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We experiment with several new modifications to the Baumgarte-Shapiro-Shibata-Nakamura formu-

lation of Einstein’s field equation, and demonstrate how these modifications affect the stability of

numerical black hole evolution. With these modifications, we obtain accurate and stable simulations of

both single excised Kerr-Schild black holes and punctured binary black holes.
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I. INTRODUCTION

Numerical relativity is aimed at solving Einstein’s
equations with the aid of computers. It took decades to
reformulate Einstein’s equations to the required stability
and accuracy in simulations. Breakthroughs in 2005 and
2006 [1,2] brought this development to a more mature status
and gave confidence to the community in modeling gravi-
tational wave sources and extracting information of gravi-
tation radiation from the simulations of binary compact
objects. Since then, observations in simulations which
have been refined and extensively studied over the past
few years include long-term gravitational waves and the
final state of the binary compact objects merger (see review
articles [3–5] and reference therein), gravitational recoil of a
black hole [6], relativistic jet formation from mergers of
black holes [7], and neutron stars [8]. These also provide
new insights into mathematical general relativity. Numerical
relativity has now become an indispensable and efficient
tool in the research of general relativity and astrophysics.

Among the numerous reformulations of Einstein’s equa-
tions, two particular formulations are most frequently
adopted for the simulations of black holes. One of them
is the generalized harmonic formulation, in either second-
order formulation [1], or fully first-order formulation [9].
(In either case the key ingredient for stability of this
formulation is a constraint damping mechanism [10].)
The other is the Baumgarte-Shapiro-Shibata-Nakamura
(BSSN) system [11], which has been implemented by
many groups using finite-difference codes, in first-order-
in-time and second-order-in-space form.

There have been many studies in modifying the BSSN
formulation to increase its numerical stability. For example,
Alcubierre and Brügmann [12] combined the BSSN formu-
lation with constraints enforcing the traceless condition of
the conformal extrinsic curvature in every time step, replac-

ing the conformal connection function ~�i with that calculated

from the Christoffel symbols whenever ~�i is undifferenti-
ated. With these modifications, they evolved single black
holes in Kerr-Schild coordinates stably with octant grid
symmetry, and all fields settled down to equilibrium
without encountering any instability. The confinement to
grid symmetry was relaxed later in [13], by adding the

�-constraint to the field equation of ~�i in order to suppress
instability, as well as by employing alternative techniques
in the enforcement of other algebraic constraints. Yoneda
and Shinkai analyzed analytically the constraint propaga-
tion of BSSN formulation in [14], and proposed adjust-
ments to obtain better stability by adding constraint terms.
The follow-up work in [15] numerically verified the advan-
tage of their adjustments in stability over the original BSSN
formulation. Higher-order derivatives of constraint were
also added to the field equation in [16] to enhance stability.
A first-order BSSN formulation has been developed in [17]
to seek more stable performance in simulations.
In this work, we report numerical tests of new modifi-

cations to the BSSN system. Thework can be considered as
an extended study based on an earlier article [13]. The
modifications include (1) adding the �-constraint to the
field equation of the conformal three-metric; (2) replacing
the conformal connection function calculated from the

conformal metric, i.e., ~�i
g, with the independent ~�i, and

enhancing the derivative of the unimodular determinant
constraint in the connection with an irreducible decompo-
sition; (3) applying, with some deformation, the adjust-
ment of the field equation of the conformal extrinsic
curvature with the momentum constraint proposed in
[14,15]. We also emphasize the alternative method in
[13] in the enforcement of the unimodular constraint and
the traceless conformal extrinsic curvature constraint in
every time step. We experiment with these modifications
on simulations of a single Kerr-Schild black hole, and
obtain evolutions with long-term stability. These modifi-
cations, also applied to the evolutions of a binary punctured
black hole, demonstrate better stability and accuracy than
the original BSSN formulation against numerical errors,
either from finite-differencing or from mesh refinement.
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The paper is organized as follows: We summarize the
BSSN formulation in Sec. II. Our modifications of the
BSSN scheme are described in Sec. III. Single black hole
spacetimes in Kerr-Schild coordinates and binary black
hole with punctures are described in Sec. IV. We discuss
numerical implementations and the gauge conditions in
Sec. V. In Sec. VI we present results of our simulations
for both single black hole and binary black holes. We
summarize and discuss the implications of our findings in
Sec. VII. Throughout this paper we adopt geometric units,
G ¼ c ¼ 1.

II. THE BSSN FORMULATION

The metric in the Arnowitt-Deser-Misner (ADM)
form is

d s2 ¼ ��2dt2 þ �ijðdxi þ �idtÞðdxj þ �jdtÞ; (1)

wherein � is the lapse function, �i is the shift vector, and
�ij is the spatial three-metric. Throughout this paper, Latin

indices are spatial indices and run from 1 to 3, whereas
Greek indices are space-time indices and run from 0 to 3.

Einstein’s equations can then be decomposed into
the Hamiltonian constraint H and the momentum con-
straints Mi

H � R� KijK
ij þ K2 ¼ 0; (2)

Mi � rjK
j
i �riK ¼ 0; (3)

and the evolution equations

d

dt
�ij ¼ �2�Kij; (4)

d

dt
Kij ¼ �rirj�þ �ðRij � 2Ki‘K

‘
j þ KKijÞ: (5)

Here we have assumed vacuum T�� ¼ 0 and have used

d

dt
¼ @

@t
�L ~�; (6)

whereL ~� is the Lie derivative with respect to �i. ri is the

covariant derivative associated with �ij, Rij is the three-

dimensional Ricci tensor

Rij ¼ 1

2
�k‘ð�kj;i‘ þ �i‘;kj � �k‘;ij � �ij;k‘Þ

þ �k‘ð�m
i‘�mkj � �m

ij�mk‘Þ; (7)

where

�i
jk �

1

2
�i‘ð�‘j;k þ �‘k;j � �jk;‘Þ: (8)

And R is its trace R ¼ �ijRij.

