ 1. Plots for
rþ=‘ ¼ 1 are shown in Figs. 2 and 3.
As rþ=‘ decreases below 1, the next-to-leading

asymptotic formula (5.9) starts to become inaccurate near
rþ=‘ ¼ 0:3, as shown in Fig. 4, although the partial cancel-
lation between the two terms under the integral in (5.6) and
the similar partial cancellation in (5.9) moderates the effect

for � ¼ 1. At rþ=‘ ¼ 0:1, shown in Fig. 5, _F is sensitive to
changes in both r�=‘ and 
. When 
 	 1, the � ¼ �1
curves in Fig. 5 have approximately the same profile as the
� ¼ 0 curves but at twice the magnitude: from (5.4a) and
(5.4b) we see that this indicates the regime where the n � 1

terms in (5.6) give the dominant contribution to _F .
As rþ=‘ decreases further, we enter the validity regime

of the asymptotic formula (5.10), as shown in Fig. 6 for
rþ=‘ ¼ 0:01. Note that again the � ¼ �1 curve has ap-
proximately the same profile as the � ¼ 0 curve but at
twice the magnitude, indicating that the dominant contri-
bution comes from the n � 1 terms in (5.6).

FIG. 1 (color online). _F as a function of �E‘ for rþ=‘ ¼ 10 and r�=‘ ¼ 0, with 
 ¼ 4 (solid line) and 
 ¼ 100 (dotted line).
Numerical evaluation from (5.6) with n 
 3.
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FIG. 3 (color online). As in Fig. 2 but for 
 ¼ 100.

FIG. 2 (color online). _F as a function of �E‘ for rþ=‘ ¼ 1 and 
 ¼ 2, with 
 ¼ 0 (solid line) and 
 ¼ 0:99 (dotted line) where

 :¼ r�=rþ. Numerical evaluation from (5.6) with n 
 3.

FIG. 4 (color online). _F as a function of �E‘ for rþ=‘ ¼ 0:3 and r�=‘ ¼ 0:299, with 
 ¼ 2. Solid curve shows numerical
evaluation from (5.6) with n 
 3. Dotted curve shows the asymptotic large rþ=‘ approximation (5.9).
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VI. RADIALLY IN-FALLING DETECTOR
IN SPINLESS BTZ

In this section we consider a detector on a radially in-
falling geodesic in a spinless BTZ spacetime.

A. Transition rate

Recall from Sec. IV that for a spinless hole r� ¼ 0 and
rþ ¼ M‘> 0, and the horizon is at r ¼ rþ. To begin with,
we assume that at least part of the trajectory is in the
exterior region, r > rþ. Working in the exterior BTZ co-
ordinates (4.3), the radial timelike geodesics take the form

r¼‘
ffiffiffiffiffi
M

p
qcos~�; t¼ð‘= ffiffiffiffiffi

M
p Þarctanh

�
tan~�ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2�1

p �
;

�¼�0; (6.1)

where q > 1, �0 denotes the constant value of �, and ~�
is an affine parameter such that the proper time equals
~�‘. The additive constants in ~� and t have been chosen

so that r reaches its maximum value ‘
ffiffiffiffiffi
M

p
q at ~� ¼ 0

with t ¼ 0.
Substituting (6.1) in (4.11) and (4.12), we find that the

transition rate is given by

_F �ðEÞ ¼ 1=4þ 1

2�
ffiffiffi
2

p X1
n¼�1

Z �~�

0
d~sRe

2
4 e�i ~E ~sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�1þ Kn cos~� cosð~�� ~sÞ þ sin~� sinð~�� ~sÞp

� �
e�i ~E ~sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Kn cos~� cosð~�� ~sÞ þ sin~� sinð~�� ~sÞp
3
5; (6.2)

FIG. 5 (color online). _F as a function of �E‘ for rþ=‘ ¼ 0:1, with selected values of the pair ð
; r�=‘Þ as shown in the legend.
Numerical evaluation from (5.6) with n 
 35.

FIG. 6 (color online). _F as a function of �E‘ for rþ=‘ ¼ 0:01 and r� ¼ 0, with 
 ¼ 4. Solid curve shows numerical evaluation
from (5.6) with n 
 300. Dotted curve shows the asymptotic small rþ=‘ approximation (5.10). Qualitatively similar graphs ensue for
r�=rþ ¼ 0:99.
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where

Kn :¼ 1þ 2q2sinh2ðn� ffiffiffiffiffi
M

p Þ: (6.3)

The detector is switched off at proper time � and switched
on at proper time �0 ¼ �� ��, and we have written
~� :¼¼ �=‘, �~� :¼ ��=‘ and ~E :¼ E‘. The square roots
in (6.2) are positive when the arguments are positive, and
they are analytically continued to negative values of the
arguments by giving ~s a small negative imaginary part.

Although the above derivation of (6.2) proceeded using
the exterior BTZ coordinates, the result (6.2) holds by
analytic continuation even if the geodesic enters the black
or white hole regions. The ranges of the parameters are
��=2< ~�� �~� < ~� < �=2, so that the detector is
switched on after emerging from the white hole singularity
and switched off before hitting the black hole singularity.

B. The n ¼ 0 term and KMS

We write (6.2) as

_F � ¼ _F n¼0
� þ _F n�0

� ; (6.4)

where _F n¼0
� consists of the n ¼ 0 term and _F n�0

� consists

of the sum
P

n�0. We consider first _F n¼0
� .

_F n¼0
� gives the transition rate of a detector on a geodesic

in pure AdS3. _F n¼0
� does not depend on M or q, and it

depends on the switch-on and switch-off moments only
through �~�, that is, through the total detection time. Using
(6.2) and (6.3), we find

_F n¼0
� ðEÞ¼1

4
� 1

4�

Z �~�

0
d~s

�
sinð ~E~sÞ
sinð~s=2Þþ�

cosð ~E~sÞ
cosð~s=2Þ

�
; (6.5)

where ~E :¼ E‘. As 0< �~� < �, (6.5) is well defined.

The numerical examination shows that _F n¼0
� does not

satisfy the KMS condition. This is compatible with the
embedding space discussion of Refs. [33–36], according
to which a stationary detector in AdS3 should respond
thermally only when its scalar proper acceleration
exceeds 1=‘.

The asymptotic behavior of _F n¼0
� at large positive and

negative energies for fixed �~� can be found by the method
of Appendix E. We find

_F n¼0
� ðEÞ ¼ �ð� ~EÞ

2
þ 1

4� ~E

�
cosð ~E�~�Þ
sinð�~�=2Þ � �

sinð ~E�~�Þ
cosð�~�=2Þ

�
þOð1= ~E2Þ; (6.6)

where � is the Heaviside step function.

C. The n� 0 terms and large M asymptotics

We now turn to _F n�0
� , which contains the dependence of

_F � on M and q.

We consider _F n�0
� in the limit of largeM. We introduce

a positive constant c 2 ð0; �=2Þ, and we assume that the
switch-on and switch-off moments are separated from the

initial and final singularities at least by proper time c‘. In
terms of ~� and �~�, this means that we assume

� �=2þ c < ~� < �=2� c;

0<�~� < ~�þ �=2� c:
(6.7)

As Kn ¼ K�n, we can replace the sum
P

n�0 in (6.2) by
2
P1

n¼1 . Given (6.7), the expression cos~� cosð~�� ~sÞ is
bounded below by a positive constant. Using (6.3), this
implies that the quantities under the n � 0 square roots in
(6.2) are dominated at largeM by the term that involvesKn,
and we may write

_F n�0
� ðEÞ ¼ 1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cos~�

p X1
n¼1

1ffiffiffiffiffiffi
Kn

p
Z �~�

0

cosð ~E ~sÞd~sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosð~�� ~sÞp

�
 

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f�=Kn

p � �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ fþ=Kn

p
!
; (6.8)

where

f� :¼ sin~� sinð~�� ~sÞ � 1

cos~� cosð~�� ~sÞ : (6.9)

The large M expansion of _F n�0
� is then obtained by

a binomial expansion of the square roots in (6.8) at
Kn ! 1 and using (6.3). The expansion is uniform in ~�
and �~� within the range (6.7), and by (6.3) it is also
uniform in q. The first few terms are

_F n�0
� ðEÞ ¼ 1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cos~�

p
Z �~�

0

cosð ~E ~sÞd~sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosð~�� ~sÞp

�
�
ð1� �Þ

�
1ffiffiffiffiffiffi
K1

p þ 1ffiffiffiffiffiffi
K2

p
�
þ �fþ � f�

2K3=2
1

�

þOðe�5�
ffiffiffiffi
M

p
Þ: (6.10)

For � � 1, the dominant contribution comes from the term

proportional to ð1� �Þ and is of order e��
ffiffiffiffi
M

p
.