In the BSSN formalism [11], the above ADM equations
are rewritten by introducing the conformally related
metric ~�ij

~� ij ¼ e�4��ij; (9)

with the conformal exponent � chosen so that the deter-
minant ~� of ~�ij is unity

e4� ¼ �1=3; (10)

where � is the determinant of �ij. The traceless part of the

extrinsic curvature Kij, defined by

Aij ¼ Khiji � Kij � 1

3
�ijK; (11)

where Kij with two indices between hi is to take the

symmetric and traceless part of Kij, and K ¼ �ijKij is

the trace of the extrinsic curvature, is conformally decom-
posed according to

~Aij ¼ e�4�Aij: (12)

The conformal connection functions ~�i, initially defined as

~�i � ~�jk~�i
jk ¼ �~�ij

;j; (13)

are regarded as independent variables in this formulation.
The evolution equations of BSSN formulation can be

written as

d

dt
� ¼ � 1

6
�K; (14)

d

dt
~�ij ¼ �2� ~Aij; (15)

d

dt
K ¼ �

�
~Aij

~Aij þ 1

3
K2

�
�r2�; (16)

d

dt
~Aij ¼ �ðK ~Aij � 2 ~Aik

~Ak
jÞ þ e�4�ð�Rhiji � rhirji�Þ;

(17)

@t~�
i ¼ 2�

�
~�i
jk
~Ajk � 2

3
~�ijK;j þ 6 ~Aij�;j

�
� 2 ~Aij�;j

þ �j~�i
;j � ~�j�i

;j þ
2

3
~�i�j

;j þ ~�jk�i
;jk

þ 1

3
~�ij�k

;jk: (18)

The Ricci tensor Rij can be written as a sum of two pieces

Rij ¼ ~Rij þ R�
ij; (19)

where R�
ij is given by

R�
ij ¼ �2~ri

~rj�� 2~�ij
~r2�þ 4~ri�

~rj�

� 4~�ij
~rk�~rk�; (20)

where ~ri is the covariant derivative with respect to ~�ij,

while, with the help of the ~�i, ~Rij can be expressed as

HWEI-JANG YO, ZHOUJIAN CAO, AND CHUN-YU LIN PHYSICAL REVIEW D 86, 064027 (2012)

064027-2



~R ij ¼ � 1

2
~�mn ~�ij;mn þ ~�kði~�k

;jÞ þ ~�k~�ðijÞk

þ ~�mn½2~�k
mði~�jÞkn þ ~�k

in
~�kmj�: (21)

The new variables are tensor densities, so that their Lie
derivatives are

L ~�K ¼ �kK;k;

L ~�� ¼ �k�;k þ 1

6
�k

;k;

L ~� ~�ij ¼ �k ~�ij;k þ 2~�kði�k
;jÞ �

2

3
~�ij�

k
;k; (24)

L ~�
~Aij ¼ �k ~Aij;k þ 2 ~Akði�k

;jÞ �
2

3
~Aij�

k
;k: (25)

The Hamiltonian and momentum constraints (2) and (3)
can be rewritten as

H ¼ e�4�ð ~R� 8~r2�� 8~ri�~ri�Þ
þ 2

3
K2 � ~Aij

~Aij ¼ 0; (26)

Mi ¼ ~rj
~Ai

j þ 6�;j
~Ai

j � 2

3
K;i ¼ 0; (27)

where ~R ¼ ~�ij ~Rij. Besides being used to obtain the evolu-

tion equations (16) and (18) in the BSSN formulation, the
Hamiltonian and the momentum constraints are also ap-
plied to the volume integrals of the ADM mass and the
angular momentum (in vacuum), respectively [18]:

M ¼ 1

16�

I
@�

ð~�i � 8~�ij@je
�Þd~�i (28)

¼ 1

16�

Z
�

�
e5�

�
~Aij

~Aij � 2

3
K2

�
þ ~�j

;j � e� ~R

�
d3x;

(29)

Ji ¼ 1

8�
�ij

k
I
@�

e6�xj ~A‘
kd

~�‘ (30)

¼ 1

8�
�ij

k
Z
�
e6�

�
~Aj

kþ
2

3
xjK;k�1

2
xj ~A‘m ~�

‘m
;k

�
d3x;

(31)

where d~�i ¼ ð1=2Þ�ijkdxjdxk. These two global quantities
are useful tools for the system diagnostics to validate the
calculations.

III. ADJUSTING THE BSSN EQUATIONS

The BSSN formulation has been described in detail in
previous papers [13]. We will discuss here only the new
improvements. For a solution of the BSSN equations to be

equivalent with a solution of the ADM equations, the new
auxiliary variables have to satisfy new constraint equa-
tions. In particular, the determinant of the conformally
related metric ~�ij has to be unity,

D � ~�� 1 ¼ 0; (32)

and ~Aij has to be traceless

T � ~�ij ~Aij ¼ 0; (33)

and the conformal connection functions ~�i have to satisfy
the identity

G i � ~�i � ~�i
g ¼ ~�i þ ~�ij

;j ¼ 0; (34)

where ~�i
g � ~�jk~�i

jk. These conditions (32)–(34) are also

viewed as constraints in the BSSN formulation, in addition
to the Hamiltonian and momentum constraints. It is worth
mentioning that in the recent efforts on the formalism
extending the solution space of Einstein’s equation [19]
Gi are related to new dynamical variables whose evolution
are mainly driven by the momentum constraint, and there-
fore can be regarded as the cumulated effect of momentum
constraint violations.
In an unconstrained evolution calculation, the con-

straints are monitored only as a code check. It has been
proven to be advantageous, however, either to enforce at
least some of the constraints during the evolution, or to add
evolution constraint equations to the evolution equations.