FIG. 7 (color online). _F n¼0
� (6.5) as a function of E‘ and ��=‘

for � ¼ 0.
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D. Numerical results

At large M, the dominant contribution to _F � comes

from _F n¼0
� (6.5), which depends only on E‘ and ��=‘.

Plots are shown in Figs. 7 and 8. When jE‘j is large, the
oscillatory dependence on ��=‘ shown in the plots is in
agreement with the asymptotic formula (6.6).

When M decreases, the contribution to _F � from _F n�0
�

becomes significant. For M ¼ 0:1, the terms shown in
(6.10) are still a good fit to the numerics provided both
the switch-on and the switch-off are in the exterior region.
For smaller M, the number of terms that need to be

included in _F n�0
� increases rapidly. A set of plots is shown

in Figs. 9 and 10 for M ¼ 10�4 with q ¼ 100, taking the
detector to be switched on at the moment where r reaches
its maximum and following the detector over a significant

fraction of its fall towards the horizon. _F n�0
� turns out to be

still insignificant at large negative E‘, but it starts to

become significant at E‘ * �5, and its effect then depends
strongly on the boundary condition parameter � , being the

smallest for � ¼ 1.
For fixed M, following the detector close to the future

singularity numerically would pose two complications.

First, an increasingly large number of terms would need

to be included in _F n�0
� . Second, the evaluation of the

individual terms to sufficient accuracy would need to

handle numerically integration over an integrable singular-

ity in ~s. This singularity arises because the quantity under

the first square root in (6.2) can change sign within the

integration interval. We have not pursued this numerical

problem.

FIG. 8 (color online). _F n¼0
� (6.5) as a function ��=‘ for selected values of E‘, with � ¼ 0 (dashed line), � ¼ 1 (thick line), and

� ¼ �1 (dotted line).

FIG. 9 (color online). _F � (6.2) with M ¼ 10�4, q ¼ 100, �0 ¼ 0, and E‘ ¼ �5. Solid line shows numerical evaluation from (6.2)
with 200 terms and dashed line shows the individual n ¼ 0 term _F n¼0

� (6.5). The horizon crossing occurs outside the plotted range, at
��=‘ ¼ arccosð0:01Þ � 1:56.

FIG. 10 (color online). As in Fig. 9 but with E‘ ¼ 20.
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VII. CONCLUSIONS

In this paper we have investigated the response of an
Unruh-DeWitt particle detector in three-dimensional
curved spacetime. We first obtained a regulator-free ex-
pression for the transition probability of a detector coupled
to a scalar field in an arbitrary Hadamard state, working
within first-order perturbation theory and assuming that the
detector is switched on and off smoothly, and we showed
that both the total transition probability and the instanta-
neous transition rate remain well defined when the switch-
ing becomes sharp. In the special case of a detector in
Minkowski space, coupled to the Minkowski vacuum of a
massless scalar field, these results reduce to those found in
Ref. [25]. The results confirm that the sharp switching limit
is qualitatively different between three and four spacetime
dimensions even when the spacetime is curved; in four
dimensions, the sharp switching limit yields a well-defined
transition rate but a divergent transition probability [17,24].

We then specialized to a detector in the BTZ black hole
spacetime, coupled to a massless conformally coupled sca-
lar field in a Hartle-Hawking vacuum state with transparent,
Dirichlet or Neumann boundary conditions at the infinity.
For a stationary detector that is outside the horizon and
corotating with the hole, and switched on in the asymptotic
past, we verified that the transition rate is thermal in the
sense of the KMS property, in the local Hawking tempera-
ture that is determined by the mass and angular momentum
of the hole and by the Tolman redshift factor at the detec-
tor’s location. This is the temperature that was to be ex-
pected by general properties of the Hartle-Hawking state
[6,7,28,32], and by GEMS considerations [33–36]. A static
detector outside a nonrotating black hole was included as a
special case. We obtained analytic results for the transition
rate in a number of asymptotic regimes of the parameter
space, including those of large and small black hole mass,
and we provided numerical results in the interpolating
regimes. We have not pursued in detail the case of a sta-
tionary detector whose angular velocity differs from that of
the hole, but we shall show in Appendix F that the parame-
ter space has at least some regimes in which the response of
such a detector does not have the KMS property.

We also considered a detector that falls into a nonrotating
BTZ hole along a radial geodesic. As the trajectory is not
stationary, the transition rate is not constant along the tra-
jectory, and, in particular, the switch-on cannot be pushed to
the asymptotic past since the trajectory originates at the
white hole singularity. We obtained analytic results for the
transition rate when the black hole mass is large, and we
evaluated the transition rate numerically for small values of
the black hole mass provided the switch-on and switch-off
take place in the exterior. We found no parameter ranges
where the transition rate would be approximately thermal in
the sense of the KMS property, not even near the moment of
maximum radius on a trajectory, and we traced the reasons
for this to the properties of AdS3 geodesics that have been

previously analyzed from GEMS considerations [33–36].
Our expression for the transition rate as a countable sum
remains valid after the detector crosses the horizon, but the
sum becomes then more difficult to estimate analytically
and more labor intensive to evaluate numerically, and we
have not pursued a detailed investigation of this regime.
It would be interesting to compare our BTZ transition

rates to those of a detector on similar trajectories in
four-dimensional Schwarzschild spacetime, where the
Wightman function needs to be evaluated fully numeri-
cally. Some differences can be expected to arise from the
different asymptotic infinities of BTZ and Schwarzschild:
for example, an inertial detector in Schwarzschild should
respond to the Hartle-Hawking vacuum approximately
thermally in the asymptotically flat region. We leave this
question as a subject for future work.
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APPENDIX A: DERIVATION OF (5.5) AND (5.6)

In this appendix we verify the passage from (5.3) to (5.5)
and (5.6).

1. n ¼ 0 term

Let

Iða; PÞ :¼ Re
Z 1

0

e�iaxdxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P� sinh2x

p ; (A1)

where a 2 R, P � 0, and the square root is positive for
positive argument and positive imaginary for negative
argument. We shall show that

Iða; 0Þ ¼ �� tanhð�a=2Þ
2

; (A2a)

Iða; PÞ ¼ e��a=2
Z 1

0

cosðayÞdyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pþ cosh2y

p for P> 0: (A2b)

Applying (A2) and (A3) and to the n ¼ 0 term in (5.3)
yields the corresponding terms in (5.5) and (5.6).
Suppose first P ¼ 0. For P ¼ 0, (A1) reduces to

Iða; 0Þ ¼ �R1
0

sinðaxÞ
sinhx dx, which evaluates to (A2a) [39].

We note in passing the relation

Iða; 0Þ ¼ ��

2
þ e��a=2

Z 1

0

cosðayÞdy
coshy

; (A3)
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which follows by evaluating the integral in (A3) [39] and
using (A2a). Comparison of (A2b) and (A3) shows that
Iða; PÞ is not continuous at P ¼ 0.

Suppose then P> 0. We rewrite (A1) as the contour
integral

Iða; PÞ :¼ Re
Z
C1

e�iazdzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P� sinh2z

p ; (A4)

where the contour C1 goes from z ¼ 0 to z ¼ 1 along
the positive real axis, with a dip in the lower half plane

near the branch point z ¼ arcsinh
ffiffiffiffi
P

p
. The square root

denotes the branch that is positive for small positive z.
We deform C1 into the union of C2 and C3, where C2

goes from z ¼ 0 to z ¼ �i�=2 along the negative imagi-
nary axis and C3 consists of the half line z ¼ y� i�=2
with 0 
 y <1. As the integrand has no singularities
within the strip ��=2 
 Im z < 0 and falls off exponen-
tially within this strip as Re z ! þ1, the deformation does
not change the value of the integral. The contribution from
C2 is purely imaginary and vanishes on taking the real part.
The contribution from C3 yields (A2b).

2. n � 0 terms

Let

Ibða; PÞ :¼ Re
Z 1

0

e�iaxdxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P� sinh2ðxþ bÞp ; (A5)

where a 2 R, P> 0, b 2 R and the square root is positive
for positive argument and analytically continued to nega-
tive values of the argument by giving x a small negative
imaginary part.

We shall show that

Ibða; PÞ þ I�bða; PÞ ¼ 2 cosðabÞIða; PÞ; (A6)

where Iða; PÞ is given in (A2b). Applying (A6) with (A2b)
to the n � 0 terms in (5.3) yields the corresponding terms
in (5.5) and (5.6).