A. Enforcement of the constraints D and T

In the conventional adjustments [12,20], the algebraic
constraints (32) and (33) are enforced actively by replacing

~�ij and ~Aij with the following:

~� ij ! ~��1=3 ~�ij; ~Aij ! ~Ahiji; (35)

after every time step. With Eq. (35), the noise from the
violation of constraints (32) and (33) is scaled/subtracted
‘‘evenly’’ from each conformal metric/extrinsic curvature
component. These two adjustments are widely used in
most of the numerical relativity groups.
The alternative adjustments for constraints (32) and (33)

in [13] are as follows: Instead of treating all components of
~�ij equally, only five of the six components of ~�ij need to

be evolved dynamically, and the remaining one can simply
be computed using Eq. (32). For example, let ~�zz be the
chosen component. Then

~� zz ¼
1þ ~�yy ~�

2
xz � 2~�xy ~�yz ~�xz þ ~�xx ~�

2
yz

~�xx ~�yy � ~�2
xy

; (36)

where ~�xx, ~�yy, ~�xy, ~�yz, ~�xz are evolved with the field

equation (15). In principle, any one of these six compo-
nents of ~�ij can be chosen to be computed using Eq. (32),

leaving the other five to be evolved with Eq. (15). However,
there will be extra difficulty if any of the three off-diagonal
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variables is chosen since Eq. (32) gives a quadratic equa-
tion for an off-diagonal component instead of a linear
equation for a diagonal component. Similarly, only five

of the six components of ~Aij need to be evolved dynami-

cally, and the remaining one can simply be computed using

Eq. (33). For example, let ~Ayy be the chosen component.

Then

~A yy ¼ �
~Ax

x þ ~Az
z þ ~Axy ~�

xy þ ~Ayz ~�
yz

~�yy : (37)

Although any one of these six components can be chosen to
be computed using Eq. (33), leaving the other five to be
evolved with Eq. (17). However, it is not recommended to
choose any of the three off-diagonal components since the
corresponding denominators for the off-diagonal compo-
nents, i.e., ~�xy, ~�yz, and ~�xz, could vanish anywhere.

One of the features of the alternative adjustments on ~�ij

and ~Aij is the economy compared with conventional meth-

ods. Only five, instead of six, components for both ~�ij and
~Aij need to be evolved dynamically, and the remaining one

is determined by the algebraic constraint. Meanwhile, the
alternative adjustments ‘‘correct’’ only one component
instead of all the components. It can be expected that
results with the alternative adjustments will be more con-
vergent than those with conventional adjustments. On the
other hand, the obvious shortcoming for the alternative
adjustments is the asymmetric treatment of the six compo-
nents. However, as far as the cases we have ever checked,
the effect of the asymmetry is negligible. It is helpful
numerically to choose a different diagonal pair for ~�ij

and ~Aij, instead of the same diagonal pair, in Eqs. (36) and

(37) to increase the asymmetry in the evolution equations
and to suppress the possible growth of the unstable modes
ignited by numerical error. In the work we choose the pair

ð~�zz; ~AyyÞ, instead of ð~�zz; ~AzzÞ in [13], to fulfill this

requirement.

B. Decomposition

For a third-rank tensor Yijk with symmetry in the last two

indices, i.e., Yijk ¼ YiðjkÞ, it can be decomposed into the

following form [21]

Yijk ¼ ¥ijk þ 3

5
�ihjLki � 1

5
�ihjYki þ 1

3
�jkYi; (38)

where

Li � �jkYjki ¼ �jkYjik; Yi � �jkYijk; (39)

and ¥ijk is the traceless part of Yijk, i.e., ¥ik
k ¼ ¥kik ¼

¥kki ¼ 0. We can apply the decomposition (38) to the

connection in every time slice although a connection is
not a tensor. The is because any quantity can be decom-
posed like a tensor as long as the quantity is only consid-
ered in the same coordinate, without any coordinate

transformations involved. Thus the conformal connection
can be decomposed as

~� i
jk ¼ ~Fi

jk þ
3

5
�i

hj ~Tki � 1

5
�i

hj~�
g
ki þ

1

3
~�jk

~�i
g; (40)

where ~Ti � ~�k
ki ¼ ~�k

ik, and ~Fi
jk is the traceless part of

~�i
jk. Here ~Ti ¼ ~�k

ki ¼ @i ln
ffiffiffiffi
~�

p ¼ 0 analytically, but ~Ti

could be nonzero numerically due to the truncation error.
We can guarantee the vanishing of ~Ti by subtracting the

terms having it from Eq. (40). ~�i
g in Eq. (40) can be

replaced with the conformal connection function ~�i by
adding the �-constraint to it. Then the new connection
becomes

~� i
jk ¼ ~�i

jk � 3

5
�i

hj ~Tki � 1

5
�i

hjGki þ 1

3
~�jkGi

¼ ~Fi
jk �

1

5
�i

hj~�ki þ 1

3
~�jk

~�i: (41)

We substitute ~�i
jk with the new one ~� i

jk in all the calcu-

lations, including the conformal covariant derivatives and
the conformal Ricci tensor, as a new modification.
Similarly, the spatial derivative of the conformal metric

can also be decomposed in every time slice as

@i ~�jk ¼ @i ~�jk þ 3

5
~�ihj~�

g
ki �

1

5
~�ihjTki þ 1

3
~�jkTi; (42)

where @i ~�jk is the traceless part of @i ~�jk. We use the same

trick on the conformal connection part like we did on
Eq. (41) and obtain a new spatial derivative on ~�ij

d 0
i ~�jk ¼ @i ~�jk þ 3

5
~�ihjGki: (43)

Here we do not take action on eliminating the Ti part in
Eq. (42) since its effect is negligible from the observation
of our numerical experiment.
However, it turns out that this replacement of the spatial

derivative of the conformal metric seems give too much
change on the field equation of ~�ij and causes in instability

when d0i ~�jk is applied in Eq. (24). This problem can be

solved when the modification (56) in Sec. III D is applied
in simulations, at least in single black hole simulations.
Nevertheless, we modify Eq. (43), by multiplying an
adjustable parameter to the substitution part, to have

d i ~�jk ¼ @i ~�jk þ �~�iðjGkÞ � 1

5
~�jkGi; (44)

where the range of the parameter is usually chosen as
� 2 ½1=5; 4=5� in this work. And

�idi ~�jk ¼ �i@i ~�jk þ ��ðjGkÞ � 1

5
~�jk�

iGi: (45)

Thus the replacement of�i@i ~�jk in Eq. (24) with�
idi ~�jk is

equivalent to modifying Eq. (15) into
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d

dt
~�ij ¼ �2� ~Aij þ ��ðiGjÞ � 1

5
~�ij�

kGk: (46)

We postpone the modification on the field equation of ~Aij

with the decomposition of the spatial derivative of ~Aij until

Sec. III D.