For b ¼ 0, (A6) follows from (A2b). As both sides
of (A6) are even in b, it hence suffices to consider (A6)
for b > 0.

Let b > 0. Changing the integration variable in (A5) to
y ¼ xþ b yields

Ibða;PÞþI�bða;PÞ¼2cosðabÞRe
Z 1

0

e�iaydyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P�sinh2y

p
�Re

�
eiab

Z b

0

e�iaydyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P�sinh2y

p
þe�iab

Z �b

0

e�iaydyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P�sinh2y

p �
; (A7)

where the branches of the square roots are as inherited
from (A5): positive when the argument is positive and
continued to negative argument by giving y a small nega-
tive imaginary part. Examination of the branches shows
that the last two terms in (A7) cancel on taking the real
part, and using (A1) in the first term leads to (A6).

APPENDIX B: DERIVATION OF (5.9)

In this appendix we verify the asymptotic formula (5.9).
Let

Jða; PÞ :¼
Z 1

0

cosðayÞdyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pþ cosh2y

p ; (B1)

where P> 0 and a 2 R. Note from (A2b) that

Iða; PÞ ¼ e��a=2Jða; PÞ for P> 0. We shall show that as
P ! 1 with fixed a, Jða; PÞ has the asymptotic form

Jða; PÞ ¼ 1

a
ffiffiffiffiffiffiffi
�P

p Im

�
ð4PÞia=2�ð1þ ia=2Þ�

�
1

2
� ia=2

��
þOðP�3=2Þ for a � 0; (B2a)

Jð0; PÞ ¼ 1

2
ffiffiffiffi
P

p
�
lnð4PÞ þ c ð1Þ � c

�
1

2

��
þOðP�3=2 lnPÞ; (B2b)

where c is the digamma function [40].
Starting from (B1), writing cosðayÞ ¼ ReðeiayÞ and mak-

ing the substitution y ¼ lnt, we find

Jða; PÞ ¼ 2Re
Z 1

1

tiadtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t4 þ B2t2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

t4þB2t2

q
¼ 2

X1
p¼0

bpRe
Z 1

1

tiadt

t2pþ1ðt2 þ B2Þpþð1=2Þ ; (B3)

where B¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Pþ2

p
and bp are the coefficients in the bino-

mial expansion ð1þxÞ�1=2¼P1
p¼0bpx

p. As the p > 0

terms in (B3) areOðB�2p�1Þ ¼ OðP�p�ð1=2ÞÞ by dominated

convergence, we have Jða; PÞ ¼ J0ða; PÞ þOðP�3=2Þ,
where the substitution t ¼ Bv in the p ¼ 0 terms gives

J0ðaÞ ¼ 2

B
Re

�
Bia

Z 1

1=B

via�1dvffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

p
�
: (B4)

When a � 0, integrating (B4) by parts and extending the
lower limit of the integral to zero gives

J0ða;PÞ¼ 2

Ba
Im

�
Bia

Z 1

0

v1þiadv

ð1þv2Þ3=2þOðB�2Þ
�
: (B5)

The integral in (B5) may be evaluated by writing

ð1þ v2Þ�3=2 ¼ ð�ð3=2ÞÞ�1
R1
0 dxx1=2e�ð1þv2Þx and inter-

changing the order of the integrals, with the result (B2a).
When a ¼ 0, similar manipulations lead to (B2b).

APPENDIX C: DERIVATION OF (5.10)

Let p > 0, q > 0, a 2 R, and � 2 R. For n 2 Z, let
Kn :¼ p2sinh2ðnqÞ, and define

Fn :¼
Z 1

0

cosðn�qÞ cosðayÞdyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kn þ cosh2y

p ; (C1)
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where we suppress the dependence of Fn on p, q, a, and �.
We shall show that the sum S :¼ P1

n¼�1 Fn has the
asymptotic form

S ¼ 2

q

Z 1

0
dr
Z 1

0

cosðr�Þ cosðayÞdyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2sinh2rþ cosh2y

p þ oð1Þ
q

; (C2)

as q ! 0 with the other parameters fixed. Note that the
leading term in (C2) diverges as q ! 0.