C. Enforcement of the �-constraint

In the conventional adjustments, to enforce constraint

(34) all the undifferentiated ~�i in the evolution equations

are substituted with ~�i
g. However, this adjustment give

stability in single Kerr-Schild black hole simulations
only in octant symmetry [12]. Instead of the conventional
adjustment, one of the alternative adjustments [13]
(dubbed as ‘‘YBS’’) is to add the �-constraint to the

evolution equations (18) of ~�i by

@t~�
i ¼ rhs of ð18Þ � 2

3
ð	þ 1ÞGi�k

;k; (47)

where 	 is usually chosen to be unity. The YBS adjustment
has been proven to be helpful in suppressing the instability
caused from some unstable modes [13,22].

Here we propose another adjustment to enhance the
stability. This adjustment is basically the following sub-
stitution in Eq. (18):

~� ijK;j ! 
ij
;j þ K~�i; (48)

where 
ij � ~�ijK. And this adjustment turns Eq. (18) into

@t~�
i ¼ 2�

�
~�i

jk
~Ajk � 2

3

ij

;j þ 6 ~Aij�;j

�
� 2 ~Aij�;j

þ �j~�i
;j � ~�j�i

;j þ ~�jk�i
;jk

þ 1

3
~�ij�k

;jk þ
2

3
ð�k

;k � 2�KÞ~�i: (49)

As we will show in Sec. VI, the performance of the code
with this adjustment is better than the one with the YBS
adjustment, but without the uncertainty of choosing the
value of the parameter 	. Furthermore, the connection in

Eq. (49) can be replaced with the new connection ~� i
jk, and

thus Eq. (49) is modified into

@t~�
i ¼ 2�

�
~� i

jk
~Ajk � 2

3

ij

;j þ 6 ~Aij�;j

�
� 2 ~Aij�;j

þ �j~�i
;j � ~�j�i

;j þ ~�jk�i
;jk þ

1

3
~�ij�k

;jk

þ 2

3
ð�k

;k � 2�KÞ~�i � ð1þ 	Þ�ð�iÞ�iGi; (50)

where the last term is newly added to control the stability

via the linear term of ~�i, � is a step function, and �i is as
follows:

�i ¼ 2

3
ð�k

;k � 2�KÞ � �î
;î
� 2

5
� ~A

î
î; (51)

where the index with hat, i.e., î, means that no index
summation happens on this index. 	 is chosen to be 1 in
all the cases in this work.

D. Application of the momentum constraint

Yoneda and Shinkai have studied the adjusted systems
for the BSSN formulation in [14]. It shown in the work that
the adjusted BSSN system could be quite robust with the

following modification on the field equation (17) of ~Aij:

d

dt
~Aij ¼ rhs of ð17Þ þ kA�

~rðiMjÞ; (52)

where 
A is a constant. If 
A is set as positive, the viola-
tions of the constraints are expected to be damped. The

robustness of this ~A-adjusted BSSN formulation has been
demonstrated in [15,16]. Here we would like to apply this
type of modification to the BSSN formulation in a slightly
different manner. In the momentum constraint, the cova-

riant derivative of ~Aij can be rewritten as

~rj
~Ai

j ¼ ~Ai
j
;j � ~�kj

i
~Akj ¼ ~Ai

j
;j �

1

2
~�jk ~Ajk;i: (53)

Thus the momentum constraint turns to be

Mi ¼ ~Ai
j
;j �

1

2
~�jk ~Ajk;i þ 6�;j

~Ai
j � 2

3
K;i: (54)

And the symmetric part of its spatially partial derivative is

Mði;jÞ ¼ ~Aði
k
;jÞk þ ~�k‘

ðij ~Ak‘;jjÞ � 1

2
~�k‘ ~Ak‘;ij

þ 6�;kði ~AjÞ
k þ 6�;k

~Aði
k
;jÞ �

2

3
K;ij: (55)

Therefore, the modification on Eq. (17) in this work is

d

dt
~Aij ¼ rhs of ð17Þ þ hfð�ÞMhi;ji; (56)

where h is the grid width and fð�Þ is a function of lapse
and usually chosen to be 1 in single black hole simulations.
It shows in our numerical experiments that this modifica-
tion is helpful in suppressing the instability from the high-
frequency unstable modes.

As in Sec. III B, the spatial derivative of ~Aij can be

decomposed in every time slice as

@i ~Ajk ¼ @i ~Ajk þ 3

5
~�ihjPki � 1

5
~�ihjQki þ 1

3
~�jkQi; (57)

where @i ~Ajk is the traceless part of @i ~Ajk and

Pi ¼ ~�jk@j ~Aki; Qi ¼ ~�jk@i ~Ajk: (58)

With the momentum constraint (54) and the traceless
extrinsic curvature constraint (33), we obtain a new spatial

derivative on ~Aij
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d i
~Ajk ¼ @i ~Ajk � 3

5
~�ihjMki � 1

10
~�ihjAki � 1

3
~�jkAi;

(59)

where Ai is the spatially secondary constraint of Eq. (33)

A i ¼ @iT ¼ ~�jk ~Ajk;i þ ~Ajk ~�
jk
;i ¼ Qi � 2 ~Ajk

~�jk
i ¼ 0:

(60)

With the new spatial derivative (59), we can modify the

field equation of ~Aij further from Eq. (56) to

d

dt
~Aij ¼ rhs of ð17Þ þ hfð�ÞMhi;ji � 3

5
�hiMji

� 1

10
�hiAji � 1

3
~�ij�

kAk: (61)

IV. INITIAL DATA

A. Single black hole in Kerr-Schild coordinates

The ingoing Kerr-Schild form of the Kerr metric is given
by [23,24]

d s2 ¼ ð�
� þ 2H‘
‘�Þdx
dx�; (62)

where �
� ¼ diagð�1; 1; 1; 1Þ is the Minkowski metric in

Cartesian coordinates, and H a scalar function. The vector
‘
 is null both with respect to �
� and g
�,

�
�‘
‘� ¼ g
�‘
‘� ¼ 0; (63)

and we have ‘2t ¼ ‘k‘k. The general Kerr-Schild black
hole metric has

H ¼ Mr

r2 þ a2cos2�
(64)

and

‘
 ¼
�
1;
rxþ ay

r2 þ a2
;
ry� ax

r2 þ a2
;
z

r

�
: (65)

HereM is the mass of the Kerr black hole, a ¼ J=M is the
specific angular momentum of the black hole, and r and �
are auxiliary spheroidal coordinates defined in terms of the
Cartesian coordinates by

x2 þ y2

r2 þ a2
þ z2

r2
¼ 1 (66)

and z ¼ r cos�. The event horizon of the black hole is
located at

reh ¼ Mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2

p
: (67)

Comparing (62) with the ADM metric (1) one identifies
the lapse function �, shift vector �i and the spatial
3-metric �ij as

� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2H

p ; (68)

�i ¼ 2H‘i; (69)

�ij ¼ �ij þ 2H‘i‘j: (70)

We can see here that these variables all extend smoothly
through the horizon and their gradients near the horizon are
well-behaved. Given these metric quantities, the extrinsic
curvature Kij can be computed from (4)

Kij ¼ 2�H‘k½‘i‘jH;k þ 2H‘ði‘jÞ;k�
þ 2�½‘ðiH;jÞ þH‘ði;jÞ�; (71)

K ¼ 2�3ð1þHÞ‘kH;k þ 2�H‘k;k: (72)

In the static case a ¼ 0, the above expressions reduce to
the Schwarzschild expressions in ingoing Eddington-
Finkelstein form [25]

H ¼ M

r
; ‘
 ¼

�
1;
xk
r

�
;

Kij ¼ 2M

r4ð1þ 2M=rÞ1=2
�
r2�ij �

�
2þM

r

�
xixj

�
;

K ¼ 2M

r2ð1þ 2M=rÞ3=2
�
1þ 3

M

r

�
; (73)

where M is the total mass-energy and r2 ¼ x2 þ y2 þ z2.

B. Binary black hole with punctures

We use the quasicircular binary black hole puncture data
to test our modifications. The momentum parameter for the
quasicircular orbit is set to be the value given by [26] based
on the helical Killing vector conditions. In the following,
we review the puncture scheme and describe how we
construct initial data by the multidomain spectral method
extended from the LORENE library [27,28].
To determine a three-geometry subject to the constraint

equations (2) and (3), the conformal decomposition plays
an important role (see [29] for instance). Lichnerowicz
[30] proposed a conformal decomposition of three-metric
�ij ¼ c 4 ~�ij, as Eq. (9) with c ¼ e�, and later York [31]

used the transverse-traceless decomposition of the confor-

mal extrinsic curvature Âij � c 10Aij ¼ Âij
TT þ ~LWij. The

particular conformal scaling makes the identity riA
ij ¼

c�10 ~riÂ
ij hold. In this decomposition, Âij

TT is transverse

(i.e., ~riÂ
ij
TT ¼ 0) and can be assumed to be zero to have a

purely longitudinal Âij ¼ ~LWij. In this approach, named as
conformal transverse-traceless method (CTT), and in the
assumption of conformal flatness, ~�ij ¼ �ij, maximal slic-

ing, K ¼ 0, and Âij
TT ¼ 0, the vacuum constraint equation

would then be expressed as

~r 2c ¼ � 1

8
c�7ÂijÂ

ij; (74)

~r jÂ
ij ¼ 0: (75)
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The momentum constraint is linear in this case. For a
N-black hole system, it allows the Bowen-York solution

Âij ¼ P
N
a¼1 Â

ij
a , where the conformal extrinsic curvature

for each black hole is [32]

Â
ij
a � c 10Aij

a

¼ 3

4r2
½PðinjÞ � 2ð�ij � ninjÞPkn

k�

þ 3

2r3
nði�jÞk‘Skn‘; (76)

with ni the spatial unit vector pointing away from the
puncture, and Pi and Si its linear and intrinsic angular
momentum, respectively. The conformal factor then can
be numerically solved from the Hamiltonian constraint.

In the puncture method, one separates out the singular
part

c s ¼ 1þ XN
a¼1

ma

2ra
; (77)

from the conformal factor c , wherema and ra are the mass
parameter and coordinate distance from each puncture,
respectively. It is the superposition of Schwarzschild solu-
tion in the isotropic coordinate and satisfies the Laplace’s
Eq. [34]. Therefore the desired regular part u � c � c s is
determined by

~r 2u ¼ � 1

8
ÂijÂijðc s þ uÞ�7: (78)

The existence and uniqueness of the solution has been
discussed in [34].

Our multipuncture initial data solver is motivated from
[35] for the excised binary black hole initial data. We cover
on each black hole a spherical multishell domain, and split
u ¼ P

aua (the index a runs over the number of the black
holes) as well as the puncture equation (78) into

~r 2ua ¼ � 1

8
Âij
a Âijðc s þ uÞ�7: (79)

Only one of the extrinsic curvature tensor Âij split in the

above equation. Thus it is expected that the source term in
its right-hand side has large contribution only near each
hole, and the use of spherical polar coordinates is adequate
for solving the equation near the punctures. The ua van-
ished at the asymptotically flat physical outer boundary on
the outermost, compactified shell. And @ruaðr ¼ 0Þ ¼ 0 is
also ensured at the punctures as the inner boundary condi-
tion. These equations for each hole are then solved iter-
atively with the Poisson solver in the LORENE library
until each successive difference of �ua is small, typically
10�11. For the binary case, our initial data is consistent
with the earlier work [36]. The convergence of our method
was presented in [37].