Let

GðrÞ :¼ cosð�rÞ
Z 1

0

cosðayÞ dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2sinh2rþ cosh2y

p ; (C3)

where we suppress the dependence ofG on a and �. S then
equals q�1 times the Riemann sum of G with the sampling
points r ¼ nq, n 2 Z. G is continuous, and from
Appendix B we see that jGðrÞj is exponentially small as
r ! �1. The Riemann sum of G therefore converges to
the integral ofG as q ! 0. Noting finally thatG is even, we
recover (C2).

APPENDIX D: COROTATING
RESPONSE AT E‘ ! �1

In this appendix we analyze the individual terms in the
corotating detector response (5.6) in the limit E‘ ! �1.
These terms are of the form

~Ið�; a; PÞ :¼ cosð�aÞe��a=2Jða; PÞ; (D1)

where � 2 R, a 2 R, P> 0 and Jða; PÞ is given by (B1).
We shall show that when a ! �1 with fixed � and P,
~Ið�; a; PÞ has the asymptotic expansion

~Ið�;a;PÞ

¼
8><
>:

2
ffiffiffi
�

p
e��a cosð�aÞcosð
a��=4Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

asinhð2
Þ
p þoða�1=2e�a�Þ a!þ1;

2
ffiffiffi
�

p
cosð�aÞcosð�
a��=4Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�asinhð2
Þ
p þoðð�aÞ�1=2Þ a!�1;

(D2)

where 
 ¼ arcsinh
ffiffiffiffi
P

p
.

Assuming a � 0 and writing cosðayÞ ¼ ReðeijajyÞ, we
start by rewriting Jða; PÞ from (B1) as

Jða; PÞ ¼ Re
Z
C1

eijajydyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pþ cosh2y

p ; (D3)

where the contour C1 consists of the positive imaginary
axis traveled downwards and the positive real axis traveled
rightwards. The contribution from the imaginary axis
vanishes on taking the real part.
Writing P ¼ sinh2
 where 
> 0 and factorizing the

quantity under the square root in (D3), we obtain

Jða;PÞ¼Re
Z
C1

eijajydyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhð
þy� i�=2Þsinhð
�yþ i�=2Þp :

(D4)

The branch points of the integrand in (D4) are at
y ¼ �
þ i�ðnþ 1

2Þ, n 2 Z. We may deform C1 into

the contour C2 that comes down from 
þ i1 at
Re y ¼ 
, passing the branch points from the left, encircles
the branch point at y ¼ 
þ i�=2 counterclockwise, and
finally goes back up to 
þ i1 at Re y ¼ 
 but now
passing the branch points from the right. Changing the
integration variable by y ¼ 
þ i�=2þ iu, we then have

Jða;PÞ ¼ e�jaj�=2Re
�
iei
jaj

Z
C3

e�jajuduffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�i sinðuÞ sinhð2
þ iuÞp �
;

(D5)

where contour C3 comes from u ¼ þ1 to u ¼ 0 on the
upper lip of the positive u axis, encircles u ¼ 0 counter-
clockwise, and goes back to u ¼ þ1 on the lower lip of
the positive u axis. The square root is positive at u ¼ �=2
on the upper lip and it is analytically continued to the
rest of C3.
We now note that sinhð2
þ iuÞ¼ sinhð2
ÞcosðuÞþ

icoshð2
ÞsinðuÞ, and that the modulus of this expression
is bounded below by sinhð2
Þ. In (D5), the contribution
from the two intervals in which �=2 
 u 
 � is therefore

bounded above by e�jaj�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhð2
Þp

times a numerical
constant, and the contribution from the two intervals in
which n� 
 u 
 ðnþ 1Þ�, n ¼ 1; 2; . . . , is bounded

above by e�jaj�½nþð1=2Þ�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhð2
Þp

times a numerical con-
stant. The sum of all of these contributions is hence

Oðe�jaj�Þ. In the remaining contribution, coming from
the two intervals in which 0 
 u 
 �=2, we combine the
upper and lower lips and change the integration variable to
w ¼ jaju. This gives

Jða; PÞ ¼ 2e�jaj�=2ffiffiffiffiffiffijajp � Re

�
eið
jaj��=4Þ Z jaj�=2

0

e�wdwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijaj sinðw=jajÞ½sinhð2
Þ cosðw=jajÞ þ i coshð2
Þ sinðw=jajÞ�p �

þOðe�jaj�Þ; (D6)
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where the square root denotes the branch that is positive in
the limit w ! 0þ.

By Jordan’s lemma, the modulus of the integrand in (D6)
is bounded from above in the range of integration by the

function gðwÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
2 sinhð2
Þ

q
w�1=2e�w. As gðwÞ is inte-

grable over 0<w<1 and independent of a, dominated
convergence guarantees that when jaj ! 1, the limit in the
integrand in (D6) can be taken under the integral. The
integral that ensues in the limit is elementary, and we
obtain

Jða; PÞ ¼ 2
ffiffiffiffi
�

p
e�jaj�=2 cosð
jaj � �=4Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijaj sinhð2
Þp

þ oðjaj�1=2e�jaj�=2Þ: (D7)

(D2) then follows by substituting (D7) in (D1).

APPENDIX E: DERIVATION OF (6.6)

In this appendix we verify the asymptotic expansionsZ m

0
dx

cosð�xÞ
cosx

¼ sinðm�Þ
� cosm

þOð��2Þ; (E1a)

Z m

0
dx

sinð�xÞ
sinx

¼ � sgn�

2
� cosðm�Þ

� sinm
þOð��2Þ; (E1b)

valid as � ! �1 with fixed m 2 ð0; �Þ.
Equation (E1a) follows by repeated integrations by parts

that bring down inverse powers of � [41].
In (E1b), we split the integral asZ m

0
dx

�
1

sinx
� 1

x

�
sinð�xÞ �

Z 1

m
dx

sinð�xÞ
x

þ
Z 1

0
dx

sinð�xÞ
x

: (E2)

Repeated integrations by parts now apply to the first two
terms in (E2), and the third term equals �

2 sgn� [39].

Combining, we obtain (E1b).

F. STATIONARY BUT
NONCOROTATING DETECTOR

In this appendix we discuss briefly a detector that is
stationary in the exterior region of the BTZ black hole
but not corotating with the horizon. For the transparent
boundary condition at the infinity, we show that the
n ¼ 0 term in the transition rate (4.11) breaks the
KMS property already in second order in the difference
between the horizon and detector angular velocities. As
the n ¼ 0 term is expected to give the dominant con-
tribution when the black hole mass is large, we take

this as evidence that the transition rate does not satisfy
the KMS property, in agreement with the GEMS pre-
diction [33–36].
Consider a detector that is stationary in the exterior

region of the BTZ spacetime at exterior BTZ coordinate
r, but not necessarily corotating with the horizon. The
tangent vector of the trajectory is a linear combination of
@t and @�. By (4.3) and (4.4), the lift of the trajectory to

AdS3 reads

X1¼‘cosh�sinhð2kyÞ; T1¼‘cosh�coshð2kyÞ;
X2¼‘sinh�coshð2yÞ; T2¼‘sinh�sinhð2yÞ; (F1)

where we have written
ffiffiffiffi



p ¼ cosh� with �> 0, the
constant k is proportional to the difference of the
detector and horizon angular velocities, and y is a
parameter along the trajectory. We assume jkj<
tanh�, which is the condition for the trajectory to be

timelike. The proper time � is related by y by � ¼
2‘ sinh�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2coth2�

p
y.

Let _F n¼0 denote the n ¼ 0 term in the transition rate
(4.11). Substituting (F1) in (4.12), and specializing to the
transparent boundary condition, � ¼ 0, we find

_F n¼0ðEÞ¼1

4
� 1

2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�k2coth2�

q

�
Z 1

0
dy

sinð2E‘sinh� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�k2coth2�

p
yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sinh2y�coth2�sinh2ðkyÞp : (F2)

It can be verified that the quantity under the square root in
the denominator is positive for 0< y<1.
Expanding (F2) as a power series in E and then

expanding the coefficients as power series in k, we find

_F n¼0ðEÞ ¼ 1

4
þ
�
��

4
sinh�þ �

8

�
�2

4
� 1

�

� cosh2�

sinh�
k2 þOðk4Þ

�
E‘

þ
�
�3

12
sinh3�þ �3

4

�
1� �2

6

�

� sinh�cosh2�k2 þOðk4Þ
�
ðE‘Þ3 þOððE‘Þ5Þ:

(F3)

From (F3) it is seen that the power series expansion of
_F n¼0ð�EÞ= _F n¼0ðEÞ in E is incompatible with a pure
exponential in E, and the discrepancy arises in the coeffi-

cient of the ðE‘Þ3 term in order k2. _F n¼0 (F2) hence does
not satisfy the KMS property at small but nonzero k.
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