V. NUMERICAL IMPLEMENTATION

In this work, we discretize the evolution equations using
a fourth-order Runge-Kutta scheme. We use fourth-order
centered differencing everywhere except for the advection
terms on the shift. For these terms, a fourth-order upwind
scheme is used along the shift direction.
For the lapse gauge condition, we consider the

‘‘1þ log’’ slicing [38–40] which is basically a modifica-
tion of the Bona-Massó slicing. The lapse condition used in
the single Kerr-Schild black hole evolutions is

@t� ¼ Di�
i � �K: (80)

For binary black hole simulations, the moving puncture
technique is adopted. And the lapse condition used here is
the standard one in numerical relativity community for
binary black hole simulation as

@t� ¼ �i�;i � 2�K: (81)

Many driver gauge conditions (e.g., the �-driver) for the
shift vector [41,42] are currently the main type of gauge
conditions used in the punctured black hole calculations. In
this work, we will only focus on these types of gauge
conditions. The hyperbolic type �-driver condition used
for the single black hole simulations is

@t�
i ¼ 3

4
Bi; (82)

@tB
i ¼ �2@t~�

i � �Bi; (83)

where � is the parameter to be chosen. In the single Kerr-
Schild black hole evolutions, � ¼ 5. For the binary black
hole simulations, we use

@t�
i ¼ 3

4
Bi þ �j�i

;j; (84)

@tB
i ¼ @t~�

i � 2Bi þ �jBi
;j � �j~�i

;j: (85)

On the outer boundaries of the numerical grid we impose
a radiative boundary condition that is imposed on the
difference between a given variable and its analytic value
f� fanalytic ¼ uðr� tÞ=r where u is an outgoing wave

function. We apply this condition to all fields except ~�i

which we leave fixed to their analytic values at the bound-
ary in the single Kerr-Schild black hole evolutions for
stability. We return to apply the radiative boundary condi-

tion on ~�i in the punctured binary black hole evolutions.
The excision technique is applied in the single Kerr-

Schild black hole evolutions since the singularities in the
Kerr-Schild coordinates are physical ones for which the
puncture method is not applicable. (Usually the puncture
method is applied to the isotropic-like coordinates in which
the singularities are coordinate ones.) For (spherical) ex-
cision regions, we adopt the recipe suggested by [12,13] to
copy the time derivative of every field at the boundary from
its neighboring grid-point. The details can be found in [13].
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VI. NUMERICAL RESULT

A. Single black hole

Our simulations for single Kerr-Schild black holes
are summarized in Table I. For most of these simulations
we use computational domains of size �12M< x; y <
12M and 0< z < 12M for equatorial symmetry, and
�12M< x; y; z < 12M for no symmetry, with a grid spac-
ing of �x ¼ 0:2M. In order to analyze the effect of reso-
lution we performed the two Cases E6-lo and E6-hi on the
same domain and used a resolution of �x ¼ 0:4M for
E6-lo and �x ¼ 0:1M for E6-hi. We always use a
Courant factor of 1=4 so that �t ¼ �x=4. We excise
spheres of radius r ¼ 1:6M inside the event horizons
(r ¼ 2M) in these simulations.

A simulation can be judged as being stable if changes in
all dynamical variables drop to round-off error (of about
10�16 for double precision), and remain at that level as the
simulation goes. Reaching round-off implies that the
numerical solution has settled down to the equilibrium
solution of the finite-difference equations (as opposed to
the equilibrium solution of the differential equations,
which is provided as initial data). In all our stable runs,
besides monitoring the global quantities consisting of the
ADM mass (28) and (29), the angular momentum Jz (30)
and (31), the L2 norms of the Hamiltonian constraint H ,
the momentum constraint Mx, and the �-constraint Gx

violations, we also monitor the changes in the representa-

tive variables, i.e., �, K, ~�xx, ~Axx,
~�x, �, and �x, to see if

they can reach and remain at the level of round-off error.
Because of the existence of singularity inside the excision
area, we only consider the domain outside the excision
(including the part inside the horizon) for the estimate of
the error norm and the changes.

In Fig. 1 we summarize the listed cases with the medium
resolution in Table I. As shown in [12,13], in Case STD the
evolution with the usual standard recipes applied to the
BSSN formulation becomes unstable quickly. The root

mean square (rms) of the changes in K between consecu-
tive time steps, �Krms, in this case drops exponentially
until t� 250M, then at later times it increases exponen-
tially. This exponentially growing mode can be extrapo-
lated back to about round-off error at t ¼ 0, indicating that
the mode is triggered by round-off error in the initial data.
In Case YBS the recipes suggested in [13], including
mainly Eqs. (36), (37), and (47), are applied to the BSSN
formulation. Undoubtedly, the evolution in Case YBS is
more stable than the one in Case STD. We can see from it
that the �Krms in this case drops exponentially until t�
650M before it turns to increase exponentially. In fact, the

TABLE I. Input parameters and modifications used for selected evolutions. For each evolution we list the symmetry used, the
method for constraintsD & T enhancement, the modifications on the field equations of ~�i and ~�ij, the substitution of connection, the

modification on the field equations of ~Aij, the time when instability shows.

Case Symmetry ~�zz þ ~Ayy
~�i ~�ij

~� i
jk

~Aij Instability appears at

Eq. (36)þ(37) (50) (46) (41) (61)

STD Equ (35) ~�i
g �250M

YBS Equ ! (47) �650M
E1 Equ ! (49) �550M
E2 Equ ! (49) � ¼ 2=5 �750M
E3 Equ ! ! � ¼ 2=5 ! �850M
E4 Equ ! ! � ¼ 2=5 ! (56) �950M
E5 Equ ! ! � ¼ 3=5 ! (56) None

E6-lo Equ ! ! � ¼ 3=5 ! ! None

E6 Equ ! ! � ¼ 3=5 ! ! None

E6-hi Equ ! ! � ¼ 4=5 ! ! None

N7 None ! ! � ¼ 3=5 ! ! None
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N7 E6

FIG. 1 (color online). The root mean square (rms) of the
change in the trace of extrinsic curvature between consecutive
time steps as functions of time for the cases listed in Table I. The
usual BSSN formulation is used in Case STD. The modifications
suggested in [13] are used in Case YBS. The modifications
suggested in this work are activated one by one from Case E1
to Case E6. Case E5 has the same modifications with Case E4
except with a different value of � used in Eq. (46). Case N7 has
the same modifications with Case E6 except with no symmetry
for the computational domain. There is no instability shown in
Cases E5, E6, and N7 throughout these runs.
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recipes used in Case YBS have been shown in [13] to be
able to stabilize an evolution until its�Krms reaches round-
off error. However, a lower grid resolution and the second-
order finite-differencing methods both spatially and
temporally are used in those numerical experiments. The
instability shown in Case YBS indicates that higher-
frequency unstable modes triggered with higher grid reso-
lution and/or higher-order finite-differencing methods
need to be tamed with further modifications to the BSSN
formulation.

We test our new modifications from Case E1 to Case E6.

In Case E1, the field Eq. (49) for ~�i, instead of Eq. (47) in
Case YBS, is employed in the evolution. As described in
Sec. III C, this modification is to enhance the effect of the

linear terms in the field equation of ~�i on convergence and
stability. We can see from the plot that the evolution in
Case E1 converges faster than the one in Case YBS, and
thus encounters the growth of instability from round-off
error earlier (t� 550M). Besides the modifications

employed in Case E1, we add the modified field Eq. (46)
of ~�ij in Case E2 with the parameter choice � ¼ 2=5. In

our numerical experience, this modification is a critical one
among the new modifications on the stability of an evolu-
tion. The choice of the parameter � could also affect the
behavior of convergence. From Fig. 3 we can see that the
evolution in Case E2 does not show any instability until

t� 750M. In Case E3, the connection ~�i
ij is substituted by

the new one, ~� i
jk, via the application of Eq. (41). The

purpose of the modification is to substitute ~�i
g, a decom-

position part of ~�i
jk, in

~�i
jk with the independent confor-

mal connection ~�i, as well as enhancing the secondary

constraint ~�j
ij ’ 0. We can see in Fig. 3 that the combina-

tion of the modifications used in Case E3 enhances quite a
lot the stability of an evolution. The evolution does
not show any instability until t� 850M and the �Krms

reaches almost round-off error before the unstable mode
appears.
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FIG. 2 (color online). The monitored quantities as functions of time for Case E6. The upper-left panel compares different integrals
for the ADM mass. The lower-left panel compares different integrals for the angular momentum. The upper-right panel shows the L2
norms of the Hamiltonian constraint H and the momentum constraint Mx. The lower-right panel shows a log plot of the rms of the
changes in the lapse and the trace of extrinsic curvature between consecutive time steps.
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However, we found that the modifications used in Case
E3 are sensitive to the grid resolution. This leads us to
employ the modification (56) in Cases E4 and E5.
Equation (56) is adopted from [14] with some deformation.

This modification offers a dissipation effect on ~Aij which

fits into our requirement for stability. With this modifica-
tion, the evolution in Case E4 does not show instability
until t� 950M with �Krms near round-off error. We push
the stability in Case E5 by setting the parameter used in
Eq. (46) to be � ¼ 3=5. Then the �Krms and all the other
changes drop exponentially until they reach round-off error
in Case E5. In Case E6, the modification (61) instead of
Eq. (56) is employed. This modification gives a little faster
convergence. The settings in Case N7 are the same as in
Case E6 except there is not any grid symmetry in N7. This
case is used to test the effect of the grid symmetry on the
stability of an evolution with the modifications. It shows in
Case N7 no sign of instability with the relaxation of
symmetry.

Now we would like to look closer at the stable case, i.e.,
Case E6. The results for Case E6 are presented in Fig. 2.
The upper-left panel shows two different integrations of the
ADM masses. The (red) dashed line is computed from a
surface integral (28) at large separation, while the solid line
is computed from a volume integral (29) plus a surface
integral over a small sphere enclosing the black hole
singularity. We choose a radius of R1 ¼ 2M for the inner
surface and R2 ¼ 11M for the outer surface. For R2 ! 1
the two mass integrals should agree and should yield the
analytic valueM of the initial data. Our two mass integrals
agree to within about 0.05%. The lower-left panel in Fig. 2
shows surface and volume integrations of the angular
momentum, similar to the mass integrations explained
above. The (red) dashed line is computed from the outer
surface integral (30); the solid line is computed from a
combination of volume integral (31) and inner surface
integral. For both integrations the angular momentum is
very close to zero, as it is supposed to be. These results
indicate that the global quantities are consistent with the
expected values in single BH and are not sensitive to the
existence of the excision (as long as inside the BH horizon).

The upper-right panel shows the L2 norms of the
Hamiltonian constraint H (solid line) and the momentum
constraint Mx (red-dashed line). The lower-right panel
shows a log plot of the rms of the changes in the lapse �
(solid line) and the trace of extrinsic curvature K (red
dashed line) between consecutive time steps. The changes
in � and K both decrease exponentially until they reach
round-off error at about t� 800M. We then continue to run
the numerical simulation for this case until the time being
over 2000M and there is not any sign of instability.

In Fig. 3, we compare the results of Cases E6 using the
same modifications but with different resolutions to test the
convergence of the formulations. From the plot we can see
that in all the three cases the �Krms’s reach the round-off

errors. The cases for the low and the medium resolutions
are extended over 2000M. The case for the high resolution
is terminated at t � 1100M due to its time-consuming
computation. In Case E6-hi we use � ¼ 4=5, instead of
� ¼ 3=5 in Cases E6-lo and E6, to enhance the stability
against higher-frequency noise. The results of these three
cases indicate a nice convergence with these modifications.

B. Binary black hole with punctures

We use our numerical code AMSS-NCKU, which has
been employed in several previous studies [18,43,44]. With
this code the standard moving box style mesh refinement is
implemented. We used 11 mesh levels in all, where 8 levels
are fixed and 3 levels are movable. For fixed levels we used
one box with grids 144� 144� 72 where we have taken
the advantage of equatorial symmetry of the system. The
outermost physical boundary is set to 517.12. For movable
levels, two boxes are used. And every box has grids
72� 72� 36. In time direction, the Berger-Oliger numeri-
cal scheme is adopted for levels higher than 4. Although
our code can adopt the Kreiss-Oliger numerical dissipa-
tion, we disable it in order to check the accuracy and
stability of our new modification. We set � ¼ 0:1 in
Eq. (46) and fð�Þ ¼ h� in Eq. (56).
In this subsection both the usual BSSN formalism and

our modification are tested and compared with each other,
without the Kreiss-Oliger numerical dissipation for both
formalisms. Several typical configurations of binary black
hole listed in the QC sequence of [45] are tested. We find
that, for QC1 and QC2, both formulations give stable and
consistent results for whole inspiral and merger phases.
However, for QC3 and QC6, both formulations crash at
almost the same time moment. We suspect that the failure
mainly comes from the numerical error being too much.
Compared with the tests in the previous subsection, there
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FIG. 3 (color online). The rms of the change in the trace of
extrinsic curvature between consecutive time steps as functions
of time with different resolutions.
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is one more complicated numerical issue, that is, the
numerical noise introduced by mesh refinement. And this
type of noise causes the numerical instability dominantly
when the mesh refinement technique is employed during
the simulations. Compared with the numerical noise by the
discretization of the field equations, the numerical noise
induced by mesh refinement is much larger such that the
modification is not able to suppress it in time. So in such
kinds of cases the advantage of our modification on stabil-
ity does not prevail.

Interestingly we do find our new modification has the
advantage on accuracy compared with the usual BSSN
formulation. The advantage is manifest on the gravitational
radiation wave form calculation. And this issue has been
investigated in [44,46]. As we have mentioned, both the
usual BSSN formulation and our new modification are
stable for simulations of QC1 and QC2. For completeness,
here we list the initial parameters for QC1 and QC2 here.
The initial positions of binary black hole for these
two configurations are ð0;�1:364; 0Þ and ð0;�1:516; 0Þ.
The initial linear momentum are ð�0:286; 0; 0Þ and
ð�0:258; 0; 0Þ. For both configurations the two black holes
are spineless and identical with puncture mass parameter
0.463 and 0.47, respectively. We plot the resulted waveform
in Fig. 4. The waveform is measured by Newman-Penrose
quantity �4. Our calculation follows the description in
[18]. The figure shows that the two formulations give
consistent waveform. And the consistence convinces us
the new modification does work well for binary black
hole simulations. In particular, the formulation with our
modification suppresses the numerical error more effec-
tively and produce a smoother waveform than the usual
BSSN formulation does during the ringdown phase. We
should emphasize that the boundary effects have no effect
on the late-time behavior of the waveform. Since the

outermost boundary is at 517.12 and the waveform is
measured at R ¼ 50, therefore the noise in the waveform
mainly comes from the evolution itself.

VII. SUMMARY

We experiment with various modifications of the
BSSN formulation and study their effects on the stability
of numerical evolution calculations of a single black hole.
Based on the modifications in [13], we enhance the
unimodular determinant constraint with Eq. (36) and the
traceless extrinsic curvature constraint with Eq. (37). We
further modify the evolution equation for the conformal
connection functions into Eq. (49) by enhancing the linear

term of ~�i. With an irreducible decomposition (38), we

replace the component ~�i
g in the connection with the

~�i and

enhance the spatial secondary unimodular determinant

constraint ~�j
ij ¼ 0 to form a new connection ~� i

ij in

Eq. (41). Meanwhile, the field equation of ~�i is adapted
from Eq. (49) into Eq. (50) for the new connection and to
ensure the suppression ability of numerical error in its
linear term. With the irreducible decomposition on ~�ij;k,

the field equation of the conformal metric is modified into
Eq. (46) by adding the �-constraint. The field equation of
the conformal extrinsic curvature is modified into Eq. (61)

by combining the ~A-adjustment proposed in [14] and the

irreducible decomposition on ~Aij;k.

We found that these modifications on the BSSN for-
mulation do show their superiority on numerical error
suppression compared with the earlier work when applied
to single Kerr-Schild black hole calculations and thus
increase the accuracy eventually. When applied to the
binary black hole calculations with the typical initial data
and without the Kreiss-Oliger dissipation, the modified
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FIG. 4 (color online). Comparison of ‘ ¼ 2; m ¼ 2 mode of �4 for the usual BSSN formulation and the one with our new
modification. The outermost boundary locates at 517:12. And the detector locates at R ¼ 50. The (red) dashed line corresponds to the
result with our new modification and the solid line corresponds to the result with the usual BSSN formulation. The results from the two
formulations are quite consistent. But for the late ringdown phase, shown in the enlarged subplots, our new modification gives a much
smoother result.
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BSSN formulation gives a consistent and more accurate
result than the conventional method.

Among these modifications, Eq. (46) seems to play a key
role in stability and thus the whole evolution is quite
sensitive to the value of the parameter �. We suspect that
this modification, combined with the Ricci curvature in the

field equation of ~Aij, could change the characteristic of ~�i,

and thus of the system. However, a further analytic/
numerical study is needed to have a better understanding
of the effect of this modification.

In this work, we only demonstrate the advantage of these
modifications to stability and accuracy of binary black hole
simulations without any systematic study on the optimal
choice of the related parameters. Thus we plan to address
this problem in more detail in a separate upcoming work to

increase the numerical accuracy of future binary black hole
simulations.
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